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Abstract—We address the distributed estimation of a scalar
Gaussian source in wireless sensor networks (WSNs). The sensor
nodes transmit their noisy observations, using the amplify-
and-forward relaying strategy through coherent multiple access
channel to the fusion center (FC) that reconstructs the source
parameter. In this letter, we assume that the received signal at
the FC is corrupted by impulsive noise and channel fading, as
encountered for instance within power substations. Over Rayleigh
fading channel and in presence of Middleton class-A impulsive
noise, we derive the minimum mean square error (MMSE) opti-
mal Bayesian estimator along with its mean square error (MSE)
performance bounds. From the obtained results, we conclude that
the proposed optimal MMSE estimator outperforms the linear
MMSE estimator developed for Gaussian noise scenario.

Index Terms—Distributed WSN, MMSE optimal Bayesian
estimation, Middleton class-A impulsive noise, Rayleigh fading.

I. INTRODUCTION

The difficulty of estimating a Gaussian source from its
available noisy measurements is prevalent in numerous signal
processing contexts. In this aspect, over the past few years,
researches on the implementation of distributed WSN has been
evolving very rapidly. For example, the authors in [1] con-
sidered the distributed estimation of scalar source parameters
using a collaborative WSN. It is shown that depending on
the available information about the source statistics and the
noise behaviour, different estimators can be used to achieve the
MSE criterion. Similar performance analyses are carried out
in [2]–[4] to show the optimality of the maximum likelihood
estimator (MLE) [2], best linear unbiased estimator (BLUE)
[3], and the MMSE estimator [4] based on the available
information about the source statistics.
However, all of the above performance analyses for distributed
estimation schemes have been carried out over the Gaussian
noise scenario. On the other hand, the noise characteristics,
usually observed in many environments, such as the power
transmission lines areas, the power substations, and in some
mobile radio scenarios, are inherently impulsive in nature [5].
For example, in power substations, the noise emitted from
various power equipment are impulsive [6]. In this context,
the impacts of impulsive noise have been widely investi-
gated on the detection of finite alphabets in point-to-point
and collaborative WSN communications [7], [8]. However,
the performance of estimation techniques in the presence of
impulsive noise is not widely acknowledged.
Recently, the authors in [9] considered the MMSE optimal

Bayesian estimation (OBE) for a Gaussian source impaired
by Middleton class-A impulsive noise. It is shown that the
performance of the proposed MMSE OBE strictly depends on
the statistical characteristics of the received signal. The authors
in [10] derived the MMSE OBE and its MSE performance
bounds in closed form assuming that the noise and the source
signals are Gaussian mixture (GM) distributed. The obtained
results showed that the performance improvement of the
optimal MMSE estimator over the linear MMSE (LMMSE)
estimator under this condition is substantial. However, the
analyses in [9], [10] are restricted to the point-to-point scenario
and the effect of channel fading is not considered. To the
best of authors knowledge, no result exists for the distributed
estimation of Gaussian sources in the presence of impulsive
noise under Rayleigh fading. Here, we provide a mathematical
framework for the performance analysis of distributed esti-
mation of a scalar Gaussian source impaired by Middleton
class-A noise. A Middleton class-A process is a simple and
effective way to model an impulsive noise channel [5], [9]. Our
work is an extension of [9] to the distributed WSN scenario.
It is assumed that each sensor node transmits its observations
to the FC through a coherent multiple access channel (MAC)
using AF strategy. It is widely acknowledged that AF schemes
significantly outperform the traditional source-channel coding
for Gaussian signal estimation while preserving the sensor’s
radios low complexity [11]. The FC uses the received signal
to estimate the source parameter with minimum MSE.
The contributions of this work are as follows. First, we derive
the MMSE OBE for a scalar Gaussian source estimation using
distributed WSN in the presence of impulsive noise under
Rayleigh fading. It is seen that the presence of impulsive noise
makes the input-output characteristics of MMSE OBE non-
linear especially when the environment is more impulsive, as
indicated by the rare impulsive events. This leads to a non-
linear MMSE estimator. Then, we provide upper and lower
bounds for its MSE performance. Finally, the derived bounds
are validated through the Monte Carlo simulation. Interest-
ingly, from the obtained results, it is seen that the proposed
optimal MMSE estimator attains the lower bound for highly
impulsive noise environment and performs significantly better
than the LMMSE estimator developed for AWGN scenario.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a WSN of M sensor nodes
from S1 to SM and a FC. The sensor nodes observe a scalar
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Fig. 1. Distributed WSN for Gaussian source estimation.

parameter s, which is modeled by a Gaussian random variable
(rv) with mean µs and variance σ2

s . Let the signals measured
by the ith sensor node, i = 1, 2, . . . ,M , can be expressed as

xi = his+ ni, (1)

where hi and ni denote the channel coefficient and the
measurement noise at the ith sensor node, respectively. In this
work, as usual, the measurement noise variables {ni}Mi=1 are
assumed to be Gaussian with mean µn and variance σ2

n. Now,
the sensor nodes follow two-hop collaborative communications
to send the data from the source to the destination using AF
strategy. In the first hop, the sensor nodes measure the data of
the source to be estimated and in the second hop, each sensor
node amplifies its measured signal xi by a factor of ai and
transmits it to the FC through a coherent MAC channel [1].
The received signal, z, at the FC is then given by

z =

M∑
i=1

giaixi + ϑ, (2)

where gi is the channel coefficient between the ith sensor
node and the FC, and ϑ is the communication noise. We
assume that the channel coefficients follow the Rayleigh
distribution and for each link, they are considered to be static
for one symbol duration, while they vary from one symbol to
another. Therefore, both hi and gi are modeled by a zero-
mean independent, circularly symmetric complex Gaussian
random variable with variances σ2

h and σ2
g , respectively. It is

assumed that the channel coefficients are known at both the
transmitters and receiver side. Since the sensor transmitters
are assumed to have their channel phase information, they can
individually cancel this phase at the transmitter and hence
signals can be added coherently at the FC [1]. It is also
assumed that ϑ follows Middleton class-A distribution to
account for impulsive communication disturbance. Hence, the
probability density function (PDF) of ϑ is given by [5]

f(ϑ) =

∞∑
m=0

pm√
2πσm

exp

(
− ϑ2

2σ2
m

)
, (3)

where pm = e−AAm

m! is the steady state probability of the
mth impulsive source and σ2

m = σ2
ϑ
m/A+Γ

1+Γ is the variance
of that impulsive source. For m = 0, the model generates
the traditional AWGN component. Also, the parameters A, Γ,
and σ2 are called the global parameters as they characterize
the PDF [5]. The physical significance of these parameters

are: A denotes the impulsive index, Γ indicates the Gaussian
to impulsive noise power ratio, and σ2 represents the total
power of the noise ϑ.

III. MMSE OPTIMAL BAYESIAN ESTIMATION

In this section, we consider the MMSE optimal Bayesian
estimation of a scalar Gaussian source s impaired by Middle-
ton class-A noise under Rayleigh fading. The MMSE optimal
Bayesian estimation corresponds to the posteriori mean [12]
and is given by

ŝ = ε (s|z) ==

∫
sf (s|z) ds, (4)

where ŝ indicates the MMSE estimation of s and ε is the ex-
pectation operator. From equation (4), we can deduce that the
posteriori probability f(s|z) is required to derive the MMSE
estimator. Although the distribution of f(s|z) already exists
for AWGN channel [1], here, we derive the distribution for
impulsive noise scenario. Now, equation (2) can be rearranged
as

z = gTWhs+ gTWn + ϑ = αs+ β, (5)

where g=[g1, . . . , gM ]T , h=[h1, . . . , hM ]T , W=diag(a) with
a=[a1, . . . , aM ]T , and n=[n1, . . . , nM ]T . Here, the ampli-
fication factor for each node is ai =

√
(PT /M(σ2

hσ
2
s+σ2

n)),
where PT is the total transmission power of all the sensor
nodes. Also, α= gTWh and β= gTWn + ϑ. It is assumed
that N = gTWn and ϑ are mutually independent with each
other. Then, from the convolution property, the distribution of
β is represented by

f(β) =

∞∑
m=0

pmN (β, 0, σ2
m) ∗ N (β, µN , σ

2
N ),

=

∞∑
m=0

pmN (β, µβ , σ
2
β,m), (6)

where N (β, µβ , σ
2
β,m) is a Gaussian rv with mean µβ =

gTWµn and variance σ2
β,m=gTWΣNWTg + σ2

m, ΣN =

ε
{
nnT

}
. Moreover, s and β are mutually independent. Then,

the joint distribution of s and β is given by

f(s, β) = f(s)× f(β) =

∞∑
m=0

pmN (s, β, µm,Σm), (7)

where µm = [µs µβ ] and Σm =
[
σ2
s 0; 0 σ2

β,m

]
. Now,

from equation (5) we have,[
z
s

]
=

[
αs+ β
s

]
=

[
α I
I 0

] [
s
β

]
= C

[
s
β

]
, (8)

It is well known that if s and β are jointly Gaussian, then z and
s will also be jointly Gaussian, since the linear transformation
of a Gaussian vector is Gaussian too [12, pg. 325]. However,
it holds for GM also and hence [z, s]T = C[s, β]T is also
jointly GM with [10]

f(z, s) =

∞∑
m=0

pmN (z, s,Cµm,CΣmCT ), (9)

where,
Cµm =

[
α I
I 0

] [
µs
µβ

]
=

[
αµs + µβ

µs

]
=

[
µmz
µs

]
,

(10)
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and
CΣmCT =

[
ασ2

sα
T + σ2

β,m ασ2
s

σ2
sα

T σ2
s

]
=

[
σ2
z,m σ2

zs

σ2
sz σ2

s

]
.

(11)
Now, from the joint distribution of (9), the conditional PDF
of s given z can be evaluated as

f(s|z)=
f(s, z)

f(z)
=

∑∞
m=0 pmN (z, s,Cµm,CΣmCT )∑∞

m=0 pmN (z, µmz , σ
2
z,m)

,

=

∞∑
m=0

χm(z)N (s, µms|z(z),Σ
m
s|z(z)). (12)

Where the third equality comes from [12, Theorem 10.3] and
considering

χm(z) =
pmN (z, µmz , σ

2
z,m)∑∞

m=0 pmN (z, µmz , σ
2
z,m)

. (13)

Using [12, Theorem 10.3], we can write

µms|z(z) = µs + σ2
sz

(
σ2
z,m

)−1
(z − µmz ) , (14)

=µs+
σ2
sh

TWTg

gTWhσ2
sh

TWTg+gTWΣNWTg+σ2
m

(z−µmz )

(15)
and, Σms|z(z) = σ2

s − σ2
sz

(
σ2
z,m

)−1
σ2
zs, (16)

= σ2
s −

σ2
sh

TWTggTWhσ2
s

gTWhσ2
sh

TWTg + gTWΣNWTg + σ2
m

. (17)

Hence, using equation (4) and (12), the MMSE estimation of
s given z is obtained by

ŝ =

∫
s

∞∑
m=0

χm(z)N (s, µms|z(z),Σ
m
s|z(z))ds,

=

∞∑
m=0

χm(z)

∫
sN (s, µms|z(z),Σ

m
s|z(z))ds,

=

∞∑
m=0

χm(z)µms|z(z). (18)

Where χm(z) and µms|z(z) are defined in (13) and (15),
respectively. Equation (18) highlights how the MMSE OBE
depends on the signal, noise, and channel parameters for the
proposed scenario. In the special case of when both ni and ϑ
are Gaussian as in [1], the corresponding MMSE estimation
of s given z is given by

ŝ =
σ2
sh

TWTg

gTWhσ2
sh

TWTg + gTWΣNWTg + σ2
ϑ

z. (19)

Which is equivalent to the expression in [1, pp. 760]. It should
also be noted that (18) is equivalent to the expression of the
OBE in [9, eqn. (8)] in the special case of when µs = 0 and
z is the measurement, for a point-to-point scenario.

A. Distortion Analysis

The distortion of this scheme is evaluated in terms of MSE
and it can be obtained by

D ≡ ε
{

(s− ŝ)2
}

=

∫
s

∫
z

(
s− µs|z

)2
f(s, z)dsdz, (20)

=

∫
s

∫
z

(
s−µs|z

)2
f(s|z)f(z)dsdz=

∫
z

Σs|zf(z)dz,(21)

where the posteriori covariance Σs|z can be obtained as
derived in [10]

Σs|z =

∞∑
m=0

χm(z)

(
Σms|z +

(
µms|z

)2
)
−
(
µs|z

)2
. (22)

Hence, from equation (21) we have

D=

∫
z

∞∑
m=0

χm(z)

(
Σms|z+

(
µms|z

)2

−
(
µs|z

)2)
f(z)dz,

=

∞∑
m=0

pm

∫
z

(
Σms|z+

(
µms|z

)2

−
(
µs|z

)2)
fm(z)dz, (23)

where fm(z) = N (z, µmz , σ
2
z,m). However, equation (23) is

similar to the expression in [10, eqn. (21)] and can not be
solved analytically. Hence, we may derive its bounds. In this
vein, a lower bound (LB) is obtained under the hypothetical
assumption that there is no uncertainty about the impulsive
component m and the Rayleigh channel state information, i.e.,
the genie condition. Following the same procedure as in [10],
the LB (DLB) under this consideration can be obtained as

DLB =

∞∑
m=0

pmΣms|z(z). (24)

Where Σms|z(z) is defined in (17). To derive the upper bound
(DUB), as in [10], we invoke the LMMSE estimator since the
LMMSE obtains the smallest MSE among all the estimators
which are linear in the observations [10]. The MSE of the
LMMSE estimator for this scheme is

DUB = DLMMSE , (25)

= σ2
s −

σ2
sh

TWTggTWhσ2
s

gTWhσ2
sh

TWTg + gTWΣNWTg + σ2
ϑ

. (26)

IV. NUMERICAL RESULTS

In this section, the performance of MMSE optimal Bayesian
estimator and distortion parameter bounds are evaluated under
AWGN, and Middleton class-A noise over Rayleigh quasi-
static flat fading channel with respect to the communication
signal-to-noise ratio (SNR). Here, the communication SNR
is defined as σ2

hσ
2
s +σ2

n/σ
2
ϑ and the measurement SNR as

σ2
s/σ

2
n=0 dB, where σ2

s =1. In this model, a total number of
10 sensor nodes transmit with equal power their observations
to the FC using AF strategy. The total transmission power of
all the sensor nodes is PT = 1 dB. Moreover, the channel
fading have variances σ2

h = σ2
g = 1. The Middleton class-A

model has the total number of impulsive sources which is
equal to 30 and Γ = 0.01. As in [9], it is assumed that the
impulsive noise parameters are known at the receiver side.
Fig. 2 shows the input-output characteristics of MMSE OBE

using equation (18) for different values of the impulsive index
A. As observed in Fig. 2, when the value of A increases,
the impulsive noise becomes closer to the Gaussian noise
and the input-output characteristics of MMSE OBE tend to
the well-known LMMSE estimation which is optimal in the
case of Gaussian noise. On the other hand, when the value
of A decreases, the environment becomes more impulsive
as indicated by rare impulsive events and the input-output
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characteristic becomes more non-linear. Thus, similar to point-
to-point scenario, the presence of impulsive noise introduce
non-linearity in the measurement z. Hence, the MMSE optimal
Bayesian estimator becomes non-linear under that scenario.
Therefore, the nature of the impulsive noise should be taken
into consideration for designing distributed estimation schemes
because the presence of very rare impulsive events deteriorates
its performance from linearity.

To visualize the effect of the non-linearity, we also have
plotted the distortion performance for the proposed scenario.
Fig. 3 shows the simulated MSE performances of the optimal
MMSE estimation along with its derived analytical upper and
lower bounds for different values of the impulsive index A.
The simulated MSE performance is obtained by calculating
the sample-mean of (s − µs|z)2. From Fig. 3, it is seen that
at both low and high SNR values the MMSE performs as the
LMMSE (upper bound) estimator. However, at intermediate
SNR levels, the MMSE estimator performs significantly better
than the LMMSE estimator by using the impulsive noise
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Fig. 4. Plot of distortion versus the total number of sensor nodes under
different values of impulsive index A. It is assumed that both the measurement
SNR and the communication SNR are equal to 0 dB.

characteristics in the estimation process and the amount of
improvement depends on the impulsive nature as indicated by
different values of A. From Fig. 3, it is further confirmed
that as the value of A increases, the nature of impulsive noise
becomes more Gaussian and the MSE performance of MMSE
estimator approaches to the LMMSE estimator for all SNR
values. Under this situation, the performance gap between the
lower and the upper bounds decreases and approaches to zero
for sufficiently larger values of A. On the other hand, for small
values of A, the impulses are less dominant (more impulsive)
and the performance gap between the upper and lower bounds
becomes larger. The MMSE estimator approaches the lower
bound under this scenario. Interestingly, when the impulsive
events are very rare, the MMSE converges to the lower bound.
Hence, the derived lower bound is very tight for highly
impulsive noise environments.
Lastly, Fig. 4 shows the simulated MSE performances of the
proposed system as a function of the total number of sensor
nodes under different values of the impulsive index A. From
Fig. 4, it is seen that similar to Gaussian case, the distortion
performance decreases exponentially as the value of M in-
creases while keeping the total transmission power constant.
Also, for sufficiently large value of M the performance of
the proposed non-linear MMSE estimator converges with the
LMMSE estimator irrespective of the value of A.

V. CONCLUSION

WSN consists of spatially distributed sensors, identified as
a promising technology for unknown parameters estimations.
In this letter, the distributed estimation of a scalar Gaussian
source in WSNs in the presence of Middleton class-A noise
is considered. For this scheme, a closed-form expression for
the MMSE optimal Bayesian estimation and the upper and
lower bounds for the MSE are derived to show the effect of
impulsive noise. It is shown that the performance improvement
of the derived optimal MMSE estimator over the LMMSE
estimator depends on the impulsive nature of the noise and on
the operating SNR regions.
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