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SUMMARY

Environment is one of the most important concerns in the aerospace industry.
Engine ef×ciency is directly linked to the amount of harmful emissions produced.
Modelling of gas turbine engines needs to be improved in order to reduce these
emissions. The purpose of this study is to model the engine using two outputs: the
thrust, which is the force moving the aircraft forward, and the fuel Øow used to
produce the thrust. These outputs are modelled as function of three inputs: the
Mach number, the altitude and the throttle lever angle. The data needed was
acquired using the Research Aircraft Flight Simulator (RAFS) from the Laboratory
of Applied Research in Active Controls, Avionics and Aeroservoelasticity
(LARCASE). Key words: engine, turbofan, modelling, Øight tests, identi×cation,
validation

Introduction
The environment is one of the most important concerns in the aerospace industry. During the combustion reaction,
the engine produces carbon dioxide (CO ) which is responsible for the greenhouse effect, and thus global warming. It
also produces harmful substances like NO . In order to reduce these particle emissions, the easiest way is to directly
reduce fuel consumption. Reducing fuel consumption can be performed by optimizing different processes. For
example, the engine ef×ciency can be increased by improving the functioning of its different components, or by the
way in which they work together. However, to perform such improvements, engineers need a better understanding of
the engines, mainly of the different parameters inØuencing their functioning. Either the task is improving the engine

ef×ciency or gaining a better understanding of the system, the modelling process is necessary. Modelling is describing
a system by linking its outputs to its inputs. The inputs are usually the air conditions at which engines are functioning
while the outputs are the main engine parameters such as fuel Øow and thrust.

System Presentation and Model Objective
The engine’s basic operation principle is to compress incoming air, spray fuel engine, and ignite it to create a high-
temperature Øow. This acceleration is the source of a force called “thrust” which allows the aircraft to move forward.
Therefore, aircraft speed and air properties widely impact engine performances. In this study, the Mach number
quanti×es the aircraft speed, and air properties vary with the altitude according to the ISA model. Mach number and
altitude are used as inputs.
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Figure 1 Twin spool turbofan scheme

We chose to model the engine using altitude (H), Mach number (M) and  (TLA) as inputs, and the
thrust and fuel Øow as outputs.

Model Identi×cation
As mentioned previously, the purpose of this study was to create an engine model able to predict thrust and fuel Øow
for all Øight conditions (H, M) and any pilot commands (TLA). To obtain this model, an identi×cation and validation
procedure was used. The identi×cation process applied to the engine system is presented in the following ×gure:

throttle lever angle

Figure 2 System identi×cation principles applied to the engine.
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As shown in Figure 2, the identi×cation process requires a mathematical model, which can be given by an equation,
for example. Then, the numerical model response is compared to the actual experimental output of the system. The
difference between these two outputs, e.g. the error, is used by an estimation algorithm. The purpose of this
algorithm is to ×ne-tune the equation parameters in order to reduce the error between the output of the identi×ed
model and the system output. The model accuracy is veri×ed with a validation procedure.

Data Acquisition
The identi×cation process requires a set of data to identify the model, and another set of data to validate it. In this
study, the data were provided by Øight tests executed on the Cessna Citation X Level D Research Aircraft Flight
Simulator (RAFS) developed by CAE Inc. Level D is the highest certi×cation level delivered by the certi×cation
authorities for Øight dynamics modelling, according to the Federal Aviation Administration (FAA).

Figure 3 Cessna Citation X Level D Research Aircraft Flight Simulator (RAFS)
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Ce niveau a été choisi pour effectuer des tests en vol adaptés au modèle choisi. Le modèle ne considère que la phase
de croisière, ce qui signi×e une altitude constante. En outre, seul l’état stationnaire est étudié où aucunes variations
de position de la manette des gaz ne sont permises. Par ailleurs, le TLA doit également demeurer constant. Les tests
en vol ont été effectués pour différentes valeurs de TLA et d’altitude, comme indiqué au tableau 1. Pourtant, on note
que l’échelle des TLA varie en fonction des valeurs d’altitude. Par exemple, 35 degrés est la valeur minimale requise
pour éviter le calage à 45 000 pi d’altitude.

Table 1 Identi×cation (25) and Validation (92) Flight Tests Distribution

As seen in Table 1, a total of 25 Øight tests were used to identify the model (red), and 92 Øight tests were used to
validate it (blue).

Methodology
The model used in this study was adapted from the “Component Level Modelling” (CLM) method. It consists in
identifying a model for each component of the engine. Yet, the simulator does not provide enough information on the
different temperature and pressure values for each component of the engine. The model was only divided in three
sub-modulus as shown in Figure 4.

Fig. 4 Engine model sub-modulus scheme

Two different approaches were used: “Black Box” and “Grey Box”. A “Grey Box” consists in identifying a model with a
combination of mathematical model and estimation algorithm. The “Black Box” only uses an estimation algorithm.
The fan, the compressor and the burner model were identi×ed as a “Black Box” using a combination of the method of
Least Squares and the Levenberg-Marquardt estimation algorithm. The principle behind the method of Least Squares
is to express a cost function as the squared error between model response and actual experimental data. The
algorithm tunes the model parameters in order to reduce this cost function. This algorithm has the bene×t of
providing accurate results quickly. Concerning the “Black Box” approach, the mathematical model is identi×ed as a
polynomial function. Consequently, the algorithm identi×es the different coef×cients of a polynomial function. A
polynomial function depending on the three inputs (H, M and TLA) was identi×ed for each output of the model (FPR,
EPR, ITT, Fn and Wf). FPR is the Fan Pressure Ratio, EPR, the Engine Pressure Ratio, ITT, the Interstage Turbine
Termperature, Fn, the net thrust, and WF, the fuel Øow.
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Regarding thrust and fuel Øow outputs, there are much more theoretical models in the literature than for the FPR,
EPR and ITT. Mattingly and Torenbeek’s models are two of the most often used. Yet, our approach consisted in
modelling the two turbines and the nozzle using a thermodynamics equation for each component, according to the
“Component Level Modelling”. The fuel Øow was modelled as proportional to the thrust. However, the equations of
the “CLM” method cannot be used on the simulator data. The Øight simulator is an extremely useful tool in acquiring
data but it does not give the measures of all the parameters involved, for example the ones characterizing the
ef×ciency of different engine components. The solution was to identify these unknown parameters with the
Levenberg-Marquardt (LM) algorithm. Therefore, the thrust and fuel Øow are identi×ed with a “Grey Box” approach
using the LM algorithm.

Results
In order to verify the Øuid dynamics model accuracy, the FAA validation criteria was used. The FAA criteria stands if a
validation success is obtained when thrust and fuel Øow are predicted within a 5% mean absolute relative error.

Table 2 Thrust obtained with 25 identi×cation Øight tests and 92 validation Øight tests

Table 3 Fuel Øow obtained with 25 identi×cation Øight tests and 92 validation Øight tests

The criterion is applied on all Øight tests used for model validation, thus the mean absolute relative error is obtained
for these tests data.

Conclusion
The thrust “Black Box” approach provided only 81.7% validation success while the “Grey Box” approach gave 96.33%.
These differences are dues to the ef×ciency of the mathematical model. However, concerning the fuel Øow, the
results were not as accurate as those obtained for the thrust. The main reason for these differences was that the fuel
Øow model depended on the results obtained with the thrust model. Consequently, the error on the thrust model led
to an error in the fuel Øow models. For the same reason, the thrust model error increases due to the error obtained
on the FPR, EPR, and ITT predictions. For example, it was noticed that if the actual FPR, EPR and ITT are used with
the “Grey Box” model, the validation success increases to 100% instead of 96.33%. The error multiplication is an issue
of the “CLM” modelling. Thus, using this “CLM” modelling, an improvement on the FPR, EPR and ITT predictions might
lead to a huge improvement of the thrust and the fuel Øow prediction.

Besides, another difference between the thrust and the fuel Øow results is due to the mathematical models itself: the
thrust model used is much more developed than the fuel Øow model, which depends on the thrust model results. It
also explains that the “Grey Box” and “Black Box” approaches present similar results for the fuel Øow output. To
improve the results, other mathematical models might be used, for example the “stage-stacking” method for the FPR
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and EPR modelling, or Mattingly’s and Torenbeek’s models for the thrust and fuel Øow modelling. Other estimation
algorithms might improve these results such as the Particle Swarm Optimization (PSO).

Additional Information

For more information on this research, please read the following article:

BARDELA, Paul Alexandre, BOTEZ, Ruxandra M. Identi×cation and Validation of the Cessna Citation X Engine
Component Level Modeling with Flight Tests. In : AIAA Modeling and Simulation Technologies Conference. 2017. p.
1942.
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