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Abstract 
We consider a manufacturing system with preventive maintenance that produces a single part type. An 

inventory is maintained according to a machine age dependent hedging point policy. We conjecture that, for 

such a system, the failure frequencies can be reduced through preventive maintenance resulting in possible 

increase in system performance. Traditional preventive maintenance policies, such as age replacement, 

periodic replacement, are usually studied without finished goods inventories. In the cases where the finished 

goods inventories are considered, restrictive assumptions are used, such as not allowing breakdown during 

the stock build up period and during backlog situations due to the complexity of the mathematical model. In 

order to solve this problem, we develop a more realistic mathematical model of the system, and derive 

expressions of the overall incurred cost used as the basis for optimal determination of the jointly production 

and preventive maintenance policies (i.e. production rates and preventive maintenance frequency, depending 

on inventory levels of the produced parts). Such a cost consists of inventory, backlog, corrective and 

preventive maintenance costs. The work reported here has a significant practical application (no restriction on 

failures occurrence and backlog situations) in the context of production planning of manufacturing systems. 

Numerical examples are included to illustrate the importance and the effectiveness of the proposed 

methodology.  

Keywords: Preventive maintenance, Inventory, Production, Reliability, Manufacturing

systems. 

1. Introduction

A failure prone part production inventory system is considered in this paper. The system 

produces a single product type to satisfy an exogenous demand process. To hedge against 

the uncertainties in the both production and the demand processes, provision for finished 

inventory buffer between the system and the demands is kept. Demands that arrive when 

the inventory buffer is empty are back ordered and are, therefore not lost as in available 

models (Das and Sarkar (1999), Rezg et al. (2004) and references therein). It has been 

largely shown in the literature that implementing preventive maintenance strategies for 

several randomly failing production units can be an effective way to extend their lives and 

reduce operating costs (Barlow and Proschan (1965), Savsar (1997), Chelbi and Ait-Kadi 
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(2004) and references therein). The reader is referred to Savsar (2006) for details on other 

maintenance policies and their effects on the productivity and availability of a 

manufacturing system. A overview of relevant literature reveals that significant 

contributions, in the performances optimisation of manufacturing systems, have been 

proposed based on (i) preventive maintenance, (ii) production control and (iii) jointly 

production and maintenance optimisation models. Those models are considered 

individually or simultaneously and are restricted to simplified assumptions that sometimes 

provide less realistic preventive maintenance or production  policies.  

In the last few decades, maintenance planning has been an active area of research focused 

on the reliability theory as presented recently by Chelbi and Ait-Kadi (2004). Hence, a 

replacement policy which ensures maximum utilisation of the useful life of a component 

before its preventive replacement is an obvious option for large and costly components. 

Age replacement policy (ARP) is one such option over block replacement policy (BRP) or 

group replacement policy (GRP). For details on such policies, the reader is referred to 

Barlow and Proschan (1965), Ajodhya and Damodar (2004) and references therein. One of 

the basic and simple replacement policies is the age replacement policy, where the unit is 

replaced upon a failure or a prefix age, whichever occurs first (see Hong and Jionghua 

(2003), Ajodhya and Damodar (2004)). Given that ARP is based on age dependent 

preventive maintenance periods instead of fixed periods, as in BRP, it remains more 

realistic and hence attracts many researchers. We refer the reader to extended versions of 

the age replacement policies and their implantation presented in Ajodhya and Damodar 

(2004). The related policies are no realistic in the context of manufacturing systems given 

that frequent machine breakdowns inevitably create bottlenecks for the process. Hence, 

preventive maintenance (to reduce likelihood of machine breakdowns) combined to the 

control of finished goods inventory is a potential way of reducing the overall incurred cost.  

The aforementioned models are classified herein as static models given that the obtained 

policies are based on the mean values of the involved stochastic processes. In addition, the 

dynamics of the finished goods inventory is not considered in those models for a large class 

of manufacturing systems. Conversely, manufacturing systems with unreliable machines 

have been modelled using the so called stochastic optimal control theory in which failures 
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and repairs processes were supposed to be described by homogeneous Markovian 

processes. The related optimal control model fails in the category of problems presented in 

the pioneering work of Rishel (1975). Investigation in the same direction provided the 

analytical solution of the one-machine, one-product manufacturing system obtained by 

Akella and Kumar (1986).  Preventive maintenance planning problems are combined to the 

production control to increase the availability of the production system and hence to reduce 

the overall incurred cost (see Boukas and Haurie (1990)). 

 

A preventive maintenance model for a production inventory system is developed in Das 

and Sarkar (1999) using information on the systems conditions (such as finished product 

demand, inventory position, costs of repair and maintenance, etc.) and a continuous 

probability distribution characterizing the machine failure process. An analytical model of 

BRP and safety stock strategy is formulated by Ki-Ling and Warren (1997), using also 

restrictive assumptions such as: the time to accomplish build-up and depletion of safety 

stock is small relative to the mean time to failures (MTTF). The model presented in 

Salameh and Ghattas (2001) combines ARP and safety stock to show that one need to built 

an inventory just before the preventive maintenance. It is assumed in Salameh and Ghattas 

(2001) that extra capacity is maintained to buffer against uncertainties of the production 

processes and that there is no possible breakdown of the machine before the preventive 

maintenance date. Without the assumption made by Salameh and Ghattas (2001) on the 

machine dynamics, the stochastic optimal control theory is used in Boukas et al. (1995), 

Gharbi and Kenne (2000, 2005), Kenne and Gharbi (1999) and in Kenne and Boukas 

(2003) to define an machine age dependent production and preventive maintenance 

policies. Such policies are based on non homogeneous Markov models, and hence are 

restricted to exponential distributions describing operational and down times of the 

involved machines. 

 

The purpose of this paper is to investigate the joint implementation of preventive 

maintenance and safety stocks in a more realistic manufacturing environment using a 

stochastic model not restricted to markovian processes as mentioned previously. The main 

results presented in this paper extends the works of  Ki-Ling and Warren (1997),  Salameh 

and Ghattas (2001), Rezg et al. (2005) and references therein. Hence, we  investigate herein 
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joint implementation of preventive maintenance and safety stocks in unreliable production 

environment with back order (i.e., unmet demands during the repair period are not lost) and 

with possible failure at any age of the machine (for example during built up of the safety 

stock). Available models, based on reliability theory, are not able to remove the 

aforementioned restrictions due to the complexity of the mathematical model. Removing 

theses restrictions, as in this paper, involves additions concepts needed for the 

determination of the incurred cost expression used, here as criteria index. 

 

The reminder of this article is organized as follows. In section 2, we define the assumptions 

used in the model. The probability model and the control policy are outlined in section 3. 

Using the properties of the probability model, we develop expressions for the measures of 

the system performance and present the optimality conditions in section 4.  A numerical 

example is presented in section 5. Sensitivity and results analysis are provided in section 6 

and concluding remarks are given in section 7. 

 

2. Notations and model assumptions 

 

Through the paper, the following notation will be used: 

C   inventory holding cost per unit tine 

C   penalty cost for each unit of unmet demand  

1C   cost of corrective maintenance 

2C   cost of preventive maintenance 

( )u    production rate of the system 

mxu   maximal production rate 

d   demand rate  

bT   random variable describing the time to machine breakdown 

( )f t   probability density function of bT  

( )F t   cumulative distribution function of bT  

( )r t   failure rate of the machine  
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pmT   random variable describing time to perform preventive maintenance 

( )q t   probability density function of pmT  

( )Q t   cumulative distribution function of pmT  

cmT   random variable describing time to perform corrective maintenance 

( )g t   probability density function of cmT  

( )G t   cumulative distribution function of cmT  

S   stock threshold level or safety stock level 

T   scheduled time to preventive maintenance 

 

We consider the production of a single item on a production process with a capacity mxu so 

as to satisfy a constant demand rate d  items units per unit of time with  mxd u . Typical 

examples of such a production process include stamping and press punching in the 

automotive industry and die casting (see Ki-Ling and Warren (1997)). The capacity 

mxu represents the maximum production output rate, such as one where all three shifts of 

operation are utilized. With such a system, we first identify the stochastic process that 

account for all random events, namely production, failure, repair and preventive 

maintenance. We obtain a probability structure on those stochastic processes which are 

then exploited to obtain system performance measure. Failure and repair events are due to 

machine breakdown, which occurs in a random manner and constitute a major source of 

uncertainties in the production process.   

 

Whenever a breakdown occurs, corrective maintenance is performed, during a random 

amount of time, to restore the machine to its initial condition (i.e., the machine is assumed 

to be new and its age is set to zero). During the repair periods, one of the following two 

situations occurs: 

- demands for items are met only by safety stock; 

- all unmet demands are backlogged. 

Hence, the considered machine is capable of catching up with the unmet demand without 

interrupting the normal production process as soon as production resumes. For this 

situation, there is a possibility of having another breakdown during catch-up period. In 
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order to compute the incurred cost using mean values of the involved stochastic processes, 

most previous models, in relevant literature, assumed that such a possibility is negligible. 

The likelihood of machine breakdown is reduced when preventive maintenance is 

scheduled and combined to production planning. Each time, immediately after the 

maintenance operation is performed, the machine is restored at its initial working 

condition.  

In addition, we based the model under consideration on the following assumptions: 

(A-1) The production unit is subjected to stochastic breakdowns and repairs  

(A-2) If a machine failure occurs during a production phase, corrective repair is started 

immediately and after repair, the machine is restored back to the same initial 

working condition. In addition, a preventive maintenance action (as a corrective 

one) renews the production system (i.e., the age of the machine is set to zero). 

(A-3) The mean value of the time requirement for a preventive maintenance operation is 

short when compared with the mean time to machine breakdown. 

(A-4) The demand rate of the product is a known constant whereas the production rate 

(which  is greater than the demand rate) depends on the decision variables  and S T . 

 (A-5) Shortages may occur due to longer repair time. In that case, all the unsatisfied 

demands are backlogged  

(A-6) A sufficient capacity is present to allow accumulation of safety stock in the 

beginning of each machine life cycle; but the time to accomplish build-up and 

depletion of safety stocks is not necessarily small relative to mean time to failure 

(MTTF) as in available models (i.e., a breakdown could arises during this time). 

(A-7) There is no restriction on any of the operational, repair and preventive maintenance 

time distribution. 

(A-8) Breakdowns of the machine don’t affect the quality of products.  

 

3 Analytical  model and control  policy 

 

Let the system state be denoted by ( , )x  where   indicates the system status, and 

x indicates the surplus level. Note that the surplus is positive when it represents inventory 

and negative when it represents a shortage situation.  Let ( , )F  be a measurable space and 
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 : 0tF t  an increasing class of sigma-fields representing the history of the ( , )x process. 

A sample value   corresponds to an x - trajectory which is continuous, and a sequence of 

 -values without accumulation points. Given also the discontinuity on the machine age 

trajectory (set to zero after each corrective or preventive maintenance operation), the 

control problem in the case of joint determination of safety stock levels and machine age 

preventive maintenance, as in this paper, is  of the type of piecewise deterministic random 

process. Hence, the production system under study can be considered as a deterministic 

system as long as no machine breakdowns or stoppage occur.  

 

The set  of admissible control policies is a family of tF -adapted processes with values in 

 mx( ) ( ) : 0 ( )u u u      . In addition, a sufficient capacity is present to allow 

accumulation of safety stock in the beginning of each machine life cycle.  The time to 

accomplish build-up and depletion of safety stocks is not necessarily small relative to 

MTTF. Hence, there is a possibility of having another breakdown during catch-up period. 

The preventive maintenance policy is not implicitly bounded (i.e., not included in ( ) ) 

given hat there is no fixed maximal preventive maintenance rate in the proposed model. 

The maintenance epoch is one of the control variable that we are looking for.  

 

Let ( )u   denotes the production rate that may vary with time and with the 

state/capacity of the machine. Therefore, ( ) 0u    and is subject to the random process 

 ( ), 0t t  . With the total surplus ( )x    and the demand rate ]0, )d  , the continuous 

part of the system dynamics is described by the following differential equation: 

 
( )

( )        (0)
dx t

u t d x x
dt

    (1) 

where x  is the initial surplus level. Recall that all unmet demands are backlogged and a 

penalty cost is incurred per item on a per unit basis.  

 

 The discrete part of the system dynamics is described by the system status 

 ( ) 1,2,3t  with ( ) 1t   if the machine is operational, ( ) 2t   if the machine is under 

repair and ( ) 3t   if the machine is under preventive maintenance. The machine state 
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moves from the different modes of the process ( )t according to random variables bT , cmT  

and pmT defined as time to machine breakdown, corrective maintenance time and preventive 

maintenance time. At mode 1 and for a given age, the production rate is given by an 

extended version of the  so called hedging point policy (HPP) defined by a threshold level 

S . Such a policy is given by:   

 

mx      if        

( )          if            

0          otherwise

u x S

u x d x S




 



 (2) 

In such a policy, an optimal inventory level S is maintained during time of excess capacity 

availability to hedge against future capacity shortage brought by machine failures. If the 

current inventory level exceeds the optimal inventory level S , one should not produce at 

all; if less, one should produce at the maximum rate mxu ; while if exactly equal, one should 

exactly produce enough to meet demand d .  

 

The ARP is combined to the hedging point policy, defined by equation (2), and the result 

leads to the proposed control policy. Recall that the ARP consists of a preventive 

maintenance which is performed at a scheduled time that depends on the age of the 

machine. The proposed policy hence depends on two parameters, namely  and S T , and is 

completely defined for given values of those parameters. While producing, the machine 

and surplus dynamic both involve different scenarios used in the next section to develop 

optimality conditions from which values of the proposed control policy parameters are 

determined. 

 

4.  Optimality conditions 

The expected cost per unit of time, used herein as optimisation performance criteria, 

includes the surplus costs, the preventive and corrective maintenance costs. Note that 

surplus costs consist of inventory cost for positive surplus and backlog cost for negative 

surplus. 

 

4.1. Failure and surplus costs 
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The inventory and backlog costs are determined through the investigation of two different 

scenarios based on the fact that the inventory level reaches the optimal inventory level or 

not.  

Scenario no. 1: There is a breakdown during the building of a safety stock S at the rate 

mxu d and the involved repair process ended with inventory or at a positive surplus 

level. The finished goods inventory in such a situation is illustrated in figure 1. The mean 

time to repair the machine without backlog is given by: 

  
1

1
0

t

r fa a tmw t g t dt      (3) 

where 
 

1

f mxa u d
t

d

 
 , fa  is the failure age and ra  is the ending age related to the repair 

process.  

d

U
m

x


d
d

U m
x


fa
ra age

stock

S

0 T

A1

 

Figure 1: Surplus sample path for a failure during the phase of safety building with 

 inventory at the end of the repair process. 

 

Using the dashed areas illustrated on figure 1, the inventory before and after the failure is 

represented by 1

INVSurf : 

 
  

2

1

1 2 1
11 2 ( )

2 2

T
mx

INV f f mx f f
T

u d tmw
Surf A a a u d tmw d f a da

 
           

 
        (4) 
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where 
1 20 and 

mx

S
T T

U d
 


. The repair process ended with inventory if the involved 

repair time is less than mx( ) /fa u d d   .  

 

Scenario no. 2: There is a breakdown during the building of a safety stock S at the rate 

mxu d and the involved repair process ended with backlog or at a negative surplus level. 

The surplus in such a situation is illustrated in figure 2. 

fa

stock

S

0

d

U m
x


d


d

U
m

x


T
age

A3

oa
ra

1a

A2

 

Figure 2: Surplus sample path for a failure during the phase of safety building with  

  backlog at the end of the repair process. 

In this scenario, the failure occurs at the age fa . The repair time exceeds 

max( ) /fa u d d  and hence involves integration from   fa to   as in equation (5). The 

backlog is represented by the surface
2

BkgSurf : 

 
  

 
2

1

2

2 2 1 ( )
2

mx
f

T
mx

u dBkg f f f
T a

d mx

u d d d
Surf A t a g t dt f a da

d u d






      
                       

     (5) 

                                                                                                                                           

The cost for a failure during the phase of safety building is given by equation (6) which is 

obtained by grouping equations (4) and (5) from scenarios 1 and 2 (i.e., 



11 

1 2

12os INV BkgC t C Surf C Surf     ). Note that obtained expression of the cost is multiplied 

by ( )f ff a da which is the probability to have a failure at age fa . 

 

 

 

 
  

 
 

2

1
1

12
0

2

2

2
2

1
2

mx
f

mx

f

s mx

fUmx d

mx
u d f f f

a
d mx

u d
a

C
u dtmw

a tmw d
Cost d

u d d d
C t a g t dt f a da

d u d











  
   

   
             

     
                    





(6) 

 

Scenario no. 3: There is a failure at the saturation phase, in which the stock level is kept at 

level S and the production rate is reduced to d , and the involved repair process ended with 

inventory or at a positive surplus level. The finished goods inventory in such a situation is 

illustrated in figure 3. 

stock

S

0

d

U
m

x


st ra T
age

d


d

U
m

x


fa

A3

 

Figure 3: Surplus sample path for a failure during the saturation phase with   

  inventory at the end of the repair process 

 

The failure occurs at a machine age located between /( )s mxt S u d   and the scheduled 

preventive maintenance timeT . Note that st  is the age at which the safety stock levels is 

reached. The mean operational time of the machine is described by ( )m T  given by: 

      
0

T

m T t f t dt R T T      (7) 
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The mean time to repair of the machine without backlog is described by 
2tmw  and given 

by: 

  2
0

s

d
r ftmw a a t g t dt      (8) 

The inventory surface related scenario 3 (i.e., dash area 3A  illustrated in figure 3), is given 

by: 

  3 2
23 ( ) 2

2
INV

tmw
Surf A S m T S tmw d         (9) 

Scenario no. 4: There is failure at the saturation phase and the involved repair process 

ended with backlog or at a negative surplus level. The surplus in such a situation is 

illustrated in figure 4. 

A4

d

U
m

x


0 st oa
ra

1a T
age

stock

S

fa

 

Figure 4: Surplus sample path for a failure during the saturation phase with backlog  

  at the end of the repair process. 

 

The mean time to repair of the machine with backlog (i.e., repair time greater than /S d ) is 

described by 3tmw  and given by: 

  3 sr f

d

S
tmw a a t g t dt

d

 
      

 
  (10) 

The backlog surface related to scenario 4 (i.e., dash area 4A  illustrated in figure 4), is 

given by: 

 
 

4 2

34 ( ) 1
2

Bkg

mx

d d
Surf A tmw

u d

 
       

 (11) 
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Given that the failure occurs after /( )s mxt S u d   and beforeT , equation (11) is rewritten 

using ( )F x  which is the cumulative distribution function of the time to machine 

breakdown evaluated at fa . One obtain the following expression: 

  
 

 
 

2

4 1
2

sBkg

dmx mx

S S d d
Surf F T F t g t dt

u d d u d

      
                         

     (12) 

The cost for a failure during the saturation phase is given by equation (13) which is 

obtained by grouping equations (9) and (11) from scenarios 3 and 4  (i.e., 

3 4

34os INV BkgC t C Surf C Surf     ). 

 

   

 
 

 
 

2
34 2

2

2
2

1
2

s

dmx mx

tmw
Cost C S m T S tmw d

S S d d
C F T F t g t dt

u d d u d






 
         

 

      
                         



 (13) 

 

4.2. Preventive maintenance and surplus costs 

 

The proposed model includes preventive actions, described by the distribution function 

( )pf  . Two different scenarios are considered using the surplus sign (positive for inventory 

and negative for backlog) at the end of the preventive maintenance action.  

 

Scenario no. 5: The preventive maintenance action starts at T  and ends with inventory or 

at a positive surplus level as illustrated in figure 5. 

stock

S

d

U
m

x


d


0
age

T ma
st

A5

 

Figure 5: Surplus sample path for a preventive maintenance at T   with inventory at  

  the end of the preventive maintenance process 
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The mean time to preventive maintenance without backlog (i.e., maintenance time less 

than /S d ) is described by pmt   and given by: 

  
0

s

d
pmma T t t q t dt      (14) 

where ma is the ended age of the preventive maintenance process. The inventory surface 

related scenario 5 (i.e., dash area 5A  illustrated in figure 5), is given by: 

                      5 5 ( ) 2
2 2

pms
pmINV

t t
Surf A S T S t d



                                                  (15) 

Scenario no. 6: The preventive maintenance action starts at T  and ends with backlog or at 

a negative surplus level as illustrated in figure 6.  
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Figure 6: Surplus sample path for a preventive maintenance at T   with backlog at the end 

of the preventive maintenance process 

 

The mean time to preventive maintenance with backlog (i.e., maintenance time greater 

than /S d ) is described by pmt   and given by: 

  
/

( )pm m
S d

S
t a T t q t dt

d


        (16) 

The backlog surface related scenario 6 (i.e., dash area 6A  illustrated in figure 6), is given 

by: 

  
 

2
6 6 1

2
pmBkg

mx

d d
Surf A t

u d


 

       
 (17) 
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The cost due to preventive maintenance at T is obtained by grouping equations (15) and 

(17) from scenarios 5 and 6 (i.e., 5 6

56os INV BkgC t C Surf C Surf     ).  The obtained sum is 

multiplied by ( )R T  which is the probability to go up to preventive maintenance.   

  

 

 
 

256

( ) 2
2 2

1
2

pms
pm

s

d mx

t t
C S T S t d

Cost R T
S d d

C t q t dt
d u d






  
         
  

  
                     



 (18) 

 

4.3. Overall cost and optimality conditions 

 

The production cost includes corrective and preventive maintenance costs obtained by 

multiplying the involved penalty by the occurrence probability. The cost generated by the 

preventive maintenance action is obtained by multiplying the preventive maintenance cost 

(i.e.,  2C ) by the probability of its occurrence (i.e.,  R T  which is the reliability function 

of the machine evaluated at T ).  The cost generated by the corrective maintenance action is 

also obtained by multiplying the corrective maintenance cost (i.e.,  1C ) by the probability 

of its occurrence (i.e.,  F T  which is the failure cumulative function of the machine 

evaluated at T ).  The maintenance cost (corrective and preventive) is then given by: 

    2 1CM R T C F T C       (19) 

According to assumption (A-2)  and equation (7), the duration of a production cycle is 

approximated given by: 

    _ ( )Cycle Time m T R T MTTP F T MTTR      (20) 

where  and MTTP MTTR  are mean time to preventive maintenance and mean time to 

repair. The overall expected cost is obtained by summing scenarios costs (equations  (6), 

(13) and  (18)) and maintenance costs given by equation (19).  By dividing the obtained 

sum by the cycle time given by equation (20), one obtains the overall expected cost per unit 

time ( )L  , given by the following equation: 

 
   

12 34 56( , )
( )

Cost Cost Cost CM
L S T

m T R T MTTP F T MTTR

  


   
 (21) 
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The optimality conditions and hence the age dependent optimal value of the safety stock 

(threshold level) and preventive maintenance epoch are given by the following equations: 

 
( , )

0
T

L S T

S





 (22) 

 
( , )

0
S

L S T

T





 (23) 

 Due to the complexity of previous expressions (see equation (21) and dependent 

equations), proving the convexity of ( , )L S T  and obtaining the analytical optimality 

conditions from equations (22) and (23) become more complex. Hence, instead of solving 

(22) and (23) to obtain optimal values of the involved parameters, a numerical procedure, 

using a simple enumeration is presented in the next section. The best feasible solution 

* *( , )S T  is given further from the application of the proposed numerical procedure. 

 

5.  Numerical procedure and example  

 

The following iterative numerical procedure has been developed to find the optimal control 

policy, characterized by parameters * * and S T , and the optimal overall incurred cost. 

Input:  1 2 min max min max, , , , , , ( ), ( ), ( ), , , , , , , ,mx r p inc incu d C C C C f t f t f t S S T T MTTR MTTP T S   

Step 2:  Set min min:   and   :S S T T   

Step 3:  Compute -,  ( 1,2,3),  and  t ,  itmw i pm tpm  using equations (3), (8), (10), (14) and   

              (16) 

Step 4:  Compute 12( )Cost S  using equation (6) 

Step 5:  Compute 34 56( ),  ( , ),  ( , ) and ( )m T Cost S T Cost S T CM T  using equations (7),    

                   (13), (18) and (19) 

Step 6:  Compute the total cost ( , )L S T  using equation (21) 

Step 7:   If maxT T  then set : incT T T   and go to Step 5; else go to Step 8 

Step 8:   If maxS S  then set : incS S S   and go to Step 3; else find the solution 

               that minimise ( , )L S T  

Output: * *   S and T  = optimal threshold level and time for preventive maintenance 
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     * *( , )L S T  = optimal cost 

Stop 

 

The previous numerical scheme proceeds as follows:  

a) read input data 

b) consider computational grid on T and S for given lower and upper bounds 

min max( , )T T  and min max( , )S S  respectively (see step 2). 

c) Compute the overall cost (see steps 3 to 6) 

d) for each feasible schedule preventive maintenance time T  (i.e., 

min maxT T T  ), consider a discrete time interval incT and solve the 

optimality condition at time t  to obtain the optimal cost and the associated 

threshold level (see step 7) 

e) for each feasible schedule threshold level S  (i.e., min maxS S S  ), consider 

a discrete stock interval incS and solve the optimality condition at time t  to 

obtain the optimal cost and the associated preventive maintenance time (see 

step 7) 

f) return the lowest cost and the associated S and T called hereinafter optimal 

threshold and preventive maintenance time (i.e., * *( , )L S T ,  * *   S and T ).  

 

We consider a fairly general example problem as a vehicle for providing further details on 

the solution of the optimisation control problem under study. Also presented are numerical 

results that provide further insight to the problem. For an illustrative purpose, assume 

1mxu   item per unit of time and the production process is run to satisfy a constant demand 

rate 0.65d   item per unit of time. In addition, the following parameters are adopted for 

the basic case  (different others cases  are considered later during a sensitivity analysis): 

+ -

1 2$5000,  C 3000,  C 5,  C 50C     . The time to breakdown bT  is Weibull with 

2 and =100   (i.e., 88.6  ). The time to repair and the time to preventive 

maintenance are lognormal with =10, 1cm cm    and  =5, 0.5pm pm    respectively.  
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Using the proposed iterative numerical procedure and the previous data, we obtain an 

overall cost function represented by its contour plot in figure 7. The optimal cost for this 

example is *( ) $87L   and the corresponding control parameters are: 

* *2.7 and  67.  S T    

 Maintenance period
 

Figure 7:  Contour plot of the overall cost function and Optimal control policy  

   parameters for the illustrative example  

 

The next section presents the robustness of the developed model through a sensitivity 

analysis and illustrates the usefulness of the approach proposed. 

 

6.  Sensitivity analysis  

 

Four classes of studies are considered through the variations of corrective maintenance, 

preventive maintenance, inventory and backlog, costs. For those classes, we illustrate the 

sensitivity analysis through figures 8 to 11.  

 

It is interesting to note the following from figure 8, obtained with the variation of the 

corrective maintenance cost 1C  from $3000 to $80000 with 2 $3000C  , $5C   and 

- $50C  : 
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- The scheduled  production time for preventive maintenance *T  decreases with the 

increasing of the corrective maintenance cost due to the fact that the safety stock 

decreases; and hence increase the possibility to have a backlog situation (see figure 

8(a)). 

- The optimal threshold level decreases with the increasing of the corrective 

maintenance cost and converges to an asymptotic value for large values of such a 

cost as the scheduled preventive maintenance time (see figures 8(a) and 8(b)).  

It is clear from figure 8 that the corrective maintenance cost  has a significant influence on 

the optimal threshold level and the scheduled preventive maintenance time and hence to the 

overall incurred cost. 
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                                                                          (b) 

Figure 8: Optimal production and preventive maintenance policies for different corrective  

               maintenance costs.  
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The asymptotic behaviour observed both in figures 8(a) and 8(b) states that for large value 

of the corrective maintenance cost, the preventive maintenance period attempts a minimal 

value that results to a small value of the stock level. This is due to the fact that a minimal 

value of preventive maintenance period corresponds to more frequent preventive 

maintenance actions that avoid failures for which excessive costs are considered.  

 

From figure 9, obtained with the variation of the preventive maintenance cost 2C  from 

$100  to $50000 with 1 $5000C  , $5C   and - $50C  , we note the following: 

- The scheduled  production time for preventive maintenance *T  increases with the 

increasing of the preventive maintenance cost given that one need to reduce the 

frequency of preventive maintenance due to their excessive cost (i.e., for large 

values of 2C  ). Such a structure is illustrated in figure 9(a). 

- The optimal threshold level increases with the increasing of the preventive 

maintenance cost and converges to an asymptotic value for large values of such a 

cost as the scheduled preventive maintenance time (see figure 9(b)).  

 

The lower frequency of preventive maintenance at large values of 2C  increases the 

breakdown frequency of the machine. To hedge against possible disruption of the inventory 

due to failures, large values of threshold levels are recommended as shown by the obtained 

results (see figure 9(b)). 
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                                                                          (b) 

Figure 9:  Optimal production and preventive maintenance policies for different  

                preventive maintenance costs  

It is interesting to note an asymptotic behaviour of both preventive maintenance period and 

stock level from figure 9. Such a behaviour, is due to the interaction between the preventive 

maintenance period and the stock level which obviously depends on the MTTR and MTTF 

of the considered distributions.  

 

From figure 10, obtained with the variation of the inventory cost C  from $1 to $15 with 

1 $5000C  , 2 $3000C   and - $50C  , we note the following: 

- The scheduled  production time for preventive maintenance *T  decreases with the 

increasing of the inventory cost due to the fact that more frequent preventive 

maintenance is needed to avoid excessive inventory levels (i.e., not recommended 

for large values of C  ). Note that *T  converges also to an asymptotic value for 

large values of the inventory cost (see figure 10(a)) 

- The optimal threshold level decreases with the increasing of the inventory cost and 

converges to zero for large values of such a cost as shown in figure 10(b).  
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Figure 10:  Optimal production and preventive maintenance policies for different  

                inventory costs  

 

The higher frequency of preventive maintenance at large values of C  decreases the 

breakdown frequency of the machine. Hence there is no need to keep a significant safety 

stock level for large values of C  (i.e., * 0S   as C  ). 

 

From figure 11, obtained with the variation of the inventory cost C  from $20 to $400 with 

1 $5000C  , 2 $3000C   and $5C  , we note the following: 

- The scheduled production time for preventive maintenance *T  decreases with the 

increasing of the backlog cost to increase the availability of the production system 

through frequent preventive maintenance at large values of C (see figure 11(a)).  

- The optimal threshold level increases with the increasing of the backlog cost and 

converges to an asymptotic value for large values of such a cost as the scheduled 

preventive maintenance time (see figure 11(b)).  
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                                                                        (b) 

Figure 11:  Optimal production and preventive maintenance policies for different  

                backlog costs  

 

As previously, the higher frequency of preventive maintenance at large values of C  

decreases the breakdown frequency of the machine and the relatively small value of the 

inventory cost ensure to the system a comfortable inventory level to hedge against potential 

failures that could generate backlog and excessive cost.  

 

The results presented in this paper indicate that, as expected, the optimal production policy 

for the considered manufacturing system is characterized by two parameters namely 

optimal threshold level *S  and scheduled preventive maintenance period *T . The control 

policy (2) is completely defined by values * * and  S T  
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The trends of the curves shown in figures 8 to 11 confirm the robustness of the proposed 

approach through a sensitivity analysis. This is performed by threshold levels and 

scheduled preventive maintenance periods versus an overall incurred cost including 

inventory, backlog, corrective and preventive costs.  The asymptotic behaviour, well 

illustrated in figures 8 to 11, shows clearly that obtained results make sense and that the 

proposed approach is robust. 

 

For the system considered previously and related to a one-machine, one-product 

manufacturing system, the production and preventive maintenance policies are  completely 

known for given parameters  and  TS .  For a more complex manufacturing system 

consisting of m machines producing n different part types, the production and preventive 

maintenance policies depend on the parameters  1, , mT T  and 1, , nS S . As a result, m n  

parameters or factors could be used to define the control policy in the context of a multiple 

parts, multiple products manufacturing system. The experimental design approach, 

combined to simulation and analytical models could be used to determine the effects of 

considered factors on the incurred costs and to determine their optimal values. Details on 

experimental design and simulation modelling could be find in Gharbi and Kenne (2000).  

 

7.  Conclusion 

 

A production inventory and preventive maintenance system with general characteristics 

and realistic assumptions has been considered here. The primary objective of the study was 

to determine when to perform the preventive maintenance, if any, on the system and the 

level of the safety stock so as to improve the system performance (i.e., the overall incurred 

cost). The mathematical model of the system provided an useful tool for deriving the 

expressions for the system performance measure. It was demonstrated, through a numerical 

example problem, how the cost based measure can be used as a basis of determining 

optimal level of the safety stock and the scheduled preventive maintenance period.  As a 

result we were able to use a numerical search method to locate the optimum point (i.e., 

optimum parameters for production and preventive maintenance). The randomness 

involved in various operational aspects of the system makes it fairly difficult to analyse. 
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Furthermore, our assumptions of general probability distributions for all of the associated 

random variables (except the time between demand arrived, assumed constant) make the 

analysis of the system more involved. In the absence of closed form for the incurred cost, 

we used numerical methods to evaluate and hence to determine optimal values of the 

control parameters.  
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