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ABSTRACT — This paper introduces a novel actuation approach for a free-floating four-bar planar
mechanism. In the proposed arrangement, which is mainly geared towards space applications, the
configuration and orientation of the mechanism is controlled by flywheels mounted on each of the links,
while the joints connecting the links are passive. The dynamic model of the system is derived using
Kane’s equations, adapted for a closed-chain multibody system. Simulation results are presented to
confirm the approach. The stability of the resolution of the equations is then investigated using the
condition number of the generalized inertia matrix and the impact of the geometric parameters on this
stability is studied.

1 Introduction

Four-bar and five-bar mechanisms are commonly used in robotics and in machines. Replacing the links of serial
robots by four-bar or five-bar mechanisms increases the stiffness, which can be a great advantage for large pay-
loads [1]. Robots based on planar five-bar linkages, which are sometimes referred to as a dual-arm SCARA, are
available for industrial or educational applications (see for instance Fig.1). Compared to a serial drive mechanism,
a parallelogram five-bar mechanism has large structural stiffness and low moving inertia [2]. In fact, most mecha-
nisms can have one or many of their links replaced with a parallelogram to improve their stiffness, as it was shown
for some parallel robots in [3]. Nevertheless, the Type 1 singularities of the open chains remain and new Type 2
singularities emerge in such robotic architectures. For instance, a parallelogram collapsing onto a line constitutes
such an uncertain configuration [4], or Type 2 singularity. The approach presented here is able to overcome this
kind of singularity using actuation redundancy.[5]

Fig. 1: DexTAR robot from Mecademic.

The four-bar mechanism discussed in this paper is being developed
as an exploratory concept to study the potential of a novel actuation
strategy for deployable mechanisms in space applications [6]. Previous
research has pointed out the complexity of controlling the deployment
of a space structure with minimal impact on the base satellite [7, 8].
The four current most popular solutions consist in generating impulse
torques from thrusters, in order to spin the entire spacecraft or to use
reaction wheels or moment gyroscopes [9]. For a spacecraft manipula-
tors, the wheels and gyroscopes, when positioned on the arm links were
shown to be more energy efficient than thrusters [10]. Specifically for
four-bar mechanisms, a solution involving couterweights was proposed
in [11], but the added mass is counterproductive, especially for space
applications.

This paper first presents the derivation of the dynamic equations of a
planar four-bar mechanism without any actuators at the joints but rather
with flywheels mounted on each of the links. Based on the matrix equations obtained, simulations are performed



and the results are compared to those obtained from a commercial multibody simulation software. The last section
of the paper analyses the equations in order to assess the influence of the different design parameters on the
conditioning of the general inertia matrix of the system.

2 Dynamic equations
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Fig. 2: Schematic representation of the four-bar mechanism with each body
reference frame and their flywheel.

Since deployable mechanisms based on rigid links can
be made of closed kinematic chains, this study explores
the potential of using flywheels mounted on the links of
a planar four-bar mechanism to provide an effective ac-
tuation scheme. According to the Chebyshev-Grübler-
Kutzbach criterion and since the mechanism studied is
planar and not grounded, each joint constrains two of
the planar degrees of mobility, yielding

l = 3n−2 j = 4, (1)

where l is the degree of freedom, n is the number
of links and j the number of joints. Since four fly-
wheels are used, the mechanism is redundantly actu-
ated with respect to the two controllable degrees of
freedom, namely the orientation of one of the links and
the configuration of the four-bar mechanism. Indeed,
although the mechanism has four degrees of freedom,
two of these degrees of freedom correspond to the translational motion of the centre of mass of the mechanism,
which cannot be controlled by the actuators. Hence, two flywheels would be sufficient to control the attitude and
configuration of the mechanism. The advantage of using four flywheels is that it provides control redundancy and
it allows one to make all the links identical. The variables chosen to describe the configuration of the mechanism
are the position of the centre of mass of the first link (xA,yA), and the orientation of each of the four links given by
φA,φB,φC and φD which are defined with respect to a fixed frame (i, j) as shown in Fig.2. The motion equations are
derived using Kane’s approach in which Ri is defined as the rotation matrix from body i to the inertial frame. The
generalized independent velocities (noted ui, i=1,...,4) are chosen to be the two velocity components of the centre
of mass of one of the links and the angular velocities of two of the four links with respect to the inertial frame.
It follows that the velocity of the centre of mass of each of the links and the angular velocity of the links can be
written in terms of the generalized velocities as:

vA = u1i+u2j, ωA = u3k, ωB = u4k
vB = vA +ωAErA1 −ωBErB1 = u1i+u2j+u3ErA1 −u4ErB1

vC = vB +ωBErB2 −ωCErC2

vD = vC +ωCErC3 −ωDErD3,

with

E =

[
0 −1
1 0

]
, (2)

the matrix coefficient equivalent to a cross product of a vector in the i, j plane with k, and where i, j and k are
the unit vectors defining the inertial frame, where k is orthogonal to the plane of motion, where rui is the position
vector of joint i with respect to the centre of mass of link u expressed in the inertial frame. It should be noted that
the constraint induced by joints 1,2 and 3 are included in the definition of the velocities vB,vC and vD, but not the
closure constraint of the mechanism. In order to eliminate the dependent unknowns ωC and ωD, the loop closure
constraint is written as:

r12 + r23 = r14 + r43, (3)
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which can be written as:
RBrB

12 +RCrC
23 = RArA

14 +RDrD
43, (4)

where rk
i j are the constant vector from a joint to the next in the body reference frame of link k. Differentiating the

above equation with respect to time then yields

ERBωBrB
12 +ERCωCrC

23 = ERAωArA
14 +ERDωDrD

43[
RArA

14 −RBrB
12
]{ωA

ωB

}
=

[
RCrC

34 −RDrD
43
]{ωC

ωD

}
,

The angular velocity of bodies c and d can therefore be expressed as a linear combination of two of the
generalized independent velocities:

ωC = γ1u3 + γ2u4

ωD = γ3u3 + γ4u4.

and vC and vD then become:

vC = u1i+u2j+u3ErA1 −u4ErB1 +u4ErB2 − (γ1u3 + γ2u4)ErC2

vD = u1i+u2j+u3ErA1 −u4ErB1 +u4ErB2 − (γ1u3 + γ2u4)ErC2 +(γ1u3 + γ2u4)ErC3 − (γ2u3 + γ4u4)ErD3.

The above equations are readily differentiated in order to obtain the expressions for the accelerations of points A,
B, C and D, noted aA to aD, which are then used to build the expressions of the virtual forces F∗

i as

F∗
i =

∂vA

∂ui
· (−aAmA)+

∂vB

∂ui
· (−aBmB)+

∂ωA

∂ui
· (−αAIA)+

∂ωB

∂ui
· (−αBIB)

+
∂vC

∂ui
· (−aCmC)+

∂vD

∂ui
· (−aDmD)+

∂ωC

∂ui
· (−αCIC)+

∂ωD

∂ui
· (−αDID)

F∗
1 = −mT u̇1, F∗

2 =−mT u̇2

F∗
3 = (ErA1)(−mbab)− Iaαa +(ErA1 − γ1ErC2)(−mCac)

−ICαC +(ErA1 − γ1ErC2 + γ1ErC3 − γ3ErD3)(−mDaD)− γ3IDαD

F∗
4 = (−ErB1)(−mbab)− Ibαb +(−ErB1 +ErB2 − γ2ErC2)(−mCac)

−γ2ICαC +(−ErB1 +k× rB2 − γ2ErC2 + γ2ErC3 − γ4ErD3)(−mDaD)− γ4IDαD,

where αi = ω̇i.
The external forces Fi, i = 1, . . . ,4, of the flywheels are similarly developed from:

Fi =
∂ω f A

∂ui
· (ω̇ f AI f A)+

∂ω f B

∂ui
· (ω̇ f BI f B)+

∂ω fC

∂ui
· (ω̇ fCI fC)+

∂ω f D

∂ui
· (ω̇ f DI f D), (5)

which leads to F1 = F2 = 0, F3 = I f Aω̇ f A + γ1I fCω̇ fC + γ3I f Dω̇ f D and F4 = I f Bω̇ f B + γ2I fCω̇ fC + γ4I f Dω̇ f D, where
f u is the flywheel on body u and ω̇ f u its angular acceleration.

The resulting matrix system can be written as
−mT 0 A1(φ1) B1(φ2) C1(φ3) D1(φ4)

0 −mT A2(φ1) B2(φ2) C2(φ3) D2(φ4)
A3(φ1) B3(φ1) C3(φ2) D3(φ1,φ2) E3(φ1,φ3) F3(φ1,φ4)
A4(φ3) B4(φ3) C4(φ1,φ3) D4(φ2,φ3) E4(φ3) F4(φ3,φ4)




u̇1
u̇2
u̇3
u̇4

+


E1(φ1,φ2,φ3,φ4,u2

3,u
2
4,u

2
5,u

2
6)

E2(φ1,φ2,φ3,φ4,u2
3,u

2
4,u

2
5,u

2
6)

G3(φ1,φ2,φ3,φ4,u2
3,u

2
4,u

2
5,u

2
6)

G4(φ1,φ2,φ3,φ4,u2
3,u

2
4,u

2
5,u

2
6)


=


0 0 0 0
0 0 0 0

−I f A 0 −γ1I fC −γ2I f D

0 −I f 2 −γ2I fC −γ4I f D




ω̇ f 1
ω̇ f 2
ω̇ f 3
ω̇ f 4

 ,
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which is simplified by removing the translational accelerations of link 1. Indeed, the first two equations are
independent from the input forces , which is consistent with the fact that the acceleration of the centre of mass
of the system cannot be controlled. The first two equations are then readily solved for u̇1 and u̇2, which are then
substituted into the other equations in order to obtain a reduced system that can be written as

A2×2u̇2×1 +b2×1 = I f ,2×4ω̇ f ,4×1 (6)

For a given desired trajectory, the above equations can be used to determine the required flywheel accelerations.
This reduced formulation highlights the redundancy of the mechanism. Four actuated flywheels allow to control
two degrees of freedom. For many applications, such as space structures, redundancy is mandatory to ensure a
system robust to failures. In this case, mounting a flywheel on each link also simplifies the manufacturing and
modelling steps by standardizing the links.

3 Simulation results

In order to validate the dynamic model derived above, SolidWorks and SimMechanics are used. The SimMechanics
model of the links includes a single flywheel and a planar constraint to the fixed frame to ensure that the movement
remains in the plane. In parallel, simulations are performed using the matrix form of the equations with the same
inputs.

In order to simulate a simplified system, all the links are taken as identical, with mi = 0.02kg, Ii = 2.2×
10−5kg.m2, I f ,u = 3.4× 10−7kg.m2 and a length of 0.1m. Two different tests were performed in an open-loop
mode. First, two opposite flywheels on links a and c were actuated with an angular position following a cosine
function for 10 seconds. The results shown in Fig.3-a demonstrate that the absolute orientation of links 2 and 4
(b and d) follows the periodic function while the orientation of the other two remains constant. The second test
involves all four flywheels rotating following the same command. Fig.3-b shows that the whole mechanism rotates
as if it were a rigid body, thus conserving the same configuration. In the same way, actuating two opposite flywheels
with opposite commands does not produce any change in the configuration or orientation of the mechanism. These
special case inputs produce intuitively expected movements that are suitable to validate the models.
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Fig. 3: Comparison of the results obtained using the dynamic model based on Kane’s equations and with SimMechanics for cosine inputs: a- on the angular
position of 2 flywheels mounted on opposite links on a four-bar, four-flywheel mechanism, b- on all flywheels.

The results obtained with the above formulation based on Kane’s equations match the simulation results with
slight differences. The root mean square error for the first test is 0.100 while for the second test it is 0.102. The two
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links of the first test whose orientation should remain constant are rotating a little due to some inaccuracies in the 3D
CAD model that was used to develop the SimMechanics model, thus decreasing the amplitude of the movement
on the other two. For the second test, a similar behaviour tends to induce a small change in the mechanism
configuration (difference between consecutive links orientation). Further study of the behaviour of the equations
with respect to the geometric parameters of the mechanism will clarify these differences.

4 Optimization of the energy consumption using redundancy

Eq. 6 shows that the mechanical system has two controllable degrees of freedom, which supports Eq. 1 since the
translation of the centre of mass of the system, which cannot be controlled, was removed from the derivation. The
application targeted by this mechanism consists of large space structures with hundreds of similar closed kinematic
chains. Therefore, the manufacturing and assembly process were simplified from the beginning by assuming
similar properties and actuation means for each of the links. Thus, the mechanism has four flywheels — four
actuator inputs — for two controllable degrees of freedom, i.e., two outputs, which leads to actuation redundancy
and an overdetermined system of equations. The simulations of the previous section used predetermined input
functions, equal for each pair of opposite flywheels. In fact, for these simple maneuvers the solutions used above
minimize the energy consumption of the actuators. For instance, if only one flywheel was used to create the
movement of Fig. 3-a the required energy would be larger.

Energy is difficult to obtain in space, either by long-term harvesting of solar power or from chemicals brought
in the spacecraft payload. The main concern of each motorized system is then to minimize its energy consumption.
Considering that each flywheel has the same inertia, it follows that the optimal solution for a desired trajectory of
the mechanism should minimize the instantaneous kinetic energy

E =
4

∑
i=1

I f i

2
ω

2
f i, (7)

while satisfying the constraint from Eq. 6.
Using Lagrange multipliers and differentiating the relation with respect to each of the unknowns, the solution

to minimize the norm of the flywheel accelerations is

ω̇ f =−If
T (IfIf

T )−1(Au̇−b), (8)
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Fig. 4: Comparison of the energy required for a soft-step trajectory by mini-
mizing the norm of the acceleration or using only 2 of the 4 flywheels.

From this relation the inputs required to change the ori-
entation of links a and d following a soft step (step of
π

2 with both derivatives equal to zero at the start and at
the end) were computed and compared to the same tra-
jectory using only the minimum required to actuate the
system, its two flywheels. Fig. 4 shows the instanta-
neous total kinetic energy of the flywheels and the cu-
mulative ideal power required to actuate the flywheels,

P(t) = P(t −1)+
4

∑
i=1

I f i
∣∣ω̇ f i(t)(θ f i(t)−θ f i(t −1))

∣∣.
(9)

These results show that the more flywheels the sys-
tem has, the better the performances will be, since the
peak velocity of each flywheel will be less. On the
other hand, this conclusion only depends on the inertia
of the flywheel, i.e., the bigger the total inertia of the
flywheels, the smaller their velocities will be. Obvi-
ously increasing the weight of the actuators is not ben-
eficial for space applications. This is why the previous derivation used constant flywheel inertia (1/10th of the link
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inertia) and aim to create a trajectory known to be reachable for such configurations within 10s. Larger movement
amplitude can always be achieved with more delay, which is not considered problematic in space where time is
more available than energy.
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Fig. 5: Result of an optimisation with genetic algorithm of the flywheel trajectories and inertias to minimize
the power for a soft-step trajectory of the whole mechanism.

The previous approach min-
imizes the instantaneous kinetic
energy of the system, but a bet-
ter representation of the actu-
ator’s consumption is the cu-
mulative output power required,
which is not necessarily mini-
mized by this approach. Since
the derivation of a Lagrange
multiplier relation to minimize
the power lead to a com-
plex set of differential equa-
tions to be solved simultane-
ously, a forward unconstrained
optimization process was pre-
ferred to validate the results.
Fig.5 shows the result using
the CMA-ES (Covariance Ma-
trix Adaptation Evolution Strat-
egy) optimization [12] to min-
imize the mean square error
over the whole trajectory while
simultaneously trying to mini-
mize the cumulative power re-
quired to complete the trajec-
tory. If small errors are allowed,
it is shown that non identical
flywheels (I f 1 = 0.88I f 0,I f 2 =
0.41I f 0,I f 3 = 1.37I f 0 and I f 4 =
0.77I f 0) following different tra-
jectories is one optimal output
of the run, but perform simi-

larly.

5 Influence of the geometric parameters

The results presented in Section 3 demonstrated that the mathematical model obtained using Kane’s equations
yields correct results. This model can then be used to assess the behaviour of the system as a function of the
geometric parameters of the mechanism. Several metrics were defined in the literature for a four-bar mechanism, a
review of them was presented in [5]. In the context of this study, the condition number of matrix A is first observed.

It is well known that if the condition number of matrix A remains close to 1, the stability of the equations is
ensured. The mechanism is free-floating and its behaviour is not expected to change with its global position or
orientation. On the other hand, its configuration may impact the performance of the actuators. Both studies of Fig.6
show the evolution of the condition number over a wide range of the angle between link a and link b, representing
the configuration of the four-bar. The condition number of matrix A2,2 is presented in Fig.6-a as a function of the
ratio of the length of link a to link b. For this study, a parallelogram shape is assumed (lc = la and ld = lb). The
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effect of this ratio is independent from the mechanism configuration (θ1 = φb −φa, from Fig.2) and tends to bias
the condition number when above or under 1. The second test involves the offset of the mass centre of each link
from the line connecting neighbouring joints (y coordinate in body frame). All links were offset similarly for this
study. For configurations corresponding to small internal angles between link a and b the offset of link a and c
toward the centre keeps the condition number stable for a larger span of offset values than in the opposite direction
of the mechanism configuration.
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Fig. 6: Influence of the (a) the length of link a to the length of link b ratio (b) the offset position of the mass centre of all links on the condition number.

Generally, for four-bar mechanisms actuated by their joints, the singularity of collapsed links leads to a con-
figuration in which the output joint of the four-bar mechanism is free to move even if the input joint is locked. In
[1] a solution for a five-bar mechanism is proposed by either separating the input joint in 2 joints or by changing
the geometry of one of the links so that it has the same mass as the other but is shorter. In this case shortening two
face-to-face links increases the condition number (see Fig.6-a), but is not required since no singularity arise in the
θ1 = 0 configuration.

6 Conclusions

A free-floating planar four-bar mechanism whose attitude and configuration are controlled using flywheels mounted
on the links was presented in this paper. The equations of motion were derived using Kane’s formulation and a
dynamic model was obtained. The model was validated by comparing the results with those obtained with Sim-
Mechanics for specific input motions. The singularities and sensitivity of the mathematical representation and the
physics of the mechanism were discussed. It was observed that the symmetry of the link geometry yields a more
stable kinematic arrangement. A prototype is to be built and tested on a free-floating frictionless table to validate
the results of this paper.
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