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Collective expression: how robotic swarms
convey information with group motion

Abstract: When faced with the need of implementing
a decentralized behavior for a group of collaborating
robots, strategies inspired from swarm intelligence of-
ten avoid considering the human operator, granting the
swarm with full autonomy. However, field missions re-
quire at least to share the output of the swarm to the
operator. Unfortunately, little is known about the users’
perception of group behavior and dynamics, and there
is no clear optimal interaction modality for swarms. In
this paper, we focus on the movement of the swarm to
convey information to a user: we believe that the inter-
pretation of artificial states based on groups motion can
lead to promising natural interaction modalities. We im-
plement a grammar of decentralized control algorithms
to explore their expressivity. We define the expressiv-
ity of a movement as a metric to measure how natural,
readable, or easily understandable it may appear. We
then correlate expressivity with the control parameters
for the distributed behavior of the swarm. A first user
study confirms the relationship between inter-robot dis-
tance, temporal and spatial synchronicity, and the per-
ceived expressivity of the robotic system. We follow up
with a small group of users tasked with the design of
expressive motion sequences to convey internal states
using our grammar of algorithms. We comment on their
design choices and we assess the interpretation perfor-
mance by a larger group of users. We show that some
of the internal states were perceived as designed and
discuss the parameters influencing the performance.

Keywords: Human-Swarm Interaction, Non-verbal Cues
Evaluation Methods and New
Methodologies; decentralized control; expressive motion

and Expressiveness;

1 Introduction

As robots make their way into our world, the number
of application domains where they are likely to interact
and cooperate with humans multiplies. Each of these
domains offers an opportunity to develop more intuitive
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relationships with robots, by pushing forward their ca-
pacity to detect social attitudes and adopt expressive
stances. While robotics often deals with humanoid and
zoomorphic artefacts, recent technological advances re-
sult in the emergence of new forms as well as new action
opportunities, sometimes remote from familiar modes of
operations. Robot swarms are one of these new entities,
composed of large numbers of robots that can evolve
in formation and adapt to multiple environments. The
robustness of swarm systems comes mostly from their
distributed and scalable control. An increasing number
of low-cost commercial swarm systems are available, but
the complexity of decentralized control, based on local
interactions between the robots and with their environ-
ment, is what still holds back their expansion to real-
world applications [1].

Domain-specific programming languages [2] and
software architectures [3] try to address these issues,
so that researchers can focus on novel user interaction
design. Concerning the interaction with humans, what
makes swarms special is that they have no defined phys-
icality: they can adopt emerging configurations depend-
ing on environmental constraints, internal policies, and
commands issued by a user [4]. As such the motion of
swarms is defined and constrained by the structure of
biological entities and considered as a type of biological
motion [5]. However, swarm motions have no underly-
ing form that rigidly determines the relationship be-
tween parts, as opposed to motions of the human body
for instance. This absence of predictable structure, and
the necessity for an observer to consider multiple indi-
viduals, possibly as a single entity, make it necessary
to develop new methods for the analysis of human-
swarm interaction. Those methods should investigate
whether the perception of swarms motion is sensitive
to the structure of moving swarms and whether the hu-
man interpretation is coherent to an expressed internal
state of a swarm (e.g, system alerts or important new
information available for the operator). As opposed to
the undergoing research in animated group motion al-
ready active for decades (for instance with the major
work of Reynold [6]), research on robot swarms’ expres-
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sive capabilities has only started [7]. So far we possess
scant information about how a swarm’s motion impacts
a user’s emotional response [8]. Specifically, we do not
know how the state attributed to a swarm (e.g. is it con-
sidered as a single entity, an aggregate of autonomous
robots, an ephemeral formation?) affects its perceived
psychological traits (nervous, shy, aggressive, etc.), as
well as the expressivity that may be attributed to its
behavior. Is the perception of a robot swarm similar to
the observation of a school of fish or a flock of birds?
How is a robot swarm able to impress the sense of a
collective movement organized towards a goal? What
collective features govern the transmission of informa-
tion about the swarm’s perceptive and social states?

This paper addresses these questions, elaborating on
the notion of swarm expressive behavior. In particular,
we examine how various parameters contribute to the
organization perceived in a swarm’s behavior, and how
this organization translates into the swarm’s expressiv-
ity and the possibility to identify internal states such
as emotions. These questions are addressed with two
user studies involving a small swarm of tabletop robots.
The article proceeds in four steps. First we introduce
the topic of robotic swarms’ expressive behavior (Sec-
tion 2). Second, we describe the software infrastructure,
the control algorithms, and the control attributes im-
plemented to study a swarm’s expressive behavior (Sec-
tion 3). Third, in a first experiment, we investigate the
relationship between expressive behavior and perceived
key attributes of a swarm (Section 4). In particular, we
test whether the expressivity attributed to the swarm’s
behavior depends on attributes of temporal and spatial
synchronicity, and whether variations in that expressiv-
ity are correlated with variations of the parameters of
organization perceived in the swarm. Finally, in a sec-
ond experiment (Section 5) we further investigate the
expression of internal states by a robot swarm, using
expressive motion sequences designed by choreographers
to represent specific emotions. We evaluate the success
of this representation and determine on which parame-
ters of perceived organization the expressive sequences
are relying upon.

2 Expressive behavior of robotic
swarms
An important issue for the supervision of a semi-

autonomous swarm is the possibility to efficiently con-
vey information about the swarm’s current state, its fu-
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ture states, and the effects of human input on its behav-
ior. This work originates from the recent key contribu-
tions to human-swarm interaction [5, 9-14] and the use
of non-verbal communication from robots [15-19]. Both
domains are discussed in this section, leading to the key
concept, of the cohesion of a swarm for group-level per-
ception of motion.

2.1 Human-Swarm Interaction

Human-Swarm Interaction (HSI) differs from common
Human-Robot Interaction (HRI) for the large numbers
of units involved and because it heavily relies on local in-
teraction from which the group behaviors emerge [10].
Such self-organized and emerging behaviors are more
challenging to visualize than deterministic and pre-
dictable control strategies. For instance, when rendering
online position of a deployed aerial fleet on a screen, the
operator will have more difficulties understanding group
motion than individual mission-oriented goals, the cur-
rent design paradigm of commercial centralized mission
planners. All robot activities have to be encompassed in
a supportive visual interpretation that facilitates the op-
erator decision-making [20]. The information conveyed
to the swarm operator is determined from the collective
movement of the swarm as it progresses towards a spe-
cific goal. This requires examining the possible swarm
visual configurations to identify the most efficient means
of communicating, for instance, directions or danger.
A stepping stone towards the intuitive visualization of
swarm behaviors consists of the identification of invari-
ants for the design of interactions between human and
collectives of robots [9].

The
notwithstanding, one of the current HSI challenges is

design of appropriate control algorithms

the state estimation and visualization for swarms [10]. A
very important issue is whether humans may be able to
understand swarm motion dynamics [11] and properly
react to it, leading to the design of swarm motion dy-
namics that are compatible with human cognitive skills
of interpretation.

Humans are generally good at recognizing patterns
of collective motion [13]. However, because human at-
tention can fluctuate and the capacity of humans work-
ing memory is limited, the number of robots a single
operator can control is also limited [12, 21]. In fact, in
tasks where operators have to recognize a common type
of swarm behavior (e.g. flocking ), they report to be
taking a holistic approach to the perception of collec-
tive motion inherent to emergent swarm behaviors [13].
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Walker [13] observed operators applying strategies such
as “unfocusing their eyes” and /or “watching for a global
pattern to emerge”. Those strategies are the responses of
the cognitive system to deal with the increase in control
workload during swarm interaction [22, 23]. Research in
the emerging field of HSI has often used user studies
to investigate workload and performance [5, 14]. Seif-
fert [5], for instance, considered motion perception for
the evaluation of the swarm configuration, and he ob-
served that the discrimination of organized swarms is
superior than for scrambled systems without structure,
but inferior to the discrimination of motions for rigid
structures. Therefore, to consider the swarm’s specificity
with respect to human interaction, one needs to take
into account its distributed nature, and develop the ad-
equate concepts to determine how socially impactful a
swarm can be. To the best of our knowledge, previous
studies have rarely focused on how a human perceives a
swarm based on the expression of its internal state.

2.2 Nonverbal communication in HSI

To convey information about swarm states, a flexible
strategy is to use iconic representations that users can
recognize without having to recall them, such as the
top LEDs on each of the robots [15], or make the robots
emit sounds [24]. Note that the latter uses sounds to
help the user be aware of a malfunction in the swarm,
not to share high-level state information. For broader
use, one needs to define the information conveyed by
a swarm, a non trivial task that Cappo et al. [25] ad-
dressed with swarm behavior descriptors defined as: 1-
action for the global motion of the fleet, 2- goal , i.e.
the destination of the fleet, 3- shape, maintaining a ge-
ometry over the whole motion, 4- heading of the robots,
and 5- manner, i.e. trajectory variations giving various
dynamic attributes to the movement. The researchers
simulated over 1000 possible combinations of behaviors
descriptors, but without performing any user interac-
tion study. The shape descriptor is restrictive for gen-
eral swarm motion as it removes the possibility of us-
ing distributed path planning algorithms that would not
maintain a shape throughout the complete motion. Be-
yond issues of communication and supervision, the rep-
resentation of swarm states is also a matter of social
presence. As robot swarms are bound to evolve inside
social territories, they need to develop communication
modalities beyond symbols and signs. Nonverbal behav-
iors, social attitudes, emotional expressions constitute
important ingredients to establish a social bond [26].
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For such a connection to be formed and maintained,
several paths have been explored with traditional forms
of robotics. Mimicking the human silhouette and postu-
ral structures, a humanoid robot can express emotional
states using a combination of body postures, facial, and
gestural expressions [17]. Yet more abstract, high-level
motion patterns can contribute to the emotional expres-
sion, without requiring a humanoid appearance, or even
specific emotions to be expressed [27]. For instance, the
kinematics of movement has been shown to participate
in the emotional appraisal of an action [18, 28]. Motion
characteristics such as path curvature and acceleration
are correlated with different levels of perceived arousal
and valence [19, 29]. A common denominator for the
different modalities of social presence is the notion of
expressivity. An expressive behavior can be considered
one that successfully transmits a particular emotion, an
attitude, or a general disposition to act and react in
certain ways. Phrased by Simmons & Knight [16], ex-
pressivity represents the ability to “convey an agent’s
attitude towards its task or environment”. The expres-
sivity of a movement determines how natural, readable,
or easily understandable this movement may appear.
Thus, expressivity determines to a great extent the ca-
pability for an intuitive and transparent interaction with
a robot, including the interaction with a robot swarm.

Because of the distributed nature of robot swarms,
the notion of expressivity is bound to take a different
meaning from traditional approaches that connect ex-
pressivity to gestural and morphological properties. A
swarm has no body nor body parts to express feelings
or attitudes. Without a definite physicality, a swarm
can reconfigure and adapt to different environments and
commands coming from the user. In this context, an ob-
server has to consider the emergent properties resulting
from multiple individual behaviors, for instance the ten-
dency for the individuals to remain close to each other,
or to adopt similar velocities. Determining a swarm’s
expressivity is therefore a different process than consid-
ering the movements of a single robot, or even of a small
group of centrally controlled robots.

2.3 Perceiving the swarm as a coherent
entity

Instead of relying on body and motion perception, as-
sessing the behavior of a swarm depends on at least
three domains of computation: 1. ensemble coding,
2. perceptual grouping, and 3. perception of motion fea-
tures. In order to convey internal states of a swarm, one
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must first understand what contributes to the user’s per-
ception of the swarm as a single entity.

Research on the perception of ensembles (1) has de-
termined that sets are represented in a qualitatively
different way than single items [30, 31]: from a set of
objects people have the ability to rapidly extract in-
formation about size, orientation, motion direction, or
even social features such as emotions attached to facial
expressions [32]. Observing the behavior of the robots
composing the swarm, a person may extract statistical
summaries, relative for instance to the average velocity
or average direction of the robots’ movement.

The perception of a swarm as a coherent ensemble
(2) is also determined by Gestalt factors. The visual sys-
tem integrates elements of the visual scene as parts of
the same structure when those elements, in addition to
being close to each other, move coherently, that is in
[33, 34]. This property
of common fate governs the possibility to consider the

a similar speed and direction

swarm as a cohesive entity and attribute to this entity
a number of traits defining its behavior. Gestalt factors
also determine some dynamic motion patterns, such as
the perception of chasing [35, 36]: when two or more
mobiles give the impression of chasing each other, that
may contribute to the expressive behavior of the swarm.
In general, the rapid detection of temporal contingen-
cies between changes in speed or direction [37] provides
a perceptual basis upon which identifying meaningful
interactions among the swarm’s robots.

Kinematic and dynamic features (3) constitute a
third class of information picked up by the visual
system when considering the behavior of the swarm.
Movement qualities may be related to emotion expres-
sion [28, 38, 39]. While the general level of movement
activity and spatial extent are considered important fea-
tures for the distinction of emotion categories, variations
in movement patterns may provide further evidence to
distinguish levels of valence and arousal. Dietz et al [7]
have recently investigated the impact of such variations
on the perception of a swarm’s behavior and found that
an increase in speed and smoothness had a significant
effect on the perceived emotional state.

Together, ensemble coding, perceptual grouping,
and perception of motion features, conspire to produce
the perception of different global states characterizing
a swarm. These states may vary in terms of perceived
cohesion (i.e. whether the robots give the appearance
of a cohesive entity) and perceived organization (i.e.
whether the robots give the appearance of manifesting
an organized behavior). Traditionally, the literature on
swarm behavior distinguishes two different parameters
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Table 1. The parameters governing the representation of a robot
swarm as a coherent entity.

aggregation the tendency to perceive the robots as

remaining close to each other

synchronization | the tendency to perceive the robots as

synchronizing their movements

leadership the tendency to perceive the robots as
following one of theirs
figure the tendency to perceive the robots as

forming a figure altogether

that govern the representation of a swarm as a single
entity [40, 41]: a parameter of cohesion that represents
a tendency for individuals to remain close to each other,
and a parameter of synchronization. The synchroniza-
tion can be in terms of velocity or alignment.

For the purpose of this article, we make a distinc-
tion between four parameters of perceived organization
(presented in Table 1): a parameter of aggregation, cor-
responding to the impression for an observer that the
robots forming the swarm tend to stay together rather
than scattering; a parameter of synchronization, or the
impression that the robots are aligning their move-
ments; a parameter of leadership addressing the impres-
sion that the robots are following or chasing a member
of the swarm; and a parameter of figure composition
(second study only), or the impression that the robots
are forming a figure. More specifically, we will use the
term cohesion as a key concept to refer to a global prop-
erty resulting from the sum of the three aforementioned
parameters, as a pre-condition to the representation of
the robot ensemble as coherent entity potentially able
to express internal states through its behavior.

2.4 Research questions and general
hypotheses

This article represents an attempt at the evaluation of
a swarm expressive behavior sources. This endeavor re-
quired the implementation of a flexible swarm control
infrastructure for the design of decentralized group mo-
tions (Section 3), and the construction of evaluation
tools to assess how an observer perceive and evaluate
these movements. Based on these two sets of tools, we
could determine the relationship between motion ob-
servables, as determined by decentralized control algo-
rithms, and the qualifications attributed to collective
movements.
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Fig. 1. Structure of collective expression explored: from swarm
control algorithms (1), we extract common control attributes (2)
in order to assess the swarm perceived organisation elements (3)
and finally relate these elements to cohesion, expressivity and
emotional states (4) of the swarm.

The architecture of this study on collective expres-
sion has a four-tier structure of key concepts (Figure 1):

1. five decentralized swarm control algorithms are im-
plemented to create expressive swarm behaviors
(Section 3.2)

2. we determine a set of control attributes to tune
these algorithms and design group motion sequences
from them (Section 3.4)

3. these sequences are investigated with respect to the
user’s evaluation of parameters of perceived organi-
zation (Section 2.3)

4. these parameters and their respective scales allow
to determine some perceptual determinants of the
global cohesion attributed to the swarm, the expres-
sivity attached to its movements, and the possible
emotional states identified.

Given the necessity of considering multiple individ-
ual robots, we surmise that an observer has to represent
the swarm as a single entity before attributing any kind
of properties to its behavior. We suppose therefore that
a certain level of perceived cohesion is necessary for ex-
pressivity to develop, and we should expect to observe
a relationship between the perception of a swarm as
a coherent entity, as measured by parameters of orga-
nization, and a score of expressivity attributed to the
swarm’s behavior. When swarm behaviors are designed
by experts (choreographers) to convey emotional states,
we expect these parameters to play a role in the way col-
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lective motions are channeled to produce recognizable
emotions.

We make the following hypotheses:

1. Considering the swarm as a coherent and stable en-
tity should depend on the ability to identify param-
eters of aggregation, synchronization and leadership
in the swarm movements (first experiment);

2. Expressivity should also be related to the param-
eters of aggregation, synchronization, and leader-
ship, inasmuch a sufficient level of organization is
necessary for the swarm to be considered as a sin-
gle entity. However, excessive organization may be
detrimental to the overall expressivity if it results
in stereotyped motion patterns (first experiment);

3. Users can distinguish internal states (e.g. attitudes
or emotions) of a robotic swarm based on group
motion designed by an expert (e.g. choreographer)
in expressive motion (second experiment);

4. The recognition performance of a given set of ex-
pressive motions designed from internal states also
relies, perhaps not consciously, on perceived at-
tributes of organization in the swarm’s behavior
(second experiment).

3 Implementation of swarm
expressive behaviors

Literature on swarm intelligence covers a plethora of
decentralized control algorithms for connected groups
of robots [42]. Within this body of knowledge, interac-
tion studies often focus on a single control mechanism at
the time to relate the control inputs to the user percep-
tion. Instead, our interest lies in the relation between the
motion attributes of the group and the user perception.
We implement and study multiple control algorithms in
terms of the motion they generate. These motions can
then be analyzed in relation with user perception. A
flexible and generic system for the design of decentral-
ized group motions is an implementation task that re-
quires specialized tools. We introduce in this section our
software infrastructure, leveraging a swarm-specific pro-
gramming language uniform for all control algorithms.
We can then detail the control algorithms we imple-
mented for this study, and the attributes we extract
from the generated motions.
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Fig. 2. Common swarm behaviors implemented for this study: a- aggregation, b- graph formation, c- cyclic pursuit, d- autonomous

deployment, e- flocking.

3.1 Software ecosystem

Even the implementation of known algorithms for a
swarm can be very challenging, especially considering
that swarms are in essence decentralized systems, the
behavior of which is based only on local interactions.
To the best of our knowledge, only one solution can pro-
vide portability, scalability and fast development time:
Buzz. Buzz is both a programming language and a vir-
tual machine to run its scripts. It was created by our
research group in 2016 to accelerate the implementation
of swarm behaviors [2]. Buzz provides special constructs
to address three essential concepts: a) shared memory
(virtual stigmergy), b) swarm aggregation, and c) neigh-
bour operations. The Buzz virtual machine (BVM) must
run on every unit of the swarm and with the exact same
script, but units can differ (i.e., a heterogeneous swarm),
since the language is platform-agnostic. Example scripts
are available online [43], as well as the code for the com-
piler and BVM [44]. The behaviors described in this
section are also open-source [45].

Using Buzz, we ensure our code can be deployed on
many hardware platforms. In this work we also lever-
aged its swarm-level primitives: virtual stigmergy [46]
and neighbour operations. We use the former (a tuple
space shared across the swarm) to agree on swarm-wide
variables, such as the current state in a swarm-wide
state machine. We use the latter (a local communica-
tion system) as it is the root of most swarm intelligence
algorithms: local interaction.

3.2 Control algorithms

As shown in Figure 2, we implemented a set of five
common swarm behaviors in Buzz scripts: aggregation,
formation from graph descriptions, cyclic pursuit, au-
tonomous deployment, and flocking. All scripts require
only local interaction with their neighbours: for n robots
in the swarm, each pair of robots knows b;;, the bearing

between robot ¢ and j, and d;;, the distance between
these two. In the following subsections, we detail each
algorithm to compute from these inputs, sometimes in
conjunction with consensus mechanisms, each robot’s
velocity vector. Their usage for both experiments, such
as to which emotional state (fear, anger, happiness, sad-
ness, surprise or disgust) they were associated, is men-
tioned.

In a Buzz script, this velocity vector is an argument
to a function dealing with low-level hardware control to
actuate the robot. In the end, while the exact path of
each robot is not determined, the group motion param-
eters and goal locations are scripted.

3.2.1 Flocking

Among the most popular formalization of biological
swarm behaviors, potential functions are a simple, yet
flexible control approach. Averaging potential force al-
gorithms are often referred as a flocking behavior. Each
robot computes a virtual force vector:

k
f= Zfi(di)ejeiv (1)

i=1
where 6; and d; are the direction and the distance of
the ith perceived obstacle or robot and the function
fi(d;) is derived from an artificial potential function.
One of the most commonly used artificial potentials is
the Lennard-Jones potential, adapted for our physical
system as shown in Figure 3. The two parts of the poten-
tial equation represent the attractor and repulsor effect
driven by only two parameters: a target distance (D)
and a gain ( €). In this control approach, a goal (target
location) is represented as an attractor influencing the

whole group simultaneously.

By manually tuning the function’s gains we gen-
erated sequences to highlight the control attributes of
Section 3.2. The wide spectrum of available motion pro-
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Fig. 3. The Lennard-Jones potential adapted for wheeled robots
formation. The -’ and '4+' domains are respectively the repulsive
and attractive parts, for which the pivot point is set with param-
eter t. D is the distance between two robots and ¢ a parameter

acting as a control gain on the potential.

vided by this control algorithm alone made it the ideal
candidate for a first phase of user study (see Section 4).
Then, in the second phase of our user study, flocking
is the control algorithm selected by a focus group to
represent sadness (see Section 5).

3.2.2 Aggregation

Aggregation is a simple behavior regrouping all robots
to a point, often the swarm centroid. As mentioned by
Sahin [47], it is frequently observed in biological sys-
tems and it constitutes a pre-condition for most col-
lective behavior. It was shown to be feasible without
any computation on the robots, by directly adapting
the velocity vector to the average relative position of
neighbours [48]. We used a more formal model for ag-
gregation, with each robot linear and rotational velocity,
given by, respectively:

n n
X dij 2 bij
,and w; = ——,

n n

(2)

V; =

which computes a gradient minimizing the distance and
bearing between near robots, ultimately converging to
the same point. To force the swarm to regroup on a
different location, we add a component:

Xy di 7 bij
n

(3 + bit7 (3)

+ d;t, and w; =

with d;; and b;, the distance and bearing to the target
meeting point, respectively. Aggregation is the control
algorithm selected by the focus group to represent fear
in our second user study (see Section 5).
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3.2.3 Cyclic pursuit

Even with the simplest form of robotic swarm, devoid
of computational resources, two additional behaviors
(together with aggregation previously introduced) were
shown to emerge from a local reactive control: dispersion
and cyclic pursuit [48]. Pursuit is an important behav-
ior for many applications in robotics such as patrolling
around a point of interest, an intruder, or scanning a
building. Further analysis of the pursuit transient states
showed more complex patterns that have significant po-
tential for expressive motion [4]. In this work, we se-
lected a formal model without the transient states, so
that each robot linear and rotational velocity are given
by:

(4)

with r the distance to point of interest, b;; the bearing

v; = fbip, and w; = % —kcos(bst),

toward this point, by, the bearing toward robot 7 pre-
decessor in the circle (i.e. the closest robot in front),
and f, k, parameters of the pursuit behavior similar to
those used by Kubo et al. [49]. Cyclic pursuit is the con-
trol algorithm selected by the focus group to represent
happiness in our second user study (see Section 5).

3.2.4 Graph formation

Swarm intelligence has not been inspired only by be-
haviors observed in biological systems. As mentioned
earlier, a decentralized algorithm leverages local inter-
actions with neighbouring robots and thus relies heavily
on the swarm network topology. Therefore, many algo-
rithms find their roots in network engineering, such as
the body of work around graph-based formations. A di-
rected graph is composed of nodes having predecessors
and successors (see Figure 2-b), a representation useful
for modelling control structures, information flows, and
the error propagation [50]). The challenge is to progres-
sively reach a formation from a given shape, as long as
a directed graph can be generated for that shape.

Our implementation represents the target shape as
an acyclic directed graph in which each robot can find
its position using two other robots (predecessors) that
have already taken place in the shape as reference. We
assume that all robots possess the graph representation,
but none is initially assigned to a specific position. The
overall shape is built dynamically and iteratively: each
new robot joins the shape only after being granted per-
mission by one of the parents, using local communica-

tion exclusively. The resulting algorithm is completely
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decentralized and parallel: multiple robots can join dif-
ferent parts of the shape at any given time. This method
is detailed in the work of [51]. To summarize, when a
robot gets close to another that is already in formation,
it bids to be its successor in a known graph structure,
and if granted, it moves toward the relative position of
the next node in the directed graph. While this control
structure has a lot of potential for figurative representa-
tions (icons or symbols) in HSI, we restricted its usage
to abstract geometrical shapes to focus on the motion
attributes of the group. Graph formation is the control
algorithm selected by the focus group to represent dis-
gust (alternating between a‘C’ shape and its mirror) in
our second user study (see Section 5).

3.2.5 Autonomous deployment

The last control algorithm implemented for this study
emerges from computational geometry. Instead of con-
sidering relative motion of the robots only, a surround-
ing region is split between the swarm members, a pro-
cess referred to as surface tessellation. Some major
application scenarios benefit from this approach, e.g.
search and rescue missions, and the deployment of sen-
sor networks. The Voronoi tessellation [52] is an algo-
rithm that has been extensively studied for multi-robot
deployment. It usually takes the initial robot positions
as seeds to the tessellation problem and then partitions
the area. The logic is simple: create a frontier halfway
between each robot and then stop those lines when they
cross another frontier or the region’s borders. We inte-
grated in Buzz the sweeping line algorithm, also known
as Fortune’s algorithm, one of the most efficient ways to
extract cell lines from a set of seeds [53]. We then cut the
open cells with a user-defined convex polygonal bound-
ary. From this point on, each robot has knowledge of its
cell’s limits. For a uniform distribution of the robots in
the area, we use a simple gradient descent towards the
centroid of each cell, such as in [54]. Each robot recom-
putes the tessellation following updates on the relative
position of its neighbours; an approach that is robust to
both packet loss and environmental dynamics. Within
each robot cell, the user can determine any way to com-
pute the goal of the robots instead of its centroid. For
instance, to explore a region while trying maximum cov-
erage, one can generate random goals within each cell.

Autonomous deployment is the control algorithm
selected by the focus group to represent anger (random
goals) and surprise (uniform) in our second user study
(see Section 5).
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3.3 Hardware selection

The robotic platform selected for this study has to be
portable and avoid as much as possible any bias due to
an anthropomorphic or zoomorphic appearance. We se-
lected the Zooids [55], a group of small tabletop cylindri-
cal robots 2.6 cm in diameter, localized using structured
light emitted by a ceiling projector. While our behav-
ioral scripts can be ported on any hardware platform (as
explained above), we selected the Zooids for the mini-
mal setup time, their low cost of manufacturing, their
open-source controller code, and the simplicity of their
manipulation. We built a charging station and we made
enough Zooid units for two sets: one can charge while
the other performs. Even if abstract shapes are a bit less
common in human-robot interaction studies, examples
showed they can, for instance, generate less embarrass-
ment from the user [56].

The Buzz low-level actuating functions imple-
mented on the Zooids call their embedded controller.
To be able to explore the expressivity of the robot’s
motion from the quality of their movements, we manip-
ulate some low-level variables of the controller:

1. the maximum velocity changes the average veloc-
ity of the swarm motion without rendering the sys-
tem unstable (such as playing with the controllers
gains can do), because the Zooids controller is fo-
cused on small precise movement to reach the goals
and it saturates for large displacements;

2. artificial delays to the movement commands al-
low us to manipulate the synchronicity of the move-
ments, such as creating the impression of a leader

in the swarm.

3.4 Control attributes

Each algorithm has its own parameters, increasing
quickly the complexity of the analysis of their influ-
ence. Moreover, simple behaviors in mobile swarm sys-
tems, such as flocking and cyclic pursuit, often lead to
emerging transient states [4]. To derive and deconstruct
these states generated by a given set of control param-
eters, one must run numerous simulations. Instead, to
influence the level of perceived organization and expres-
sivity we designed a set of higher level motion control
attributes. These control attributes determine objec-
tive interdependence between the robots. These rela-
tionships are the basis of our evaluation of perceived
organization and expressivity:
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1. the average inter-robot distance,

2. the spatial synchronicity of the swarm, i.e. the
robots move as a cohesive group, and

3. the temporal synchronicity of the swarm, i.e. the
robots move simultaneously.

Each attribute is positioned on a continuous range
(close/far, synchronized/unsynchronized), by the be-
havior control parameters. For instance, increasing the
distance (target) parameter alone in a Lennard-Jones
potential leads to an unstable and unpredictable inter-
robot distance over time. Therefore, the epsilon/target
pair has to be manipulated together to get a stable for-
mation for each inter-robot distance. Leveraging the un-
stable spectrum of the range of these two parameters,
one can also influence the spatial synchronicity of the
group. In other words, the more unstable a given pair
of parameters is, the sparser the robot motion will be.
Temporal synchronicity requires the use of another con-
trol parameter in the potential definition: the delay or
latency for each robot in registering a goal attractor. By
delaying the influence of a goal’s attraction on certain
robots, we influence the temporal synchronicity. For in-
stance, a leader robot can notice the goal attractor sec-
onds before the rest of the swarm, thus creating a break
in the temporal synchronicity. These three control at-
tributes serve to generate motions deprived of internal
state (or conceptual meaning) to objectively study the
coherence and expressivity of the swarm in our first ex-
periment. We then extract the value of these attributes
from the motions designed by choreographers in our sec-
ond experiment.

4 First experiment: influence of
perceived organization on
collective expression

As a first step to enhance our knowledge on the relation-
ships between perceived organization and expressivity in
a robot swarm, we conducted a user study to validate
hypotheses 1 and 2 (see Section 2.4). From high and low
values of the attributes detailed in Section 3.2, we gen-
erated eight abstract non-figurative motion sequences
and assess their level of perceived organization and ex-
pressivity from the scores attributed by participants in
live sessions.
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4.1 Participants

We recruited 27 participants with good knowledge and
experience of dance. For this study on swarm motion
perception, we intentionally targeted this specific pop-
ulation to give us insights on the slight differences in
each of the swarm motion states: dancers and choreog-
raphers are among the experts of body motions, let it be
human or artificial. We believe the conclusions obtained
from their answers can better help us define the motion
parameters for a broader spectrum of users. From the
27 participants, 4 identified themselves as men, 22 as
women and 1 as “other”; two thirds are dance students
(19), while the others are freelancers (8). The partici-
pants did not receive any kind of financial compensa-
tion for the study, but rather participated out of curios-
ity about natural interaction with robotic systems. The
study protocol was approved by the Paris 8 University
research board and Polytechnique de Montréal’s ethi-
cal committee. Participants signed an informed consent
form to partake in the study.

Table 2. The six experimental variables.

Spatial Syn- | S+ | robots tend to remain close together
chronicity

S- robots tend to scatter
Temporal T+ | robots tend to move simultaneously
Synchronicity

T- robots tend to follow a leader
Inter-robot D+ | robots are moving with large distances
distance between them

D- robots are moving with small distances

between them

4.2 Methods

To illustrate the different motion patterns in multiple
sequential sessions, we alternated between two sets of
six Zooids robots. As shown in Table 2, the three high-
level motion attributes described earlier were used as
binary inputs, generating 8 possible combinations, i.e. 8
different motion scripts. Each motion followed the same
goal sequence (see Figure 4): (1) from point A to point
B, (2) from point B to point C, (3) from C to B, (4)
from B to C, and (5) from C to A.

Participants were asked to sit in front of the table
on which the Zooids performed. They had a 14 ques-
tions to answer on a tablet (available in French and En-
glish) after observing each sequence. Each motion script
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Fig. 4. Six Zooids moving toward the user to form a figure. The

green letters show the successive goals covered by each motion
sequence.

was run only once for the participants, but they were
played following one of three possible orders: 1-2-3-4-
5-6-7-8, 5-6-7-8-1-2-3-4 and 1-2-7-8-3-4-5-6. The motion
sequences were triggered one at the time by the exper-
imenters when the participant confirmed all questions
were answered. The experimenter also explained before-
hand that an unknown number of motion sequences go-
ing through the same goals would be automatically gen-
erated with different motion attributes.

To assess the values of coherence and expressiv-
ity attributed to the swarm, participants completed a
survey comprising three different scales (see table 3):
(i) a scale evaluating the organization perceived in the
swarm’s behavior; (ii) a scale measuring the cohesion
attributed to the swarm (i.e. whether it is considered as
a coherent and stable entity); and (iii) a scale assessing
the level of expressivity of the swarm’s behavior. For
each item of the different scales, we used a seven-point
Likert scale with response ranging from 0 (strongly dis-
agree) to 6 (strongly agree).

4.3 Results

This study presents a large number of tied ranks for
a relatively small dataset (27 participants). We used
Kendall’s 7, correlation test to assess the contribution of
each parameter in our dataset. We extract the perceived
organization from the measures of cohesion and expres-
sivity. As we could not assume that the psychological
distance between the scores of expressivity and between
those of cohesion were equivalent, we used an ordinal
logistic regression to examine the effect of spatial syn-
chronization, temporal synchronization, and distance on
both perceived coherence and expressivity.

How do the parameters of perceived organization
contribute to the cohesion attributed to the swarm?

DE GRUYTER

Table 3. Three scales to assess the values of organization, cohe-
sion and expressivity attributed to the swarm.

on a scale from 0 to 6, indicate to which extent you agree
with the following statements:

— the robots tend to stay in groups

Organization

— the robots tend to synchronize their movements
— the robots tend to follow one of theirs

on a scale from 0 to 6, indicate to which extent you agree
with the following statement: the robots form a coherent
and stable group and seem to progress while connected to

Cohesion

each other

on a scale from 0 to 6, how would you evaluate the expres-
sivity of the robot swarm?

Expressivity

We found a positive correlation between cohesion
and tendency to stay in groups: a higher perceived ten-
dency for the robots to stay in groups is more likely to be
associated with a higher perceived cohesion (7, = 0.398,
p < 0.001). Similarly, we found that a higher perceived
tendency for the robots to synchronize their movements
is more likely to be associated with a higher perceived
cohesion (7, = 0.440, p < 0.001). Finally, we found a sig-
nificant positive association between the perceived ten-
dency for the robots to follow one of theirs and the co-
hesion attributed to the swarm (7, = 0.309, p < 0.001).

How do the parameters of perceived organization
contribute to the expressivity of the swarm?

The correlation scores between expressivity and the
perceived tendency for the robots to stay in groups were
less important than for the cohesion, but we still found
a significant positive association (7, = 0.148, p = 0.008),
as well as the perceived tendency for the robots to fol-
low one of theirs (7, = 0.197, p < 0.001). While the
tendency to stay in groups and the possibility to per-
ceive chasing relationships between the robots seem to
benefit the expressivity of the swarm, an excessive level
of synchronization may be detrimental to this measure,
as indicated by the absence of a significant association
between the perceived tendency for the robots to syn-
chronize their movements and expressivity (7, = 0.033,
p =0.585).

How the motion control attributes affect the expres-
sivity and cohesion of the swarm?

Temporal synchronicity had a significant effect on
the expressivity of the swarm (see Figure 5). With tem-
porally asynchronous conditions, expressivity was 1.647
(95% CI, 1.012 to 2.681) times more likely to increase
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Fig. 5. Average scores of expressivity for the different conditions
of spatial synchronicity (S+/S-), temporal synchronicity (T+/T-
), and inter-robot distance (D+/D-).

(x3(1) = 4.028, p = 0.045). However, we did not find
an impact of spatial synchronicity: the odds of spatially
asynchronous conditions to be considered expressive was
similar to that of spatially synchronous conditions (odds
ratio of 0,698, 95% CI, 0.430 to 1.134), x*(1) = 2.107,
p = 0.147. Similarly, the odds of large spacing conditions
to be considered expressive did not differ from that of
small spacing conditions (odds ratio of 1,389, 95%CI,
0.855 to 2.256), x*(1) = 1.761, p = 0.184.

Compared to expressivity, the cohesion score was
affected principally by spatial synchronicity (see Fig-
ure 6): with spatially asynchronous conditions, cohesion
was 0.321 (95% CI, 0.194 to 0.530) times more likely
to decrease (x*(1) = 19.725, p < .001). Temporal syn-
chronicity and distance did not affect significantly the
score of cohesion: temporal synchronicity (odds ratio of
0,661, 95% CI, 0.407 to 1.075; x*(1) = 2.787, p = .095);
distance (odds ratio of 0,859, 95% CI, 0.530 to 1.392;
x2(1) = 0.381, p = .537).

4.4 Discussion

In this first experiment, we assumed that the expres-
sivity of a swarm is dependent on a sense of coherence
emanating from the robots movements, itself contingent
upon parameters of perceived aggregation, synchroniza-
tion, and leadership. We verified the hypothesis that
the score of cohesion (measuring to what extent people
consider the swarm as a coherent and stable entity) is
linked to the possibility of identifying moments of ag-
gregation and synchronization. We found indeed that
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Fig. 6. Average scores of cohesion for the different conditions of
spatial synchronicity (S+/S-), temporal synchronicity (T+/T-),
and inter-robot distance (D+/D-).

all the three parameters we measured (tendency to per-
ceive the robots as staying in groups, synchronizing their
movements, and following a leader) were positively as-
sociated with the score of cohesion. As predicted, the
relationship between those parameters and expressivity
is slightly more complicated. Motion patterns consid-
ered expressive are more likely to be associated with a
higher level of aggregation and with the impression that
the robots were following a leader, but we did not find
a significant correlation with the score of synchroniza-
tion. We also found that conditions more favorable to
expressivity are those in which movements are tempo-
rally asynchronous, confirming the idea that a high syn-
chronicity may be detrimental to expressive patterns. It
is interesting to observe that, contrary to the score of
expressivity, the score of cohesion is mainly affected by
spatial synchronicity, with spatially asynchronous con-
ditions being considered less cohesive. We observe an
interesting relationship between the two parameters: we
postulate that a sufficient level of cohesion is necessary
for the swarm to be considered expressive (hence the
positive correlation between expressivity and the ag-
gregation and organization parameters), but coherence
and expressivity dissociate with respect to the impact
of temporal synchronicity (detrimental to expressivity)
and spatial asynchrony (detrimental to cohesion).
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5 Second experiment: expression
of emotional states using
collective movements

The previously validated swarm attributes (coherence
and expressivity) can now be related to the design of
expressive sequences: we conducted a second user study
addressing hypotheses 3 and 4 (Section 2.4).The do-
main of emotion expression through swarm movements
is largely uncharted, and we do not know which move-
ment patterns are responsible for the expression of spe-
cific emotions. For this reason, we assigned a group of
choreographers the task to design from scratch expres-
sive sequences that, according to them, would evoke one
of the six emotions known as basic emotions: happiness,
sadness, fear, anger, disgust, and surprise [57]. Subse-
quently we tested the possibility for naive observers to
identify the emotions associated with these expressive
sequences and we used the measures of perceived orga-
nization devised for the previous experiment to deter-
mine to what extent the identification of emotions (and
the possible ambiguity between emotional states) could
be related to variations in organization patterns.

5.1 Participants

After the design phase, this second study was en-
tirely conducted online. The participants were recruited
through direct email invitations and with promotion of
the study over social networks. We reached out to 41
participants, 34% men and 66% women. While the pre-
vious study focuses on students and young profession-
als, this one gathers the inputs from participants above
30 years old in majority (59%). The participants did
not receive financial compensation for this study, and
the protocol was approved by both universities’ ethical
committees (Paris 8 University and Polytechnique Mon-
treal). Before the online questionnaire started, all par-
ticipants had to accept the consent form for this study.

5.2 Methods

To create the sequences, we tasked three choreographers
with the design of six expressive motions using a small
tabletop swarm of six Zooids. The experiment is twofold:
we first gathered a small focus group to design expres-
sive sequences and we then presented the results to a
larger number of participants.
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We did not expect the motion sequences designers
to have good knowledge of decentralized programming,
so we designed a simple software interface to ease their
iterative design. All the control algorithms detailed in
Section 3.2 can be selected by the user from the in-
terface and then tuned using parameters such as maxi-
mum velocity, overall group shape, inter-robot distance,
and temporal synchronicity (leadership). Each chore-
ographer separately practiced with a programmer the
spectrum of control actions. Subsequently, the chore-
ographers met and decided together how to best rep-
resent six emotions using the Zooids expressive mo-
tions: fear, happiness, sadness, surprise, disgust, anger.
These emotions are known to be the easiest to name
(self-recognize) [57]. We then conducted a small (six
participants) qualitative assessment to confirm the per-
ceived emotions for each designed sequence and we made
small adjustments according to the participants’ feed-
back. The resulting six Zooids’ emotions are detailed in
terms of control algorithms and velocity in Table 4. A
compilation video of all six sequences is available on-
line(1).

Table 4. The six expressive motions designed based on the con-
trol algorithms defined in Section 3.2 and the setpoint velocity of
the robots.

Emotional state | Control Algorithm Velocity
Fear Aggregation Fast
Happiness Cyclic pursuit Average
Sadness Flocking Slow
Surprise Uniform deployment | Fast
Disgust Graph formation Average
Anger Random deployment | Fast

The participants were asked to complete a survey
(11 questions on a likert scale) after watching each se-
quence. To conduct this part online, we filmed six short
video sequences made with the Zooids. Each sequence
related to one of six emotions. For each expressive se-
quence, participants had to evaluate on six seven-point
Likert scale whether the sequence evoked fear, surprise,
disgust, anger, happiness and sadness. Participants had
also to evaluate the sequences with the three scales of
perceived organization presented in the first experiment.

1 https://www.youtube.com/watch?v=rchIITHDYTr8
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5.3 Feedback from choreographers

We acknowledge that the design of the six sequences
is limited by the available control algorithms and the
selected control attributes. This limitation can only be
relaxed with a larger set of control options than what we
implemented: we believe this would bring a level of com-
plexity to the system that may influence the designers.
However, discussion with the three choreographers high-
lighted the characteristics of their design choices and
they did not feel constrained. The designers reached
a smooth and fast consensus on the representation of
Anger, Fear, Surprise and Happiness. Choreographers
selected the fast random deployment for anger because
the robots seemed “crazy”, i.e. disorganized without any
apparent logic in their movements and sometimes even
colliding with one another. Fear was the easiest to de-
sign for them, and it reflects on the results mentioned
above: aggregation seemed like the obvious choice to
them. Surprise and happiness turned out to be both
represented by circles, but not on purpose. Happiness
used cyclic pursuit, as a form of tribal dance around a
fire, a celebration of the group. On the other hand, sur-
prise used uniform autonomous deployment, for them,
a more abstract representation of a spurt or a sudden
heart-rate burst. Disgust was the most difficult emo-
tion to represent: in the end, the “C” shape made from
graph formation control aimed at creating the impres-
sion of a jury, as far as possible from the center (user
focus), sometimes whispering (shaking) from their high
moral authority perspective. Finally, the focus group
never reached an agreement on the representation of
sadness, but the selected behavior (flocking from right
to left close to the user) was perceived by them as com-
forting, a behavior we generally seek when sad.

Table 5. Control attributes computed for each sequence. Small
standard deviation of the rotational velocity shows high spatial
synchronicity, small difference in maximum velocities show high
temporal synchronicity and small standard deviation of the av-
erage distance to the swarm centroid shows small inter-robot
distance.

Expressive sequence | Spatial Temporal Inter-robot
Sync. Sync. distance
(rad/s) (cm/s) (cm)

fear 0.66 7.6 4.08

happiness 0.77 1.1 16.81

sadness 0.53 3.9 14.7

surprise 0.65 16.7 15

disgust 0.4 0 12.1

anger 0.74 42.5 24.3
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The design approach based on high-level algorithms
selection and few control attributes options in this sec-
ond experiment is far more intuitive than the regulated
tuning of parameters required to generate the motion
sequences variations of the first experiment. Neverthe-
less, we extracted from the resulting sequences measures
to quantify the underlying control attributes. To ensure
the values were perfectly fit for the video sequences pre-
sented to the participants, we extracted the position of
all robots from each sequence. Using each robot posi-
tion recorded at 30Hz, we computed the velocity vector
of all robots and of the average for the whole swarm.
The spatial synchronicity is measured with the stan-
dard deviation of each robot rotational velocity, aver-
aged over the entire sequence. With larger standard de-
viation, the spatial synchronicity decreases. The tem-
poral synchronicity is measured with the largest differ-
ence between the maximum velocity of the swarm and
of the slowest member, over the whole sequence. A large
difference means a low temporal synchronicity. Finally,
the inter-robot distance is measured with the spatial
dispersion of the swarm: the standard deviation of the
distance between each member and the swarm centroid.
Table 5 presents the values of each control attributes for
all sequences. Fear as the smallest inter-robot distance,
while Anger as the largest, are expected consequences
of the aggregation and random deployment algorithms.
Happiness has the highest standard deviation of rota-
tional velocity, due to the circular movement, and thus
has the lowest spatial synchronicity, closely followed by
Anger. Disgust has the highest temporal synchronicity,
since most of the time all the robots are standing still
together. Here again, Fear stands out as the least syn-
chronized sequence.

5.4 Results

We present two interrelated dataset: 1. the recognition
of emotions conveyed by each sequence and 2. the influ-
ence of the parameters of perceived organization on the
expressivity of these sequences.

How well were the emotional states distinguished by
the participants?

The participants filled a likert-scale series of ques-
tions assessing the level to which each sequence evokes a
specific emotion. In general, participants had difficulty
associating emotional states to the sequences they were
presented with. The best scores were found for Happi-
ness, Surprise and Fear scales, but only with an average
of approximately two on a seven-point scale. If the se-
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perceived emotional state
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quence (fear, happiness, sadness, surprise, disgust, anger) the

% of participants having considered a given emotional state as
the best candidate to qualify for this sequence. For instance, 33%
of participants considered Surprise as the best candidate for the
sequence designed to convey the emotion of fear.

quences do not evoke salient emotions, participants still
responded in different ways to them. This is what we
can observe with the classification distribution shown
in Figure 7. For each sequence and each participant,
the best candidate (the emotion reaching the highest
score) was extracted from the likert-scale scores (in-
cluding ties). Fear and Happiness are the two most suc-
cessful, in the sense that they are associated more fre-
quently to their corresponding sequence (the one chore-
ographers intended to convey this specific emotion). We
ran a Kendall’s W test to evaluate to what extent par-
ticipants agreed on the rank attributed to each emotion
for each sequence. Coefficients of concordance are indi-
cated in Table 6. We found a significant concordance for
each sequence, except for the sequence ‘disgust’.

The matrix also reveals potential misclassifications:
emotions preferentially attributed to a sequence that
was not intended to convey these emotions. If we look
specifically to the sequences ‘fear’ and ‘happiness’, we
can observe that both these sequences tend to be equally
associated to their corresponding emotion and to the
emotion Surprise. Wilcoxon signed-rank tests conducted
on the rank scores associated with each emotional state
confirm indeed that, for the sequence ‘fear’, the com-
parison between Fear and Surprise is not significant (z
= 1.023,p = 0.306), while all the other comparisons are
significant. Similarly for the sequence ‘happiness’ the
comparison between Happiness and Surprise is not sig-
1.157, p = 0.247) ), while all the other
comparisons are significant.

nificant (z =

How do parameters of perceived organization con-
tribute to the identification of emotional states?
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Table 6. Kendall W related scores for the six sequences. All Se-
quences have df = 5.

Expressive sequence | Kendall W | x?2 p

fear 0.311 63.777 | <0.0005
happiness 0.210 43.096 | <0.0005
sadness 0.127 25.983 | <0.0005
surprise 0.200 40.990 | <0.0005
disgust 0.061 12.525 | 0.028
anger 0.101 20.644 | <0.05

We verified to what extent the identification of the
different emotional states was associated to parameters
of perceived organization in the swarm’s behavior. As
shown in Table 7, some parameters of perceived organi-
zation are specifically related to emotional states. The
tendency for the robots to stay in groups is more likely
to be associated to higher scores of Fear (7, = 0.115,
p <0.05). This is coherent with the fact that choreogra-
phers chose to depict a strong level of aggregation for the
robots, similar to the way the members of a biological
swarm maintain a close proximity to protect from pre-
dation. The tendency for the robots to synchronize their
movements is more likely to be associated with higher
scores of Happiness (7, = 0.161, p < 0.005). We also found
that Happiness is specifically associated to the tendency
for the robots to form figures (7, = 0.216, p < 0.0005). In
combination, the parameters of synchronicity and figure
seem to be critical to the particular sequence choreog-
raphers chose to express happiness. Robots were rep-
resented as engaged in a sort of circle dance, evolving
along the lines of a virtual figure, with a high level of
interdependence between the robots’ movements. The
tendency for the robots to follow one of their peers was
associated to most emotional states, except Happiness
and Anger. In fact, Fear, Surprise, Sadness and Disgust
sequences all used at some point an element of sequen-
tial transformation, one dynamic state (for instance the
robots aggregated in the bottom left corner of the ta-
ble), followed by another state with a transition phase
where one robot is perceived as leading the way. The
emotional states not significantly associated with the
parameter of leadership are those where this element of
sequentiality is not present, with the robots scattered
randomly all over the table (Anger), or staying inside
the same zone during the entire sequence (Happiness).
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Table 7. Correlation scores for the six sequence(y).
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Fear Surprise | Happiness | Sadness | Disgust | Anger
tend to stay in group 0.115 | 0.030 0.041 0.029 0.012 -0.032
tend to synchronize -0.34 0.005 0.161 0.005 0.065 -0.017
tend to follow one of theirs | 0.220 | 0.107 0.029 0.191 0.123 0.103
tend to form figures -0.038 | 0.016 0.216 0.073 0.053 0.000

5.5 Discussion

The Buzz programming language and its virtual ma-
chine proved a versatile tool to design expressive se-
quences. Due to the simplified design parameters, the
choreographers achieved a mapping between the target
emotional states and the control algorithms, without
requiring decentralized programming expertise. Each
available control algorithm was in the end associated
with a unique target emotional state, such as fear with
‘aggregation’, whereas anger was uniquely associated
with the ‘random deployment’ algorithm.

However, this mapping between emotions and con-
trol algorithms did not translate into a unique recogni-
tion profile for the emotional states: in general partic-
ipants had difficulty identifying the emotions intended
by the choreographers, while still being able to differ-
entially respond to these emotions. Whereas Fear and
Happiness were more frequently associated with the cor-
responding sequences, other emotions such as sadness or
disgust proved especially difficult to represent using col-
lective motions. It is difficult to determine whether Fear
and Happiness were more successful because they can
be conveyed using abstract patterns [58] that are suited
to swarm expression, whereas other emotions are more
tightly linked to facial, gestural and postural configura-
tions (e.g. a defensive posture in the case of Disgust).
Some of the perception confusion observed in our study
are similar to the ones already pointed out by Barakova
and Lourens [59] with the use of the Laban dance nota-
tion on humanoid motion: an overlap arise between the
coding of ‘fear’, ‘anger’ and ‘happiness’. It is also pos-
sible that, in order to better illustrate emotions, what
was lacking was a fine control of the movement qual-
ities that are known to evoke specific emotion (e.g.,
jerky movements for anger; large and fast movements
for happiness [28, 60]). Misclassifications, especially be-
tween Fear and Surprise, and between Happiness and
Surprise, could also result from limits of the control pa-
rameters to finely tune motion parameters. In addition,
we can surmise that Fear was confused with Surprise
because of the sudden reconfiguration of the swarm at
certain points of the sequence, implying an element of

rapid adjustment to external variations. Happiness and
Surprise, on the other hand, could be confused because
of an impression of high arousal due to frequent changes
of configuration.

An interesting element for the study of collective
expressions is the diverse range of intuitions choreog-
raphers relied upon when designing the expressive se-
quences. Based on the variations we observed in the pa-
rameters of perceived organization, we can delineate at
least four expressive features: collective behaviors, picto-
rial elements, narrative elements, and variations in inter-
dependence. To depict emotions, choreographers could
draw from a repertoire of collective behaviors observed
in animal groups. Flocks of birds or fish schools dis-
play self-organization behaviors [61] that may inspire
collective expression of robotic swarms. In our exper-
iment, choreographers seemed to base their design of
fear-related motion on animal behaviors when they an-
imated the swarm as a flock of sheep fleeing from a
predator. In certain sequences, a pictorial element is in-
volved, when robots adopt a configuration that, to a hu-
man observer, may suggest a geometrical figure. Such an
element was present in the sequence representing happi-
ness. In this sequence choreographers depicted a circle,
thus making use of the feature of roundness, a feature
frequently associated to the expression of positive emo-
tions [58, 62]. In some other sequences, such as Fear and
Disgust, choreographers based their design on a narra-
tive approach, portraying a sequence of events. Succes-
sive changes of the swarm configuration, and chasing se-
quences where one robot is seen as leading the way, were
used to convey attitudes and emotions. These sequences
echo sequences used in numerous experimental investi-
gations of animacy perception [63, 64], and suggest that
the motion patterns thus depicted correspond to basic
expressive patterns. Finally, choreographers made use
of variations in robots’ interdependencies to illustrate
certain emotional states. Happiness was associated to a
high level of synchronicity by observers and exemplifies
the expressive potential of dynamic interrelationships.
In this sequence, the robots were engaged in a highly dy-
namic game of position adjustment that could transmit
a playful attitude of joy. These subtle patterns consti-
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tute an interesting element to tap into when designing

expressive collective motions.

6 Conclusion

In this work, we addressed the challenge of represent-
ing internal states of a swarm. We designed two sets of
user studies, each increasing our understanding of the
motions parameters involved. A flexible implementation
was required to conduct theses studies, so we presented
our decentralized software infrastructure. Based on a
swarm-specific programming language, we implemented
a series of common swarm control algorithms for motion
designers to pick and tune, independently from the un-
derlying hardware. Each algorithm has specific param-
eters, quickly increasing the complexity of the analysis
of their influence. To narrow the analysis, we propose a
small set of three high-level motion attributes: tempo-
ral synchronicity, spatial synchronicity and inter-robot
distance.

The first experiment relates the expressivity and co-
herence of the robot group to the high-level control at-
tributes, injected as control parameters of a flocking be-
havior. The results show that the perceived cohesion of
the group increases with the robots’ tendency to stay in
groups (be organized) and their spatial synchronicity.
The expressivity of the swarm was also increased by the
robots’ tendency to stay in groups, but was reduced by
temporal synchronicity.

The second experiment tasked a small group of pro-
fessional choreographers with the design of six expres-
sive motion sequences to illustrate internal emotional
states. The results show that half the sequences were
attributed emotions with significant agreement over all
the online participants: fear, happiness and surprise.
Fear and happiness were associated with high syn-
chronicity, and happiness also to the tendency to form
figures. We also observed that anger was associated sig-
nificantly to the absence of leadership in the swarm.

Using these results, the swarm motion can be tuned
to share high-level information to its operator. For in-
stance, while conducting an exploration mission, part of
the deployed swarm can synchronously aggregate when
detecting a gas leak to inform their operator of the dan-
ger. In a broader perspective, we believe these prelim-
inary results represent a stepping stone on the path to
a better understanding of artificial swarm perception
aimed at improving non-verbal communication between

human and swarm during collaborative tasks.

DE GRUYTER

Further steps include understanding the expressive
figures that develop in relation to the swarm’s dynamic
state changes. They also involve understanding the re-
lationship between such expressive figures and whether
the swarm is perceived as a friendly, indifferent, or
intimidating presence. Finally, our next experiments
will integrate the design of expressive motions in task-
oriented interaction scenarios to explore how to best
leverage these findings.
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