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The generalized cross correlation (GCC) is a standard technique for estimating time delay between
microphone signals. A prefiltering operation by a weighting function may be included to whiten the
cross spectrum of the microphones signals. The expected result is a narrow cross correlation function
and a more accurate estimation of the time delay. Among the classic weighting functions, the most
known is the PHAse Transform (PHAT). The ability of the PHAT weighting function to whiten the
cross spectrum of the microphone signals can be improved by adding an exponent or the minimum
value of the coherence function to the denominator. Both approaches have shown promising results
for time delay estimation. In this work, the aforementioned modifications of the PHAT weighting
function are considered for performing acoustic imaging with the classic GCC and the GCC based
on the geometric mean. Numerical and experimental measurements are carried out in the case of two
acoustic sources in front of a regular microphones array.
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1. Introduction

In industry, workers may be exposed to high sound pressure levels. Although, providing hearing
protection devices is the easiest solution, the most efficient way is to reduce the noise of the main sources.
In this case, the first step is to identify the source positions which can be done with a microphone array.
The standard technique for localizing acoustic source positions is the beamforming performed in the
frequency or time domain [1]. The main drawback of beamforming is an acoustic image with a large
main lobe for low frequency content or high side lobe amplitude for higher frequencies [2, 3]]; both
preventing from an accurate localization or separation of the sources when they are close to each other.

Many frequency beamforming techniques have been developed and are usually gathered under the
name of acoustic imaging techniques. Two recent reviews have presented exhaustive lists of improved
acoustic imaging techniques which allow for narrowing the main lobe or removing side lobes [4) |5]].
Although both review papers have focused on frequency domain beamforming, Chiarotti et al. [S] have
noticed an increased interest in time-domain algorithms over the years and Roberto et al. [4] have briefly
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presented time domain techniques for non-stationary sources while noticing the higher computation time
for time domain beamforming.

The generalized cross correlation (GCC) [6] is commonly used to estimate the time delay of arrival
as noticed in the review paper on source localization [7], but it can also be used for acoustic imaging. It
is worth noticing that the source localization review [7] and both acoustic imaging reviews [4} 5] seem to
share the same objective but promote different techniques. This work aims to use a source localization
technique for performing acoustic imaging.

Previous works have presented acoustic imaging results based on the GCC. For instance, Quaege-
beur et al. [9]] have introduced a spatial criterion with GCC and have shown the efficiency of the proposed
technique for imaging loudspeakers in a reverberant environment. Padois et al. 8] have used an inverse
problem solved with sparsity constraint for enhancing the acoustic images provided by the GCC. The low
computation time of the GCC has been demonstrated in [9,|10]]. Irs efficiency in narrowing the main lobe
and reducing the side lobe amplitude has been shown in [11}12] where the GCC has been computed with
the generalized mean. Finally, the GCC has also been used to image the impulse noise of nail guns [13].

All the previous references have used the GCC without weighting function or with the Phase Trans-
form [6]. However, many alternative weighting functions have been proposed for improving time delay
estimation [[14]. The objective of this work is to compare the acoustic images obtained with the GCC and
the geometric mean for three different weighting functions such as in reference [15]].

2. The generalized cross correlation and weighting functions

The generalized cross correlation (GCC) is a standard technique for performing acoustic source lo-
calization [16, [17]. The theoretical background has already been presented in reference [6]], therefore a
quick overview is only provided here.

The goal of the GCC technique is to estimate the time delay between all pairs of a given microphone
array. Then, these time delays are interpolated over a scan zone in order to generate an acoustic image
where the peak value exhibits the source position.

The time delay between two microphone signals, denoted x,, and z,,, can be estimated by the cross
correlation function R,, . (7). Usually, the cross correlation function between two microphone signals
is given by the inverse Fast Fourier Transform of the cross spectrum C,,,,

Ny—1 I
R, (T) = Z W (k)Cyn(k) exp <j27r7'>, (1)
k=0 Nf

where k is the frequency index, N the number of frequency samples, j = /—1 and W (k) the weighting
function. If the arithmetic mean of the GCC is replaced by the GEOmetric mean, the GCC becomes the
GEO [11}12].

The most known weighting function is the PHAse Transform (PHAT)

1
|Cmn|‘

PHAT = 2)
The goal of the PHAT weighting function is to whiten the cross spectrum of the microphone signals.
‘When PHAT is used, the GCC becomes GCC-PHAT.

In 1996, Rabinkin et al. [18] proposed to partially whiten the cross spectrum by adding an exponent

p to the weighting function
1
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When p = 0 or p = 1, it corresponds to the cross correlation function or the GCC-PHAT, respectively. If
0 < p < 1, the cross spectrum is partially whiten and the GCC becomes GGC-p-PHAT.

In 2009,Shen et al. [19] introduced the cross power spectrum phase with coherence function. More
specifically, the minimum value of the coherence function 2, is added to the denominator of PHAT

1

|Cmn |p + min %%m

p— PHAT — C = )

in this case, the GCC becomes GGC-p-PHAT-C.

3. Numerical acoustic images

Numerical simulations are first considered in order to highlight the performance of the different
weighting functions. Two acoustic sources are set in front of a regular 49-microphone array. The source
positions are x=-0.25 m and x=0.25 m at y=0. The sources signals are white Gaussian noises. The mi-
crophones record the acoustic signal at a frequency sampling of 44,100 Hz. The microphone signals are
filtered by a 2"? order bandpass Butterworth in the 1000 Hz octave band. The microphone array aperture
1s 0.75 m in both directions and the source-array distance is 1.2 m. The scan zone, where the source is
searched, is a square with 2 m side with a 40,401 points (201 x201).

The acoustic image provided by the GCC is shown in Figure[I]a. The source positions are correctly
detected, but the source separation is not apparent due to the merging of the main lobes. In this case,
more efficient source localization techniques are required to improve the acoustic image which means
decreasing the main lobe widths. When p = 0.8, the p-PHAT and p-PHAT-C slightly improve the
source separation by decreasing the amplitude in between the sources (Figure [I|b-d) which means that
the weighting functions decrease the main lobe width of the cross-correlation function. However, this de-
crease is not sufficient for separating both sources. With the classic PHAT, the sources are more separated
but at the expense of several side lobes especially along x-direction (Figure[I]c). The weighting function
p-PHAT-C with p = 1 provides a similar trend although the side lobes are less spread (Figure[I]e). Using
the GEO does not allow for separating both sources (not shown here). However, with p-PHAT-C (p = 1)
and the GEO, the best source separation is achieved, two distinct spots are present at the source positions
without side lobes (Figure [I}f).

4. Experimental acoustic images

Now, the efficiency of the weighting functions for separating two sources is investigated with experi-
mental data. The experiment took place in a hemi-anechoic room. Two loudspeakers were set in front of
a regular 16-microphone array. The microphone array aperture and source-array distance are similar to
the ones used in the numerical simulations, only the number of microphones being decreased. Again, the
1000 Hz octave band is considered and the scan zone is the same.

The acoustic image obtained with the GCC is similar to the numerical one, the sources are not sep-
arated (Figure @a). However, side lobes surround the main lobes now. When p = 0.8, the acoustic
images are not improved with the p-PHAT and p-PHAT-C (Figure [2]b-d). With the classic PHAT, the
source positions are no more detected (Figure [2c). The weighting function p-PHAT-C with p = 1 allows
for removing a part of the side lobes surrounding the main lobes, but extend them along the x-direction
(Figure2e). Again, the best source separation is provided by the GEO and p-PHAT-C where two distinct
spots are present at the source positions without side lobes (Figure [2|f).
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Figure 1: Numerical acoustic images obtained for the 1000 Hz octave band with a) GCC b) p = 0.8-
PHAT, c) p = 1-PHAT d) p = 0.8-PHAT-C, e) p = 1-PHAT-C and f) GEO p = 1-PHAT-C. The black
dots are the microphone positions. The colorbar is in dB.

5. Conclusion

The main objective of an acoustic imaging technique is to narrow the main lobe and to reduce the
side lobe amplitude in order to accurately separate multiple sources. In this work, the generalized cross
correlation (GCC) was used to detect the source positions. Numerical and experimental acoustic images
showed that the GCC is not able to separate two sources closely spaced due to the main lobe width.
Weighting functions can be used for improving the estimation of the cross correlation function. The clas-
sic PHAT was firstly considered. Although the numerical acoustic image provided by PHAT is slightly
better then the acoustic image provided by GCC, the latter is not able to detect the source positions in the
case of experimental data. Two others weighting function (denoted p-PHAT and p-PHAT-C) were then
evaluated. While the former adds an exponent to the PHAT, the latter also adds the coherence function.
Both weighting functions allows for slightly improving the acoustic images. However, the best results is

obtained when the geometric mean is applied with the p-PHAT-C. In this case, both sources are clearly
separated and no side lobes are present.
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Figure 2: Experimental acoustic images obtained for the 1000 Hz octave band with a) GCC b) p = 0.8-
PHAT, ¢) p = 1-PHAT d) p = 0.8-PHAT-C, e) p = 1-PHAT-C and f) GEO p = 1-PHAT-C. The black
dots are the microphone positions. The colorbar is in dB.

REFERENCES

1. Johnson, D. H. and Dudgeon, D. E., Array Signal Processing: Concepts and Techniques, Prentice Hall,Upper
Saddle River,New Jersey,USA, (1993).

2. Camier, C., Padois, T., Gauthier, P-A., Berry, A., Blais, J-F., Patenaude-Dufour, M. and Lapointe, R., Fly-over
source localization on civil aircraft, 19th AIAA/CEAS Aeroacoustics Conference, Berlin, Germnay, 27-29 May,
(2013).

3. Padois, T., Laffay, P., Idier, A. and Moreau,. S., Detailed experimental investigation of the aeroacoustic field
around a Controlled-Diffusion airfoil, 215t AIAA/CEAS aeroacoustics conference, Dallas, Texas, 22-26 June,
(2015).

4. Merino-Martinez, R., Sijtsma, P., Snellen, M. Ahlefeldt, T., Antoni, J., Bahr, C. J., Blacodon, D., Ernst,
D., Finez, A., Funke, S., Geyer, T. F., Haxter, S., Herold, G., Huang, X., Humphreys, W. M., Leclere, Q.,
Malgoezar, A., Michel, U., Padois, T., Pereira, A., Picard, C., Sarradj, E., Siller, H., Simons, D. G. and Spehr,
C., A review of acoustic imaging methods using phased microphone arrays, CEAS Aeronautical Journal, 1-34,
(2019).

5. Chiariotti, P., Martarelli, M. and Castellini, P., Acoustic beamforming for noise source localization - Reviews,
methodology and applications, Mechanical Systems and Signal Processing, 120, 422-448, (2019).

6. Knapp, C. and Carter, G. C., The generalized correlation method for estimation of time delay, Transactions on
Acoustics, Speech and Signal Processing, IEEE, 24 (4), 320-327, (1976).

ICSV26, Montreal, 7-11 July 2019 5



ICSV26, Montreal, 7-11 July 2019

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Cobos, M., Antonacci, F., Alexandridis, A., Mouchtaris, A. and Lee, B., A Survey of Sound Source Local-
ization Methods in Wireless Acoustic Sensor Networks, Wireless Communications and Mobile Computing,
(2017).

. Padois, T., Doutres, O., Sgard, F. and Berry, A., Time domain localization technique with sparsity constraint

for imaging acoustic sources, Mechanical Systems and Signal Processing, 94, 85-93, (2017).

Quaegebeur, N., Padois, T., Gauthier, P-A. and Masson, P., Enhancement of time-domain acoustic imaging
based on generalized cross-correlation and spatial weighting, Mechanical System and Signal Processing, 75,
512-524, (2015).

Padois, T., Sgard, F. Doutres, O. and Berry, A., Acoustic source localization using a polyhedral microphone
array and an improved generalized cross-correlation techniqu, Journal of Sound and Vibration, 386 (6), 82-99,
(2017).

Padois, T., Doutres, O., Sgard, F. and Berry, A., On the use of geometric and harmonic means with the gen-
eralized cross-correlation in the time domain to improve noise source maps, J. Acoust. Soc. Am., 140 (1),
EL56-EL61, (2016).

Padois, T., Acoustic source localization based on the generalized cross-correlation and the generalized mean
with few microphones, J. Acoust. Soc. Am., 15 (2), EL393-EL398, (2018).

Padois, T., Gaudreau, M-A, Marcotte, P. and Laville, F. Identification of noise sources using a time domain
beamforming on pneumatic, gas and electric nail guns, Noise Control Engr. J., 67 (1), 11-22, (2010).

Marinescu, R.-S., Buzo, A., Cucu, H. and Burileanu, C. Applying the Accumulation of Cross-Power Spectrum
Technique for Traditional Generalized Cross-Correlation Time Delay Estimation, International Journal on
Advances in Telecommunications, 6, 98—108, (2013).

Padois, T., Doutres, O. and Sgard, F., On the use of modified phase transform weighting functions for acoustic
imaging with the generalized cross correlation, J. Acoust. Soc. Am., XX, XX—xX, (2019).

Dmochowski, J. P., Benesty, J. and Affes, S. A Generalized Steered Response Power Method for Computa-
tionally Viable Source Localization, IEEE Transactions ON Audio, Speech, And Language Processing, 15 (8),
2510-2526, (2007).

Velasco, J., Pizarro, D. and Macias-Guarasa, J. Source localization with acoustic sensor arrays using generative
model based fitting with sparse constraints, Sensors, 12, 13781-13812, (2012).

Rabinkin, D. V., Renomeron, R. J., Dahl, A. J., French, J. C., Flanagan, J. L. and Bianchi M., DSP implemen-
tation of source location using microphone arrays, Proc. SPIE 2846, Advanced Signal Processing Algorithms,
Architectures, and Implementations VI, (1996).

Shen, M. and Liu, H., A Modified Cross Power-Spectrum Phase Method Based on Microphone Array for
Acoustic Source Localization, Proceedings of the IEEE International Conference on Systems, Man, and Cy-
bernetics, 12861291, (2009).

ICSV26, Montreal, 7-11 July 2019



	Introduction
	The generalized cross correlation and weighting functions
	Numerical acoustic images
	Experimental acoustic images
	Conclusion

