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Abstract 16 

This paper investigates the ability of three regionalization methods to predict streamflow in 17 

ungauged catchments in Mexico, namely the Multiple Linear Regression (MLR), Spatial 18 

Proximity (SP) and Physical Similarity (PS) methods. Three hydrological models (GR4J, 19 

https://doi.org/10.1080/02626667.2019.1639716


2 

 

HMETS and MOHYSE) were calibrated on 30 diverse catchments in Mexico. A leave-one-out 20 

cross-validation implementation enabled estimating the regionalization skill at each of the 30 21 

sites, in turn considered as being ungauged. This study allowed showing that regionalization in a 22 

hydrologically heterogeneous area such as the Mexican area under study poses problems to 23 

regionalization approaches that depend on physical catchment descriptors such as MLR and PS. 24 

The transfer of complete parameter sets from a neighboring catchment provided the most robust 25 

method to estimate streamflow in semi-arid and humid ungauged basins. The arid catchments 26 

performed worse in the context of regionalization, with GR4J being more robust than the other 27 

models due to its simpler structure.  28 

Keywords: hydrological modeling, ungauged basin, regionalization, spatial proximity, physical 29 

similarity. 30 

 31 

1. Introduction 32 

Hydrological modeling often requires access to hydrometric data in order to calibrate the 33 

hydrological model. The calibrated model can then be used to simulate historic flows on the 34 

catchment, perform climate change impact studies or generate forecasts for water resources 35 

management applications. Unfortunately, in many cases, studies must be performed at sites 36 

where no gauging station exists. In these cases, it is possible to estimate the historic streamflow 37 

at the ungauged sites using so-called “regionalization” methods. These methods attempt to 38 

transfer parameter sets from hydrological models successfully calibrated at other sites. The 39 
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parameter transfer function can rely on either catchment similarity, proximity or other 40 

descriptive factors. 41 

In 2003, the International Association of the Hydrological Sciences (IAHS) launched the 42 

“Decade on prediction in ungauged basins” (Sivapalan et al. 2003), which led to the development 43 

and analysis of many regionalization approaches in a variety of climates and contexts. Multiple 44 

authors provided reviews of the developments during that period, notably Bloschl et al. (2013), 45 

Hrachowtiz et al. (2013), He et al. (2011), Parajka et al. (2013) and Razavi and Coulibaly 2013. 46 

Of the available methods, three have stood out as the most versatile and robust depending on the 47 

climate and hydrological regime of the study region. The methods are known as Physical 48 

Similarity (PS), Spatial Proximity (SP) and Multiple Linear Regression (MLR). The three 49 

regionalization methods are present in most comparative studies and are generally recognized as 50 

performing strongly under certain conditions. For example, Oudin et al. (2008) showed that a 51 

high density of hydrometric gauges favored the SP method followed by the PS method, whereas 52 

both methods become similar under a certain threshold. Parajka et al. (2013) performed a meta-53 

analysis of regionalization studies and found that in general, MLR performed worse than the 54 

other two methods except in arid catchments (aridity index > 1.0), where MLR and PS return 55 

similar results. Another method of regionalization is to determine catchment hydrologic 56 

signatures at ungauged sites and then calibrate a hydrological model to these signatures 57 

(Bárdossy 2007, Yadav et al. 2007), however in this paper we focus on the direct determination 58 

of parameter sets at ungauged locations.  The next section details the study objectives and 59 

historical streamflow prediction attempts in the region of study. . A brief overview of the 60 

regionalization methods is given in sections 1.2 to 1.5. 61 



4 

 

1.1 Regionalization in Mexico and study objectives 62 

This study aims to determine if any of the classical regionalization methods can be used 63 

effectively to estimate streamflow in ungauged basins in Mexico. An extensive literature review 64 

has shown that only a handful of studies tackling regionalization in Mexico have been performed 65 

even though there is a need to predict streamflow in ungauged basins (Vicente-Serrano, 2006). 66 

Ouarda et al. (2008) used statistical analysis to estimate homogeneous hydrological regions for 67 

regionalization and found that Canonical Correlation Analysis (CCA) outperformed Canonical 68 

Kriging and hierarchical clustering for three basins in Mexico.  Álvarez-Olguín et al. (2011) also 69 

applied homogeneous hydrological region analysis tools on 17 catchments in the Iberian 70 

Peninsula in Mexico and found that they could be grouped into three classes. Based on this work, 71 

Domínguez-Mora et al. (2016) developed a procedure to regionalize maximum flows on 37 72 

catchments in Mexico, and Allende et al. (2009) performed regionalization on a catchment 73 

undergoing land-use change but limited the analysis to two years. Rojas-Serna et al. (2006) 74 

worked on calibrating the parameters of the daily lumped GR4J rainfall–runoff model, using a 75 

few streamflow measurements, in combination with a priori knowledge of the parameters. The 76 

approach was applied to 1111 catchments in five continents, including 260 catchments in 77 

Mexico. They found that this approach could be more efficient than classical regionalization 78 

studies, as soon as about thirty measurements could be made, at random, during a period of three 79 

to five years. Luis-Pérez et al. (2011) worked on regional flood-frequency estimation at 80 

ungauged sites in nine catchments from the Mexican Mixteca region using two different 81 

clustering approaches for the delineation of homogeneous zones. MLR was applied for the 82 

flood frequency estimation in each homogeneous zone. Of the studies found in the literature, 83 

none analyzed long-term, daily and continuous streamflow simulation in Mexico. 84 
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This study will fill a gap by performing a large-scale analysis of regionalization methods in 85 

central Mexico using three regionalization methods (MLR, SP and PS) and using three 86 

hydrological models. The breadth of climate types and variety of physical characteristics of the 87 

catchments will allow studying the regionalization methods and help answer the three following 88 

questions: 89 

1- Which regionalization method, if any, should be preferred in the study region? 90 

2- Do methods that perform well elsewhere in similar conditions still perform well in 91 

Mexico (to validate previous findings)? 92 

3- Does the complexity of hydrological models influence the regionalization methods’ 93 

performance? 94 

The next sections present the regionalization methods used in this study as well as variations 95 

applied to help improve the regionalization skill in the study region. 96 

 97 

1.2 Multiple Linear Regression (MLR) 98 

MLR was amongst the first regionalization methods to be developed and studied. The idea 99 

behind MLR is that hydrological model parameters are, in theory, adjusted to represent certain 100 

physical processes. These processes should theoretically be driven by the catchment’s physical 101 

characteristics such as slope, land-use and soil type. Therefore, MLR aims to define a 102 

relationship between catchment descriptors and hydrological model parameters calibrated on a 103 

large number of sites. These relationships can then be used to estimate the best parameter values 104 

on the ungauged site by using the ungauged catchment’s descriptors in the regression equation. 105 
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Each parameter is evaluated independently and therefore the parameter set loses its cohesion, 106 

which can lead to a loss in performance (Arsenault and Brissette 2014).  107 

Kokkenan et al. (2003) used a variant of MLR in which parameter values were first found for a 108 

global region and the regression analysis was performed on smaller regions using their own 109 

catchment descriptors in the regression estimation. They established that when similar 110 

catchments are available, it is better to use the entire parameter set from a similar catchment than 111 

to estimate the parameters one by one. MLR has been used successfully in flat and semi-arid 112 

catchments (Bloschl et al. 2013), which is not representative of our study site. MLR also requires 113 

large amounts of information to establish significant relationships between parameters and 114 

descriptors (He et al, 2011), which are not easily available in Mexico.  115 

 116 

1.3 Physical similarity (PS) 117 

PS uses the simple idea of calibrating a hydrological model on a similar catchment to the 118 

ungauged one, and then transferring the parameter set to the ungauged site. The idea is that the 119 

similar catchment should behave similarly hydrologically, and that the calibrated parameter set 120 

should be transferable to the similar site. Similarity is defined as the normalized distance 121 

between two points in N-dimensional space, where each dimension refers to a particular 122 

catchment descriptor, such as elevation, land-use, soil type and drainage density. The distance, 123 

also called the similarity index, can be computed using a simple formula such as that of Burn and 124 

Boorman (1993): 125 



7 

 

 
𝜃 = ∑

|𝐶𝐷𝑖
𝐺 − 𝐶𝐷𝑖

𝑈|

∆𝐶𝐷𝑖

𝑘

𝑖=1
 

(eq. 1) 

Where θ is the similarity index, CDi represents the descriptor values vector for gauged site (G) 126 

and ungauged site (U), k is the number of catchment descriptors and ΔCDi is the range of values 127 

that CD can take in the database. The distance is computed between the ungauged catchment and 128 

a set of calibrated catchments. The most similar catchment, i.e. the one with the shortest distance, 129 

is considered the “donor” catchment as it will donate its parameters to the ungauged basin. 130 

However, Oudin (2010) cast doubt that similar catchments are inherently hydrologically similar. 131 

Nonetheless, it is widely used in regionalization studies across the world. Reichl et al. (2009) 132 

found that having a good prior knowledge of the catchment descriptors could lead to better 133 

performance. When seven descriptors or more were used, the PS method could outperform the 134 

SP approach. 135 

Wagener et al. (2007) found that an adequate catchment classification scheme was an important 136 

element for PS to perform satisfactorily. The advantage of PS over MLR is that the parameter set 137 

is transferred completely and remains intact, whereas in MLR the parameter set is reconstructed 138 

one parameter at a time by regression (McIntyre et al 2005, Parajka et al 2005, Oudin et al 2010). 139 

Nonetheless, Arsenault and Brissette (2014) proposed a method by which a parameter set that is 140 

transferred from a donor basin can be modified by applying the MLR approach only to the 141 

parameters whose linear regression R2 skill is over a certain threshold. For example, if 2 out of 142 

10 parameters have high R2 scores (e.g. 0.8 or higher), then 8 parameters are preserved as-is 143 

from the donor set and the other two parameters are estimated using the regression function with 144 

the ungauged basin’s catchment descriptors. This method, referred to as “regression-augmented 145 

regionalization”, outperformed the classic approaches on 268 catchments in Canada. Catchment 146 
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elevation has been considered an important descriptor in PS as it is correlated to multiple 147 

hydrological and climatic variables (Parajka et al 2013). The elevation range in the study site is 148 

quite variable; therefore, this parameter will be included as a catchment descriptor.  149 

 150 

1.4 Spatial Proximity (SP) 151 

SP is the simplest method to put into practice. Requiring no information regarding catchment 152 

attributes, it is based on the hypothesis that neighboring (or nearby) catchments must share 153 

physical attributes such as land cover, soil type, elevation, slope, climate data and so on. 154 

Therefore, under this hypothesis, there is no need to look for the most similar catchment as the 155 

nearby ones could be “similar enough” simply based on their location. The implementation of SP 156 

requires a few nearby catchments that have been successfully modelled and calibrated by the 157 

hydrological model. The closest catchment becomes the de facto donor and the hydrological 158 

model parameters are transferred to the ungauged site. The distance between the ungauged basin 159 

and the donor candidates is computed using the simple Euclidian distance between the 160 

catchments centroids as shown in equation 2. 161 

 𝑑 = √(𝑋𝐺 − 𝑋𝑈)2 + (𝑌𝐺 − 𝑌𝑈)2 (eq. 2) 

Where d is the distance between the centroids and (XG, YG) and (XU, YU) are respectively the 162 

centroid coordinates for the gauged and ungauged catchments. 163 

Many studies used the SP method due to its simplicity and relatively good performance. Oudin et 164 

al. (2008) found that for 913 basins in France, the SP method performed better than the PS and 165 
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MLR methods, mainly due to the high density of the hydrological network. Merz and Bloschl 166 

(2004) and Paparakja et al. (2005) also came to the same conclusions, whereas Arsenault and 167 

Brissette (2014) found that even with a relatively sparse hydrological network the SP method 168 

slightly outperformed the PS method and was far more skillful than the MLR method. As is the 169 

case with the PS approach, a regression-augmented variant is also available for SP and was 170 

shown to be a good choice in some specific circumstances.  171 

 172 

1.5 SP-PS integration 173 

Oudin et al. (2008) showed that it was possible to improve upon the PS method by adding the 174 

latitude and longitude as catchment descriptors, which can be likened to integrating the SP 175 

method into the PS method. This method, sometimes called integrated similarity, combines the 176 

known and measurable catchment descriptors (i.e. land use, elevation, etc.) to the unknown or 177 

implicit descriptors such as soil type. Therefore, the advantages of having similar catchments for 178 

the known variables is paired with the advantage of having a nearby catchment that should be 179 

similar for the unknown or unmeasurable attributes. This method has been shown to outperform 180 

the PS, SP and MLR in many cases (Parajka et al. 2013, Samuel et al. 2011, Zhang and Chiew 181 

2009). For this reason, PS often implicitly includes latitude and longitude as catchment 182 

descriptors. 183 

 184 

 185 
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1.6 Multiple donor averaging 186 

Many authors have shown that for the PS and SP methods, transferring the parameter sets of a 187 

few donors and averaging the generated hydrographs could lead to significantly improved results 188 

over using a single donor (Oudin et al., 2008, Reichl et al., 2009, Samuel et al. 2011, Zhang and 189 

Chiew 2009). There exist numerous implementations of multiple donor averaging, but the two 190 

most common are the arithmetic mean and the inverse-distance weighted approaches. In the first 191 

case, the hydrographs generated by running the hydrological model on the ungauged site with a 192 

few donated parameter sets are averaged using equal weights (Mc Intyre et al. 2005, Oudin et al. 193 

2008). In the second case, the averaging is performed using the inverse-distance weighting 194 

scheme, in which the distance is either the Euclidian distance for SP or the similarity index for 195 

PS (Samuel et al. 2011, Zhang and Chiew 2009). It has been shown that between 5 and 10 196 

donors usually maximizes the performance, and that inverse-distance weighting slightly 197 

outperforms the arithmetic mean, although the differences might not be statistically significant 198 

(Arsenault and Brissette 2014). 199 

The next section will detail the study area and section 3 will explain the methodology. Section 4 200 

presents the results and their analysis, followed by concluding remarks. 201 

2. Study area and data 202 

2.1 Study area 203 

The study area is composed of 30 small to medium sized catchments in central Mexico. The 204 

catchment locations are presented in Figure 1.  The catchments are heterogeneous in multiple 205 

ways, as described in section 2.3. In Figure 1, the 30 catchments are overlaid on an average 206 
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annual runoff map provided by the National Institute of Statistics and Geography (INEGI; 207 

INEGI 2016). In Figure 2, it can be seen that the catchments are located in arid, semi-arid and 208 

humid regions of Mexico. 209 

 210 
Figure 1: Map of average annual runoff throughout Mexico (left panel), with a zoom on the 211 

region and watersheds (black contours) under study (right panel). 212 

 213 

The region’s topology ranges from coastal plains to continental mountains and vegetation 214 

depends on the altitude and precipitation regime, which also vary considerably in space. 215 

Furthermore, the region is influenced by wet and dry seasons, with the wet season generally 216 

lasting from May/June to October, and the dry season lasting from November to April. The 217 

precipitation and runoff are thus strongly correlated to this pattern.  218 
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 219 

Figure 2: Climate classifications in Mexico overlaid with the boundaries of the 30 catchments in 220 

this study. 221 

 222 

2.2 Hydrometeorological data 223 

Hydrometric and meteorological data over a large number of Mexican catchments were required 224 

to perform the regionalization analyses. The hydrometric data were provided by the National 225 

Water Commission of Mexico (CONAGUA) and the meteorological data was sourced from the 226 

Livneh et al. (2015)’s comprehensive hydrometeorological database. The database is a gridded 227 

climate data product and includes daily minimum and maximum temperature along with daily 228 

precipitation from 1950-2013 at a 1/16° resolution over Mexico, the United-States and Southern 229 

Canada. Livneh et al. (2015) preformed a tedious data validation and correction work over the 230 

entire domain and it is expected that this dataset is of better quality than if simple observation 231 
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stations were used to drive the hydrological models. The precipitation and temperatures were 232 

spatially averaged over the catchment domains to produce a single vector of inputs per variable 233 

for each catchment.   234 

2.3 Geophysical data 235 

The geophysical data were provided by the INEGI. The catchment descriptors required to 236 

implement the MLR and PS regionalization methods were selected from this database, and 237 

include the attributes presented in table 1. 238 

Table 1. Statistics of the catchment descriptors from the 30 basins in this study. 239 

Catchment Descriptor Min 25th 
50th 

(median) 
75th Max 

Area (km2) 397 1106 1943 3264 10968 

Mean Elevation (m) 88 845 1484 1971 2579 

Mean Annual Precipitation (P) (mm) 590 780 848 1596 3198 

Mean Annual PET (mm) 959 1154 1250 1343 1512 

Average discharge (Q) (m3/s) * 2.1 7.2 25.7 46.2 185.2 

Runoff Ratio – Q/P (mm/mm) 0.07 0.11 0.30 0.52 0.92 

Aridity index – P/PET (mm/mm) 0.44 0.61 0.64 1.17 2.77 

Land Use: Agriculture (%) 35 71 87 97 100 

Land Use: Forest (%) 0 2 12 28 64 

Soil Type: Cambisol (%) 0 0 0.5 1 37.7 

Soil Type: Chernozem (%) 0 3.5 5.9 20.5 45.6 

Soil Type: Leptosol (%) 0.1 8 30.8 61.8 93.7 

Soil Type: Luvisol (%) 0 0.3 2 7 86 

Soil Type: Regosol (%) 0 0.6 10.5 15.3 56 

Soil Type: Vertisol (%) 0 2.5 7.6 16.6 39.1 

* The average discharge is presented here for information purposes but was not used in 240 

regionalization because the streamflow is by definition not available in ungauged catchments. 241 

 242 

Soil types are edaphological classifications based on maps produced by the Food and Agriculture 243 

Organization of the United Nations (FAO, 2016). Land use data was provided by CONAGUA 244 
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for the most part, however for some catchments satellite imagery was used to estimate land use 245 

percentages. It can be noted that Table 1 omits some information regarding certain descriptors. 246 

For example, there is no category for urban land use, and some soil types that can be found in 247 

Mexico are not present in the table. This is because categories that were deemed too insignificant 248 

to be used as predictors of hydrological regime were not included in order to maximize the 249 

regression method’s ability to discriminate important from unimportant descriptors. Urban areas 250 

never exceeded 2% of the total catchment area, and the remaining soil types were only found in 251 

two or three catchments. Furthermore, indices based on streamflow such as the runoff ratio (Q/P) 252 

are not available as descriptors because the streamflow is simply not available on the ungauged 253 

basins.  254 

3. Methodology 255 

This section describes the hydrological models used in this study along with the calibration 256 

objectives and the implementation of the regionalization assessment framework. 257 

3.1 Hydrological models 258 

Three lumped hydrological models were used in this study. They are briefly described here along 259 

with any modifications to their structure to prepare them for the particularities of the hydrology 260 

in Mexico. The hydrological models were selected based on their relatively simple but highly 261 

flexible structure, allowing them to be used on a variety of hydrological conditions such as the 262 

ones in this study. Lumped models were used instead of distributed models due to the difficulty 263 

in obtaining enough high quality data to drive more data-intensive models. 264 

 265 
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3.1.1 Hydrological model GR4J 266 

The GR4J hydrological model is a simple yet efficient hydrological model based on empirical 267 

equations and is conceptually a reservoir-based model (Perrin et al. 2003). Unit hydrographs rout 268 

the flow volumes to the catchment outlet. Having only 4 calibration parameters, it is more robust 269 

to equifinality and is easier than the other models to calibrate. It requires daily precipitation and 270 

daily potential evapotranspiration (PET) as inputs. For this study, the PET formulation of Oudin 271 

et al. (2005) was implemented as described in equation 3: 272 

 
𝑃𝐸𝑇 =

𝑅𝑒𝑇𝑎 + 5

ʎ𝑝 ∗ 100
 𝑖𝑓 𝑇𝑎 + 5 > 0;  𝑒𝑙𝑠𝑒 𝑃𝐸𝑇 = 0 

(eq. 3) 

Where PET is the daily potential evaporation, 𝑅𝑒  is the extra-terrestrial solar radiation, 𝑇𝑎 is the 273 

daily average air temperature and ʎp is the latent heat flux. The computation of 𝑅𝑒 requires the 274 

latitude and day of year as inputs.  275 

GR4J was considered in this paper because it was previously shown to simulate flows adequately 276 

on Mexican catchments (Velázquez et al., 2015). It has also been used in regionalization studies 277 

due to its small parameter space which makes it easier to find relationships between model 278 

parameters and catchment descriptors (Poissant et al. 2017, Arsenault et al. 2015, Oudin et al., 279 

2008, Rojas-Serna et al., 2006). Conceptually, GR4J is the simplest model of the ones tested, 280 

with water infiltration percolating to a production store and then routed by two parameterized 281 

unit hydrographs, one leading 90% of the water to a routing store and the other routing the 282 

remaining 10% directly to the outlet. The model parameters define the production store depth 283 

(X1), a groundwater exchange coefficient defining water transfers between the aquifer and the 284 

routing store (X2), the routing store depth (X3) and the duration of the unit hydrographs (X4). 285 
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One of the key limitations of GR4J relates to its treatment of PET. Indeed, the model does not 286 

scale the PET by a mass-balance parameter. Therefore, the choice of a proper PET formulation is 287 

critical. This model is more rigid due to the limited parameter space, and this could be seen as 288 

both an advantage (fewer parameters to link to catchment descriptors) and a drawback (less 289 

flexibility to adapt to a variety of basins). Thus, in this study, the model’s capacity to adapt to the 290 

local hydrology and its use in regionalization will be evaluated.  291 

3.1.2 Hydrological model MOHYSE 292 

The MOHYSE hydrological model is a simple, 10-parameter lumped hydrological model which 293 

was initially developed for teaching hydrological modelling in an academic setting (Fortin and 294 

Turcotte, 2007). Its relatively good performance and unparalleled versatility and ease of use 295 

quickly made MOHYSE a model of choice in model intercomparison studies and multi-model 296 

approaches (Troin et al. 2017, 2015, Velazquez et al. 2011). The MOHYSE model has the ability 297 

to simulate snowpack accumulation and melt; however, these processes are not required in the 298 

study area. The related module and associated parameters (2 parameters) were therefore removed 299 

from the model to reduce equifinality and increase the odds of finding good relationships 300 

between model parameters and catchment descriptors for the MLR and PS approaches. The 301 

version used in this study therefore has 8 calibration parameters. Castaneda-Gonzales (2014) 302 

applied the MOHYSE model in a tropical setting for the first time and found that it performed 303 

satisfactorily on a catchment in the central part of the Veracruz state between 2000 and 2010. 304 

MOHYSE only requires mean daily temperatures and daily precipitation as inputs. It computes 305 

PET internally using a temperature and extra-terrestrial radiation-based formulation. However, as 306 

opposed to GR4J, MOHYSE has a calibration parameter that can scale the PET values to 307 
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improve mass-balance fitting. Furthermore, the routing process is similar to GR4J (i.e. reservoir 308 

based and routed with a unit hydrograph), however MOHYSE also has two more reservoirs: One 309 

vadose-zone routing reservoir and a more reactive surface runoff module to treat large storm 310 

events. Water depths from all three reservoirs are combined and routed to the outlet through a 311 

unit hydrograph. Due to the study site properties, it is expected that this component will bring 312 

more flexibility to the hydrological modelling process and perform better on the peak flows 313 

caused by rainfall events.  314 

3.1.3 Hydrological model HMETS 315 

The HMETS model is a lumped 21-parameter model that was designed to be robust on various 316 

conditions, to which flexible snow accumulation and melt processes for Nordic catchments were 317 

added (Martel et al. 2017). It is freely available on the Mathworks File Exchange. The complex 318 

snow module requires 10 of the 21 parameters. As is the case with the MOHYSE model, the 319 

snow model was decoupled and removed from HMETS, which means that the model version in 320 

this study has 11 parameters. It is considered here because of its use and performance in a few 321 

studies in arid and snow-less catchments in the United-States (Arsenault et al. 2015, Chen et al. 322 

2018) and due to its more complex routing scheme. Indeed, HMETS has one more routing 323 

source, for a total of four (surface runoff, delayed runoff from infiltration, hypodermic flow from 324 

the vadose zone reservoir and groundwater flow from the phreatic zone reservoir). The model 325 

requires daily precipitation, daily average air temperature and daily PET as inputs. The PET 326 

formulation used to generate the PET time-series is the same as for the GR4J model, namely the 327 

Oudin formulation (Oudin et al. 2005), but the PET timeseries can be scaled as in the case of 328 

MOHYSE. This extra flexibility (more routing options and scalable PET) confer to HMETS the 329 
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most potential to adapt to the wide array of hydrological conditions in the study site. It also 330 

means that the regression-based methods will have difficulty finding links between the 331 

catchment descriptors and HMETS’ 11 parameters in regionalization. 332 

3.2 Hydrological model calibration 333 

All three hydrological models were calibrated on the 30 catchments in this study. This allowed 334 

determining the parameter set related to each model in the case that it is selected as a donor 335 

catchment. Furthermore, in some regionalization variants, it is possible to filter donor candidates 336 

according to their skill attained in calibration. Therefore, the calibration step is a prerequisite for 337 

the project. 338 

The objective function used to calibrate the models is the Nash-Sutcliffe Efficiency metric (NSE; 339 

Nash-Sutcliffe 1970) as described in equation 4:  340 

 
𝑁𝑆𝐸 = 1 −

∑ (𝑄𝑖𝑜 − 𝑄𝑖𝑆)2𝑛
𝑖=1

∑ (𝑄𝑖𝑜 − 𝑄𝑜)2𝑛
𝑖=1

 
(eq. 4) 

Where i is the simulation day, Qio is the observed streamflow for day i, Qis, is the simulated 341 

streamflow for day i and 𝑄𝑜 represents the mean of the observed streamflows. An NSE score of 342 

1 means perfect simulation, 0 indicates that the simulation is as good as using the mean observed 343 

streamflow as a predictor and negative values indicate that using the mean is a better indication 344 

than using the hydrological model. The NSE criterion was used due to its widespread use, 345 

making it possible to compare results across studies in meta-analyses such as in Parajka et al. 346 

(2013) and Blöschl et al. (2013). Since one of the objectives of this study is to evaluate the 347 

performance of regionalization studies in Mexico and compare results with other regions, the use 348 
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of NSE makes the comparison easier with the other studies. One drawback of using NSE is that 349 

the peak flows are weighted more than the low-flows, making the model slightly biased in the 350 

peak-flow range. However, this study aims to determine the skill in regionalization, therefore any 351 

objective function that considers bias and correlation could be used. Results might differ by 352 

changing the objective function to more specific criteria, which would require analyzing the aim 353 

of the regionalization in the first place (i.e. which metrics and hydrological indicators are to be 354 

modelled at the ungauged site). 355 

The calibration itself was performed using the Shuffled Complex Evolution – University of 356 

Arizona (SCE-UA) optimization algorithm of Duan et al. (1993). It has been shown to perform 357 

well on these models and for the type of optimization problem at hand (Arsenault et al. 2014).. 358 

Even though there could be equifinality in the calibrated parameter sets, Arsenault and Brissette 359 

(2014) showed that equifinality did not play an important role in the total uncertainty of 360 

regionalization methods over 268 catchments in Canada, which included snow processes. 361 

Therefore, a single set of parameters (the best out of 5 trials) for each model-catchment pair was 362 

used in this study. Finally, to prevent the possibility of model overfitting, the models were 363 

calibrated on the first half of their available years and then validated on the second half. If 364 

performance was deemed acceptable in validation, then the calibration was performed once more 365 

on the entire time series to maximize the information content in the parameter set, following the 366 

findings of Arsenault et al (2018) which demonstrated that the optimal calibration strategy is to 367 

use all available years of data if satisfied with the calibration and validation skill on a subset of 368 

available years. 369 

 370 
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3.3 Regionalization framework 371 

The three regionalization approaches were implemented on the 30 catchments using a leave-one-372 

out cross-validation technique. Here, one catchment at a time is considered as pseudo-ungauged 373 

and the regionalization methods are applied to this target catchment. Because the streamflow is 374 

actually available at the site, it is possible to evaluate the skillfulness of the regionalization 375 

methods. The process is repeated for all catchments in the database, and then repeated again 376 

independently for each hydrological model.  377 

The regionalization approaches and their variants that were implemented are MLR (classic 378 

approach), SP (classic, classic with IDW, and regression-augmented with IDW) and PS 379 

(integrated similarity, integrated similarity with IDW and regression-augmented with IDW) for a 380 

total of 6 methods. The classic PS was not implemented due to previous studies all finding that 381 

the integrated similarity outperforms the classic PS. In all cases where parameter sets are 382 

transferred (donor-based; SP and PS), multi-donor averaging was performed using 1 to 10 383 

donors. In addition, following the methodology developed in Oudin et al. (2008), donor 384 

catchments were filtered to ensure that they scored an NSE value of at least 0.50 in calibration. 385 

Oudin et al. (2008) uses 0.70 as the threshold, but this constraint was relaxed in the present study 386 

due to the relatively poor calibration skill of the entire set of model-catchment pairs. This is to 387 

exclude parameter sets for which the confidence level from the candidate donor set is low (or 388 

very low). However, those catchments are still considered as targets in the cross-validation phase 389 

of the work.  390 

The regionalization methods were then analyzed according to the hydrological model and 391 

catchment characteristics (climatological and geophysical). Statistical tests were used to classify 392 
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the regionalization approaches and determine which catchment-model pairs should be considered 393 

in future prediction at ungauged sites in Mexico.  394 

Finally, it is important to note that the regionalization performance was measured according to a 395 

normalized NSE (NNSE) value from Nossent and Bauwens (2012) which rescales the values 396 

between 0 and 1, as shown in equation 5: 397 

 
𝑁𝑁𝑆𝐸 =  

1

2 − 𝑁𝑆𝐸
 

(eq. 5) 

Where NNSE is the Normalized NSE value. The NNSE allows easier display of NSE values 398 

when there is a large spread between results obtained with different models and methods. When 399 

NSE is perfect (NSE=1), the NNSE also takes a value of 1. When NSE is equal to 0, thus as 400 

good as a predictor as the mean of observations, NNSE evaluates to 0.5. Finally, the lowest 401 

possible NSE (negative infinity) resolves to a NNSE of 0. This linearizes the scale for negative 402 

values and allows displaying all information rather than “cutting” bad values from the figures. 403 

 404 

4. Results and discussion 405 

4.1 Calibration 406 

The results for the hydrological model calibration are presented in Figure 3. The NNSE values 407 

are those obtained when calibrating on the length of the entire available time series, which varies 408 

from site to site. The calibration objective function was the NSE value, but the NNSE is shown 409 

here to allow comparing with the regionalization results.  410 
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 411 

Figure 3: Boxplots showing the distributions of NNSE values obtained for the calibration of the 412 

GR4J, HMETS and MOHYSE hydrological models, on the 30 river basins under study. 413 

 414 

The three catchments with an NNSE skill below 0.5 were still kept as HMETS and MOHYSE 415 

displayed much better performance on them. Clearly, the calibration skill is better for HMETS, 416 

followed by MOHYSE and then GR4J. This could be explained by the number of parameters, 417 

which follows the same descending order, or simply because the model structure allows more 418 

flexibility for HMETS and MOHYSE than GR4J, due to the mass-balance scaling of PET during 419 

calibration. Their more complex routing stores can also explain the more reactive and thus more 420 

efficient simulations on the smaller catchments.  421 

The parameter sets found during calibration were generally good, but some catchments offered 422 

mediocre calibration skill. These were still preserved for the regionalization step because they 423 

could still be used as pseudo-ungauged targets. Of course, it is theoretically impossible for a 424 
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regionalized parameter set to outperform a locally calibrated parameter set for the same model if 425 

the parameter optimization algorithm converged properly. However, the fact that multiple donors 426 

are added and averaged could lead to better performance than the calibration skill thanks to the 427 

increased number of degrees of freedom, although this was not observed in this study. The 428 

results must then be analyzed along with the calibration skill on the catchments. 429 

One possible source of error is that of non-stationarity. In this study, model parameter sets are 430 

determined based on the calibration data, which span different periods from one site to the next. 431 

It is quite possible that a donor catchment could transfer parameters calibrated on the 1960-1980 432 

period to a pseudo-ungauged site, which has verification data available for the years 1990-2015. 433 

If a structural shift in temperature or precipitation were to have occurred between those periods, 434 

one could imagine that the regionalized streamflow would contain a certain bias. However, we 435 

do not anticipate that this plays a major role in this study because all data cover the same time 436 

horizon. The residual effects of different trend amplitudes in non-stationarity conditions (e.g. 437 

rainfall could be increasing on one catchment and diminishing on another) should be much 438 

smaller than the error on the observed streamflow, weather and geophysical data.   439 

4.2 Multiple Linear Regression 440 

The MLR approach was the first method to be implemented in this study and serves as a 441 

comparison baseline for the other methods. Figure 4 shows the average NNSE value obtained for 442 

each hydrological model on the 30 catchments, each in turn considered as pseudo-ungauged.  443 
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 444 

Figure 4: Boxplots showing the distributions of NNSE values when the MLR approach is applied 445 

to the 30 pseudo-ungauged river basins with GR4J, HMETS and MOHYSE hydrological models. 446 

 447 

It can be seen in figure 4 that the GR4J model is more robust than the HMETS and MOHYSE 448 

models when using the MLR approach. MOHYSE is particularly poor as more than 75% of the 449 

returned NNSE values are below 0.5, which translates to an NSE value of 0. HMETS, on the 450 

other hand, has a higher median and maximum NNSE, but the spread is also larger. This could 451 

be explained by the fact that HMETS has a more complex structure, which means that it has 452 

more potential to score very well or very badly depending on the transferability of the model 453 

parameters. GR4J, having a more rigid structure, is constrained to less extreme variations than 454 

HMETS.  The variance is thus larger with HMETS than with GR4J. An analysis of the 455 

parameter-descriptor regression strength is presented in Table 2. This analysis shows a good 456 

correlation level between the catchments’ descriptors and a majority of the models’ parameters.  457 

 458 
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Table 2: Regression results for the three hydrological models using the catchment descriptors 459 

from the 30 catchments in this case study as predictors of model parameter values.  460 

Hydrological model Number of 

parameters 

Number of parameters 

with regression R2>0.6 

Percentage of parameters 

that are replaced by 

linear regression in SP 

and PS 

GR4J 4 3 75% 

HMETS 11 8 73% 

MOHYSE 8 5 63% 

 461 

4.3 Donor-based methods 462 

The donor-based methods depend on the transfer of entire parameter sets rather than 463 

reconstructing a parameter set from statistical regressions. Figures 5, 6 and 7 present the results 464 

of the 6 donor-based regionalization algorithms for the hydrological models GR4J, HMETS and 465 

MOHYSE, respectively. Note that up to 10 donors were used in this study, but the conclusions 466 

are the same as using a maximum of 5 donors. For clarity, the number of donors is thus limited 467 

to 5 in these figures. 468 
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 469 

Figure 5: Boxplots showing the distributions of NNSE values when donor-based regionalization 470 

methods are applied to the 30 pseudo-ungauged river basins with the GR4J hydrological model. 471 
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 472 

Figure 6: Boxplots showing the distributions of NNSE values when the donor-based 473 

regionalization methods are applied to the 30 pseudo-ungauged river basins with the HMETS 474 

hydrological model. 475 
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 476 

Figure 7: Boxplots showing the distributions of NNSE values when the donor-based 477 

regionalization methods are applied to the 30 pseudo-ungauged river basins with the MOHYSE 478 

hydrological model. 479 

 480 

A few notable points emerge from the analysis of figures 5-7. First, it can be seen that using 481 

multiple donors does not always improve upon the single-donor approach and that the result 482 

depends on the regionalization method. When looking at the median values and inter-quartile 483 

ranges, multi-donor averaging seems to return positive outcomes for the SP method, but negative 484 

ones for the PS method. This is true for all models, but MOHYSE is to benefit the least from the 485 

procedure. However, in cases where multiple donors are used, the inverse distance weighting is 486 

more robust than the equal weights averaging. The hydrologically heterogeneous study area 487 
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contributes to these results, in part by the fact that adding simulations generated with parameters 488 

coming from progressively farther catchments will likely add increasingly different catchments, 489 

thus using inverse distance weighting mitigates some of that risk. It is worth noting that no 490 

statistical analysis was performed on these data, namely due to the small sample size, the fact 491 

that some catchments have the same “spatial proximity donor” and “physical similarity donor” 492 

(thus reducing effective differential sample size), and that comparing results in the negative NSE 493 

range (NNSE<0.5) is generally not useful for quantitative analyses. Therefore, the results should 494 

be viewed as qualitative more than quantitative. 495 

Second, the choice of hydrological models has a strong influence on the regionalization method 496 

performance. GR4J, for example, scores lower than the other two models for SP and PS 497 

methods, but is more robust to the regression-augmented approaches. This may be due to its 498 

simpler structure, making it more robust but less adaptive to varying conditions. While 499 

MOHYSE is strongly penalized with the regression-augmented approaches, GR4J yields the 500 

smallest distributions of NNSE values but with a decrease in performance with respect to the 501 

other SP approaches in particular, and HMETS is able to maintain a similar performance when 502 

multiple donors are used. MOHYSE performs quite badly in all these cases and is clearly not 503 

suited to make use of the regression-augmented approaches.  504 

Overall, using all catchments (including those with NNSEs below 0.5), HMETS displays a 505 

slightly better performance than the others do. The more complex structure seems to allow it to 506 

adapt to different catchments even in regionalization mode. For donor-based methods, HMETS 507 

is followed closely in terms of performance and robustness by GR4J, with MOHYSE lagging 508 

behind. For the MLR approach, HMETS performs better than GR4J on average, as the median 509 
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value is higher for HMETS than GR4J. Again, this could be due to the more flexible model 510 

structure, with the 2 extra routing components and the scalable PET, giving HMETS a better 511 

chance to fit to the catchment characteristics through parameter-descriptor correlations. As for 512 

the lower quartiles, both methods have approximately 50% of their validation NNSE values 513 

below 0.50, which translates to an NSE value of 0. Therefore, the lower quartiles can be 514 

considered similar in terms of bad performance. MOHYSE has over 75% of its NNSE values 515 

below 0.50, which ranks it last between the three hydrological models. While MOHYSE lies 516 

between GR4J and HMETS in terms of complexity and in calibration performance, the results 517 

obtained throughout this study show that it performs worse than the others in the MLR approach. 518 

This also explains the poor results in the regression-augmented PS and SP variants.  519 

It is clear that the SP methods performed generally better than the PS methods, which might be 520 

an indication of the difficulty of finding hydrologically similar catchments in such a 521 

heterogeneous region, of the quality of the descriptor and hydrological data or of the difficulty in 522 

establishing reliable relationships between the descriptors and hydrological parameters. Indeed, 523 

the 30 catchments cover a wide array of climatological and geophysical attributes, making it 524 

somewhat more difficult to find adequate donor catchments. The results seem to be in-line with 525 

the model structure complexity, with increased performance being linked to increasing model 526 

complexity. Future work could include even more complex models to determine if it could be a 527 

way forward in regionalization in hydrologically heterogeneous regions. 528 

A detailed example from the Atoyac watershed at the Zimatlan gauging station is presented in 529 

figure 8 in order to illustrate the regionalization methods’ effects on the simulated hydrographs. 530 

The catchment was selected as it represents an average catchment on many levels amongst the 531 
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ones available in this study. Namely, the 2647 km2 catchment has a Runoff Ratio (defined as the 532 

ratio of mean runoff to mean aerial precipitation) of 0.1, an Aridity Index (defined as the 533 

precipitation to PET ratio) of 0.63, is mainly agricultural with 94% of the catchment area being 534 

allocated to agriculture and receives an average of 800mm in total precipitation every year. 535 

These values fall between the 25th and 75th percentile of all basins (see Table 1). 536 

Most of the previously discussed points can be seen in Figure 8. First, it is possible to see the 537 

effect of using multiple donors as the top panels were generated using a single donor and the 538 

lower panels use three donors. It can be seen that in this case, the closest donor (in terms of 539 

physical distance) is the same as the most similar donor, resulting in overlapping curves for SP, 540 

PS, SP-IDW and PS-IDW. The same happens for SP-IDW-RA and PS-IDW-RA. This scenario 541 

was the same for 15 out of the 30 catchments, meaning that for half of the database, the closest 542 

and most similar donor were the same. This is not too surprising under the hypothesis that closer 543 

catchments should be more similar, and is even more likely in very heterogeneous regions such 544 

as the one under study. From the lower panels in figure 8, it is clear that weighting the multi-545 

donor hydrographs by the inverse of the distance plays a crucial role in mitigating the effects of 546 

selecting progressively more different catchments. Indeed, the IDW variants are kept closer to 547 

the observed flow than the unweighted PS and SP methods, which produce significantly larger 548 

hydrographs. 549 

As for the Regression-augmented approaches, their skill is directly correlated to the MLR 550 

performance as more than half of the parameters are replaced by the MLR technique for each 551 

model. For example, in panels 8a) and 8c), it can be seen that the shape of the PS-IDW-RA 552 

hydrograph is shaped much like the MLR hydrograph. For GR4J, this is because all parameters 553 
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except for the groundwater exchange parameter are replaced by the MLR value. For MOHYSE, 554 

the mass-balance parameters are preserved but the routing parameters are replaced by the MLR-555 

derived ones, giving the odd hydrograph seen in figures 8c) and 8f). HMETS, on the other hand, 556 

preserves the routing store depths as well as some of the unit hydrograph parameters. This 557 

explains why the hydrograph shape is relatively well modelled. In all cases, the regression-based 558 

methods modify the PET-scaling parameters, thus possibly removing some of the important 559 

relationships between mass-balance and other production and routing parameters. 560 

In terms of choice of hydrological model, in this test-case the MOHYSE and HMETS models 561 

seem to perform relatively well. However, in some cases (not shown) involving MLR, the 562 

parameter sets that are transferred are not physically coherent anymore and generate errors (such 563 

as returning infinite streamflow) during the hydrological modelling for these two models, 564 

whereas GR4J was always able to generate a hydrograph. Therefore the complexity of the 565 

hydrological model can become a drawback when attempting to regionalize parameters in this 566 

context. 567 

The fact that the catchment is very dry except for a 2-3 month period during rain season is also 568 

important to consider. Basically, other catchments that receive water year-round are 569 

parameterized as such and take this into account, for example in the size of the routing stores and 570 

groundwater exchange coefficients. When transferring these parameters from a humid catchment 571 

to a dry one for regionalization purposes, problems can arise in terms of mass-balance and event 572 

timing, as can be seen in figures 8d)-9f), where a humid catchment is considered as the 3rd donor 573 

and distorts the hydrographs for the unweighted PS and SP methods. Overall, weighted multi-574 

donors seem to improve the overall performance and the more complex models also seem to 575 
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make use of their flexibility to generate acceptable hydrographs. Unfortunately, as mentioned 576 

earlier, the more complex models are not guaranteed to find feasible results if MLR is involved. 577 

 578 

Figure 8: Regionalized hydrographs on the Atoyac catchment from the seven methods used in 579 

this study with hydrological models GR4J (leftmost panels), HMETS (center panels) and 580 

MOHYSE (rightmost panels) with one donor (top panels) and three donors (bottom panels). In 581 

the top panels, SP, PS, SP-IDW and PS-IDW are overlapping. Likewise, PS-IDW-RA and SP-582 

IDW-RA are also overlapping.  583 

 584 

 585 
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4.4 Regionalization methods performance as a function of the basins’ Runoff Ratio and 586 

Aridity index 587 

In this paper, we excluded streamflow-based indices for the regionalization step due to the 588 

unavailability of data, by definition, in ungauged sites. However, to better understand the 589 

limitations of predicting streamflow in ungauged basins, an analysis of the model performance 590 

relative to the runoff ratio and aridity index for each of the studied catchments is presented in 591 

figures 9-12. 592 

 593 

Figure 9: Ranges of runoff ratios for the 30 basins under study, and of the NNSE values when 594 

the MLR method is used with the GR4J, HMETS and MOHYSE hydrological models. 595 

 596 

From Figure 9, it is possible to see that with the MLR method, GR4J and HMETS perform 597 

oppositely on the catchments with low runoff ratio, where GR4J seems better suited than the 598 

other models on most arid basins and HMETS performs better than GR4J on the others. 599 

MOHYSE performs generally much worse than the others for all Runoff Ratios, often providing 600 
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incoherent and physically impossible parameter sets, resulting in error-state or extremely poor 601 

simulations. Furthermore, there seems to be a trend in which the humid and semi-arid catchments 602 

display higher NNSE values than the arid basins, adding weight to the multiple studies on this 603 

subject in the literature as described in section 1.  604 

 605 

Figure 10: Ranges of runoff ratio and aridity index for the 30 basins under study, and of the 606 

NNSE values when donor-based regionalization methods are used with the GR4J hydrological 607 

model. 608 
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 609 

Figure 11: Ranges of runoff ratio and aridity index for the 30 basins under study, and of the 610 

NNSE values when donor-based regionalization methods are used with the HMETS hydrological 611 

model. 612 
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 613 

Figure 12: Ranges of runoff ratio and aridity index for the 30 basins under study, and of the 614 

NNSE values when donor-based regionalization methods are used with the MOHYSE 615 

hydrological model. 616 

 617 

For GR4J and HMETS (figures 10 and 11), the behaviour is similar between the Regression-618 

augmented approaches and the MLR results from figure 9 due to the fact that 75% of the 619 

parameters were replaced by the regression-derived parameters (see Table 2). This indicates that 620 

even though there were high correlations between the model parameters and the catchment 621 

descriptors, they did not carry predictive power in the regionalization step. Two possible reasons 622 

for this are that the data might contain quality issues and that the hydrological model-parameter 623 

identifiability hypothesis is wrong. Parameter identifiability problems seem to be the underlying 624 

cause because the PS method, which is based on the parameter transposition based on physical 625 
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catchment descriptors, performs relatively well, leading to believe that the data quality is at least 626 

sufficient to perform this type of analysis. However, the spatial proximity method was generally 627 

found to perform the best in all situations, meaning that the data quality (namely the catchment 628 

descriptors) could be one of the pitfalls of the regionalization framework in this project. In any 629 

case, evidence suggests that performing regionalization on heterogeneous catchments is a risky 630 

proposition and depends on data quality, data availability and the number of catchments that can 631 

be used as donors in the region. 632 

Figures 10-12 also show that for all models, the catchments with the lowest runoff ratios offer 633 

the lowest regionalization skills. This might be due to the initial calibration skill, as a poor 634 

parameter set in calibration would mean that the parameters do not represent the underlying 635 

processes very well, leading to a propagation of those errors during regionalization. For example, 636 

the aridity index is inversely correlated to the calibration skill (R2=0.49) for GR4J, which could 637 

generate less reliable parameter sets, but the two other models see no correlation between the 638 

aridity index and calibration skill (R2=0.03 in both cases). A second verification revealed that the 639 

calibration skill is not strongly correlated to the runoff ratio either (R2 between 0.07 and 0.19), 640 

indicating that the results are most likely only due to the particularities of regionalizing on arid 641 

and semi-arid catchments from a hydrological point of view. Furthermore, although there is a 642 

difference in calibration NSE between the “arid” group of catchments (median NSE of 0.61) and 643 

the “non-arid” group (median NSE of 0.70), this difference cannot explain the results in Figures 644 

10-12, which show that the performance in regionalization skill in the NNSE transformed space 645 

is significantly lower. Therefore, the calibration skill cannot explain this difference by itself. 646 

Figures 10-12 also show that the Regression-Augmented versions of SP and PS depend on the 647 
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hydrological model, being generally positive for GR4J on humid catchments but overwhelmingly 648 

negative for MOHYSE. 649 

Finally, the regionalization methods were applied once again but this time without the donor 650 

catchment quality filter, i.e. by completely removing the constraint requiring that a donor basin 651 

has a calibration NSE value greater than 0.50. The results (not shown here) were slightly worse 652 

than when the filter is applied, therefore confirming that this practice is beneficial when 653 

regionalizing in a hydrologically heterogeneous region. 654 

4.5 Impact of the hydrological model 655 

The choice of hydrological model was shown to be particularly important. The MOHYSE model 656 

was the worst one in most approaches and on almost all catchments. It performed particularly 657 

poorly when regionalizing on the arid catchments and in methods involving MLR. HMETS 658 

offered the best overall performance, performing slightly better than GR4J in the MLR and 659 

donor-based methods. As for GR4J, its simplicity and robustness to MLR make it a good choice 660 

for regionalization in heterogeneous regions, especially if the catchment is suspected to be 661 

located in an arid climate region. As could be expected, no model was better everywhere but the 662 

HMETS model paired with a donor-based regionalization method offered the best chance at 663 

obtaining a good skill at the cost of deteriorating the NNSE of the de facto poor regionalization 664 

candidate catchments.   665 

5. Conclusion 666 

This study investigated the performance of common regionalization approaches on a set of 667 

diverse catchments using three hydrological models. It was found that the linear-regression based 668 

methods were incapable of competing with the other methods and that the donor-based spatial-669 
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proximity regionalization method was to be preferred. Its simplicity and relative robustness make 670 

it a prime candidate, especially if there are a few neighboring catchments than can be used to 671 

generate a multiple-donor average. In this way, there is less risk related to the quality of 672 

catchment descriptors. The HMETS model, with 11 parameters, was overall slightly better than 673 

the 4-parameter GR4J model, and the 8-parameter MOHYSE model was the least reliable model 674 

in these circumstances. Therefore, the choice of a hydrological model plays an important role, 675 

but the sheer number of parameters and model complexity do not seem to be predictors of model 676 

behaviour in regionalization. It was also found that the regionalization methods generally 677 

performed as expected based on their hydroclimatic characteristics. Arid catchments were more 678 

difficult to calibrate and displayed lower skill in regionalization, whereas humid catchments 679 

were generally more reliably to regionalize. This study highlights the need to (1) improve the 680 

quality of measured data in the region, (2) ensure that a sufficient number of catchments are 681 

available to donate parameter sets and (3) evaluate the hydrological model’s robustness to 682 

regionalization. Future work should investigate the impacts of data quality on regionalization, 683 

include more complex hydrological models and validate this study’s conclusions on other 684 

hydrologically heterogeneous regions of the world.  685 
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APPENDIX A – ACRONYMS AND INITIALISMS 891 

CD Catchment Descriptor 892 

GR4J Génie Rural à 4 paramètres Journalier (hydrological model) 893 

HMETS Hydrological Model – École de technologie Supérieure (hydrological model) 894 

IDW Inverse Distance Weighting  895 

MLR Multiple Linear Regression 896 

MOHYSE  Modèle Hydrologique Simplifié à l’Extrême (hydrological model) 897 

NSE   Nash-Sutcliffe Efficiency  898 

NNSE Normalized Nash-Sutcliffe Efficiency (NSE with values normalized to [0, 1]) 899 

PET  Potential Evapotranspiration 900 

PS Physical Similarity 901 

RA Regression-Augmented (added to SP-IDW/PS-IDW to indicate some parameters 902 

in the donor set are modified by Multiple Linear Regression) 903 

SCE-UA Shuffled Complex Evolution – University of Arizona (Global optimization 904 

algorithm) 905 

SP  Spatial Proximity  906 


