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Abstract: This paper presents a closed-loop calibration approach using impedance control. The process
is managed by a data communication architecture based on open-source tools and designed for
adaptability. The calibration procedure uses precision spheres and a kinematic coupling standard
machine tool components, which are suitable for harsh industrial environments. As such, the required
equipment is low cost (approximately $2000 USD), robust, and is quick to set up, especially when
compared to traditional calibration devices. As demonstrated through an experimental study and
validated with a laser tracker, the absolute accuracy of the KUKA LBR iiwa robot was improved to
a maximum error of 0.990 mm, representing a 58.4% improvement when compared to the nominal
model. Further testing showed that a traditional calibration using a laser tracker only improved the
maximum error by 58 µm over the impedance control approach.

Keywords: calibration; data processing; force control; impedance control; industrial communication;
manufacturing, process, and service automation; optimization; physical human–robot interaction;
redundant robots; robot control

1. Introduction

Modern robotic applications often rely on offline programming to reduce process downtime.
In a virtual environment, robot application specialists may program, visualize, and test their robotic
application before uploading it to the real production environment. This offline process saves both time
and costs. However, to achieve a high level of fidelity between virtual and production environments,
the robot system must be accurate.

Unfortunately, even though most industrial robots are inherently precise (i.e., repeatable), they are
not necessarily accurate. One cost-effective approach to obtaining a more accurate robot is through
calibration, where the actual kinematic and non-kinematic parameters of the robot model are identified
and improved upon when compared to the nominal model. While robot calibration itself has been
extensively studied, many of the approaches rely on expensive and highly-delicate equipment.
Such approaches include laser trackers [1–3], stereo vision systems [4], portable measurement arms [5],
digital indicators [6], and coordinate measuring machines (CMM) [3,7]. These devices provide
a guaranteed high level of accuracy, whereas they are generally very expensive.

Fuelled by the promises of more flexible automation, there is a proliferation of collaborative
robots (cobots) and force-torque sensors in industrial environments. As distributed intelligence and
adaptability are some of the cornerstones of modern robot applications [8], impedance control
techniques are becoming more common and allow for a robotic system to perform tasks as
autonomously as possible. As identified by Universal Robots, through the launch of their e-Series
collaborative robots, tool-centric force-torque sensing (especially when built-in) provides greater
precision and sensitivity to address these applications. Specifically, impedance control regulates the
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dynamic interaction between a manipulator and its environment and is suitable for interaction and
object manipulation. For instance, traditional jogging and manual registration of application waypoints
can be replaced by hand-guided teaching.

Thus, it is through impedance control that a simple, low-cost, closed-loop calibration approach
has been developed. This robot calibration strategy is automated and uses no external measurement
devices, while extending upon previous work in a timely manner with application results that are
relevant to today’s industrial and academic needs. Through the synthesis of the magnetic coupling
concept from [9] and the spherical constraint presented in [10], the present study uses impedance
control and a calibration plate with three precision spheres to calibrate a KUKA LBR iiwa 7 R800
collaborative robot (KUKA Robotics Corporation, Augsburg, Germany). While the standard calibration
process [11,12] remains the same, the use of impedance control adds an adaptable element to the
approach. This adaptability comes from the fact that the absolute accuracy between the robot and
the calibration tooling is not a high priority, as impedance control allows for the coupling tool to
self-centre with the spheres upon contact. In such a way, workcell design is able to remain flexible
without stringent accuracy requirements, and the robot is capable of self-navigating to its own
calibration waypoints. Furthermore, as a secondary contribution, the automated calibration process
is managed by a modern communications framework that is based on open-source tools. As such,
the framework is designed specifically for flexible and scalable interconnection and information
transparency requirements [8]. Finally, the performance of this strategy is further validated through
a comparison with traditional laser tracker calibration.

While the concept of using geometric constraints for robot calibration is not new, the integration
of impedance control to automate and improve the process has yet to be studied. One similar
approach, single endpoint contact (SEC) calibration, was shown in [13] using a ball joint fixture,
but manual constraint of the robot is required, reducing automation potential. As the process uses
only a single fixture point, the process calibrates the robot with respect to a virtual world frame, not
a physical reference frame that would be part of the application workspace, such as that presented
here. Otherwise, the plane constraint method, tested in [14], constrains the tool movement to at least
three planes. However, this approach requires an expensive precision touch probe and accurate plane
equations that may involve mechanical characteristics (e.g., perpendicularity, flatness) of the tooling,
reducing the overall simplicity and robustness of the method. Regarding the calibration of a KUKA
LBR robot, the work in [15] presented a unique calibration approach using the joint torques, but only
10 points were used to validate their calibration errors. Consequently, there were too few points for
a definite measure of global accuracy. In [16], an automated measuring device was presented that also
uses tooling spheres. Despite this, the device itself is relatively fragile and requires Bluetooth, which
may have poor performance due to the harsh electromagnetic ambient environment of industrial
settings [17]. Given the current state of research, a driving motivation for this study was to develop
a geometric constraint calibration process that leveraged modern robot control theory and capability
while considering the current needs of industrial applications and environments.

The remainder of this article is organized as follows. In Section 2, the technical details of robot
modelling and kinematics are presented, while Section 3 addresses aspects of kinematic parameter
identification. Section 4 describes the methodology of the calibration processes, and Section 5 presents
the validation results. Finally, Section 6 discusses the outcomes of this study and potential future work.

2. Calibration Model

The developed calibration procedure was tested with a seven-axis KUKA LBR iiwa 7 R800
robot (Figure 1). Having seven revolute joints allows this robot to have kinematic redundancy and
to execute joint motions through its null space for a given Cartesian pose. The calibration model
presented identifies the kinematic parameters associated with the robot and the world and tool frames.
This allows for a more accurate representation of the robot application.
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Figure 1. Impedance controlled calibration of a KUKA LBR iiwa 7.

2.1. World and Tool Frames

The world frame (Fw) of the application describes the origin of the Cartesian space and is the base
reference for all measurements. As shown in Figure 2, this frame is represented by the right-handed
coordinate system defined by the three calibration spheres. Similarly, the tool frame (FT ; Figure 3)
describes the tool centre point (TCP) of the equipped robot tool with respect to the natural flange of
the robot and is located at the centre of a coupled sphere. In the present study, six degrees of freedom
(three translation and three rotation) were considered for the transformation between the world frame
and the robot base (located at the intersection of the first two joints). As position accuracy was the focus
of the study, only translational degrees of freedom were considered for the transformation between
the robot flange and the tool frame.

X

Y

Z

1 2

3

Figure 2. Calibration plate with three 50.8 mm precision spheres. The origin of the world frame is
located at the centre of Sphere 1. The x-axis is defined by the centres of Spheres 1 and 2. The xy-plane
is defined by the centres of the three spheres.
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Figure 3. Robot calibration tool with trihedral kinematic coupling. For both the flange (F7) and tool
(FT) frames, the xy-plane is parallel to the plate.

2.2. Tooling

The experimental tooling, shown in Figures 2 and 3, was composed of a trihedral coupling
(mounted eccentrically from the flange centre) and a calibration plate with 50.8 mm precision spheres.
The total mass of this tooling was 1.5 kg. Both the coupling and spheres were sourced as stock
components from Bal-Tec (https://www.precisionballs.com). Notably, the trihedral coupling has
a strong embedded magnet (2.7 kg pull strength), which aids in mating the part to the steel sphere.
Prior to the experiment, the absolute positions of the spheres (Table 1) were obtained using a Mitutoyo
Bright-STRATO 7106 CMM with an uncertainty of ±2.7 µm (95% confidence level).

Table 1. Absolute positions of the three calibration spheres with respect to the world frame.

Sphere X (mm) Y (mm) Z (mm)

1 0 0 0
2 300.009 0 0
3 150.049 260.051 0

2.3. Kinematic Model

The KUKA LBR iiwa 7 R800 robot was modelled using modified Denavit–Hartenberg (MDH)
parameters [18], describing the geometric parameters and the kinematic chain from the robot base (F0)
to flange (F7). Using this convention, the forward kinematics calculation of a given set of joint angles
results in a position and orientation in Cartesian space.

Given a joint angle vector:
q = [θ1...θ7]

T (1)

Any position and orientation of the tool with respect to the world frame can be described as
a series of transformations along the kinematic chain of the robot:

W
TT = W

0T 0
7T(q) 7

TT (2)

where,
0
7T(q) = 0

1T(θ1)
1
2T(θ2) . . . 5

6T(θ6)
6
7T(θ7) (3)

https://www.precisionballs.com
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Each ith transformation along a link in the kinematic chain may be defined by a tuple of MDH
parameters (i.e., αi−1, ai−1, θi, and di), as detailed by the following:

i−1
iT =


cos(θi) − sin(θi) 0 ai−1

sin(θi) cos(αi−1) cos(θi) cos(αi−1) − sin(αi−1) − sin(αi−1)di
sin(θi) sin(αi−1) cos(θi) sin(αi−1) cos(αi−1) cos(αi−1)di

0 0 0 1

 (4)

2.4. Non-Kinematic (Stiffness) Model

Under ideal rigid body mechanics, the geometric parameters described in Section 2.3 would be
sufficient for a full calibration. However, under real-world external forces (e.g., gravity), non-kinematic
parameters may have negative effects on the accuracy of the robot. As described in [1,19], a simplified
model of gearbox stiffness may be used to account for these sources of error. By modelling the gearbox
of each joint as a linear torsional spring with stiffness ki, joint deflections due to the applied external
joint torques (τi) were accounted for, as given by δθ = kτ. As the robot was studied under static
conditions, only external torques due to gravity were observed.

Initial experiments demonstrated a negligible effect (but greatly increased computational time)
by including the non-kinematic parameters due to joint stiffness during calibration. As the robot was
gently coupled to a sphere, the structural closed-loop acted as a support against gravity. As such, these
errors are not considered for the calibration process.

3. Parameter Identification

In the presented calibration, 21 kinematic errors were considered. While in theory, there are
28 kinematic error parameters, each associated with a MDH parameter, seven of these were found to
be redundant and would degrade the efficiency of the applied optimization method. All considered
kinematic errors may be seen in Table 2.

Table 2. Considered kinematic parameters for the calibration and validation process. The redundant
parameters are denoted with an asterisk (*).

i αi−1 ai−1 θi di
(rad) (mm) (rad) (mm)

1 0* 0* θ1* 0*

2 −π

2
+ δα1 δa1 θ2 + δθ2 δd2

3
π

2
+ δα2 δa2 θ3 + δθ3 400 + δd3

4
π

2
+ δα3 δa3 θ4 + δθ4 δd4

5 −π

2
+ δα4 δa4 θ5 + δθ5 400 + δd5

6 −π

2
+ δα5 δa5 θ6 + δθ6 0*

7
π

2
+ δα6 0* θ7* 126 + δd7

3.1. Non-Identifiable and Redundant Parameters

Several parameters in the robot model were not identifiable due to Cartesian and kinematic
redundancies. A direct effect of these redundant parameters is two-fold. First, they increase the
number of dimensions in the calibration solution space, increasing the computational requirements
and complexity. Second, they reduce the ability of the optimizer to converge to an optimal solution
using the change in the optimization vector as a stopping criterion.
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Given that the position and orientation of the robot base were tied directly to the definition of the
world frame, the first four kinematic error parameters associated with the transformation between the
robot base and the first joint (i.e., α0, a0, θ1, and d1) were excluded, as the world frame was identified
separately. Additional kinematic parameters were excluded through an analysis of the rank and
condition number of the robot position Jacobian [10], as shown below.

Given a robot TCP position (P) as a function of the MDH parameters,

P =

x
y
z

 =

 fx(αi−1, ai−1, θi, di)

fy(αi−1, ai−1, θi, di)

fz(αi−1, ai−1, θi, di)

 (5)

the position Jacobian (JP) may be described as:

JP =


∂x

∂αi−1

∂x
∂ai−1

∂x
∂θi

∂x
∂di

∂y
∂αi−1

∂y
∂ai−1

∂y
∂θi

∂y
∂di

∂z
∂αi−1

∂z
∂ai−1

∂z
∂θi

∂z
∂di

 (6)

where the number of columns equals the number of MDH parameters currently being considered.
Following the derivation of the Jacobian, the nominal MDH values were substituted into the JP.
Next, the corresponding position (x, y, z) of 29 uniformly-distributed joint configurations across the
whole joint space was computed and substituted into JP, giving an augmented Jacobian (JP′ ) with
87 rows. A minimum of 10 configurations were required to generate an overdetermined system, as we
had 28 unknowns with three constraints per joint configuration. By defining the Jacobian around
these joint configurations, we represented the relationship between an infinitesimal MDH parameter
change (i.e., ∂α, ∂a, ∂θ, ∂d) and the respective infinitesimal displacement (i.e., ∂x, ∂y, ∂z) of the TCP
across the joint configuration space covered by the 29 joint positions. The rank (rJP′

) of the augmented
Jacobian quantifies the number of identifiable kinematic parameters, while the condition number (cJP′

)
represents the sensitivity of this relationship. The condition number is defined as the L2-norm of the
Jacobian times the L2-norm of the inverse of the Jacobian (computed directly using SVD), and the
calculation was implemented by the Python scientific computing package NumPy in the function
numpy.linalg.cond. The non-identifiable parameters (columns of the Jacobian) were removed using
Algorithm 1 to generate a more well-conditioned problem. In the present study, δd6, δa6, and δθ7 were
found to be redundant. A more detailed analysis of this selection algorithm may be seen in [9,10].

3.2. Optimization and Numerical Modelling

With the identifiable parameters, an optimal set may be found that improves the accuracy of
the robot. Like [6,10], distance errors between spheres were used for robot model optimization,
removing the dependency (and associated errors) of the world frame from the calibration step.
The relative distance fitness function ( f f it) for a current set of robot parameters is defined below
through Equations (1) to (3) and the real sphere positions (Pspherei

and Pspherej
).
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Algorithm 1 Redundant parameter identification

calculate condition number of JP′ , cJP′
calculate rank of JP′ , rJP′
minConditionNumber← cJP′
columnToRemove← null
while rJP′

< number of columns in JP′ do

for column i in JP′ do

J∗ ← JP′
remove column i from J∗
calculate condition number of J∗, cJ∗

calculate rank of J∗, rJ∗

if rJ∗ == rJP′
then

if cJ∗ < minConditionNumber then

minConditionNumber← cJ∗

columnToRemove← i
end if

end if
end for
remove column columnToRemove from JP′

end while

Given the absolute position of two spheres and two associated measurement configurations,

Psphere =

xsphere
ysphere
zsphere

 (7)

PTCP(q) =

w
tTx

w
tTy

w
tTz

 (8)

The real distance (Dspherei,j
) between spheres i and j were found,

Dspherei,j
= Pspherei

− Pspherej
(9)

Next, the forward kinematic TCP distance between measured spheres i and j were found,

DTCPi,j(m, q) = PTCP(m, qi)− PTCP(m, qj) (10)

where m represents the current set of MDH parameters. These parameters were the array of parameters
to be optimized during calibration.

Finally, the relative fitness was calculated for all given combinations,

f f it(m, q) = ∑(Dspherei,j
− DTCPi,j(m, q))2 (11)

where i and j correspond to the ith and jth measured configuration coupled with a sphere.
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The Nelder–Mead method (equivalent to fminsearch in MATLAB) [20] was used for optimization
with the above fitness function and initialized with the nominal robot model. This method is robust
to noise and works well with non-locally smooth data, such as discrete and noisy measurement data.
At each solver iteration, the forward kinematic relative distance errors were evaluated for a given
set of robot parameters. The numerical methods and kinematic modelling were implemented using
Pybotics (https://github.com/nnadeau/pybotics), allowing multicore processing and a direct interface
to the optimization methods implemented by the SciPy Python package.

4. Methodology

Three primary components formed the basis of this study: communication, measurement,
and calibration. First, a modern communications architecture was developed to transmit data and
command packets between an external PC controller, the KUKA LBR iiwa robot, and a FARO ION
laser tracker. Next, with a common communications and data processing framework, impedance
control and tradition laser measurement and calibration processes were developed.

4.1. Communication

A calibration framework viable for adaptability and scalability requires the use of modern data
processing protocols. As such, the calibration communications architecture was designed to satisfy
Levels 1–3 of the cyber-physical system (CPS) requirements, as defined in [21]. Plug and play (PnP)
decentralized services allow for messaging patterns where data can be integrated with various systems
in a smart factory network. From this interconnection, meaningful information can be inferred from
the data, such as robot calibration quality and workcell health. Over the lifecycle of the robotic system,
machine performance and historical data can be used to predict future behaviour.

Given these criteria, protocol buffers (https://developers.google.com/protocol-buffers/) were
selected as the mechanism for serialized structured data (i.e., packets), and gRPC (https://grpc.
io/) was selected as the transmission mechanism. Figure 4 illustrates the control and data flow of
this architecture.

Specifically, the external controller that manages the automation of the entire calibration process
uses protocol buffer packets and gRPC to communicate across the network with the robotic devices and
calibration database. This distributed computing architecture is based on remote procedure call (RPC),
a type of a client-server model. With the RPC protocol, a program can request a service or function from
another program without having to understand the network layout, such as the relative location of the
two programs (i.e., on the same computer or on different devices). The requesting program is a client
(e.g., external controller), and the service providing program is the server (e.g., FARO ION controller,
KUKA LBR controller, calibration database). In the presented architecture (Figure 4), the command
packets tell the robot and laser tracker where, when, and how to move. Following the movement
command, these devices reply with a response packet that contains the necessary data for calibration
(e.g., joint values, Cartesian position). These responses are collected by the external controller and are
stored in a database.

The primary advantage of this model is the ability to develop a microservices-style architecture
where device control (e.g., robot control, laser tracker control) and data processing become abstract
services from the perspective of the external PC controller. A second advantage is the programming
language and platform neutral nature of the chosen mechanisms, allowing for straightforward
integration with the robot and laser tracker firmware and APIs.

https://github.com/nnadeau/pybotics
https://developers.google.com/protocol-buffers/
https://grpc.io/
https://grpc.io/
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Figure 4. Calibration communications framework. Protocol buffers were selected as the mechanism for
serialized structured data (i.e., packets). gRPC was selected as the transmission mechanism. During
the measurement phase, collected data are uploaded to a database for future processing.

4.2. Sphere Measurement and Calibration

The impedance control measurement phase focuses on the collection of data using controlled
coupling events. First, whether through manual jogging, offline programming, or hand-guiding,
the general location of the three spheres is recorded. In the case of this study, as the KUKA LBR robot is
a collaborative robot, these waypoints were taught by quickly hand-guiding the robot to each sphere.

Next, the automated calibration process begins and is outlined in Algorithm 2. For each sphere,
the automated process followed a simple series of steps: contact, record, and decouple. As the robot
was under impedance control with a kinematic coupling and magnet, the accuracy of the saved sphere
waypoints was not a high priority, and the robot will self-centre upon contact (Figure 5), as illustrated
in Figure 6.

0 500 1000 1500 2000 2500 3000
Time [ms]

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Fo
rc

e 
[N

]

Fx
Fy
Fz

Figure 5. Recorded force data during the sphere contact event. The robot controller logs the Cartesian
forces applied to the tool frame at a rate of 1000 Hz. As described in Algorithm 2, the kinematic
coupling event is triggered by a 7.5 N force condition.
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Algorithm 2 Sphere calibration process. All motions are under impedance control. The approachFrame
may be programmed offline or taught using hand-guiding. The homeFrame represents a safe starting
point for robot motions

robot.move(homeFrame)
for sphere i in [1,2,3] do

// move above sphere i
robot.move(approachFrame)

// prepare for sphere contact
robot.setXStiffness(50) // N/m
robot.setYStiffness(50) // N/m
robot.setZStiffness(100) // N/m
robot.setForceTrigger(7.5) // N

// contact sphere
while !isContact do

robot.moveWithVelocity(25) // mm/s
end while

// allow the strong magnet to couple fully
robot.setXYZStiffness(5) // N/m
robot.holdPosition(5) // s

// receive poses from external controller and record joints
while nextPose← getPose() ! = null do

// move to pose
robot.setXYZStiffness(20) // N/m
robot.move(nextPose)

// record joint data over a period of time
robot.setXYZStiffness(5) // N/m
robot.startRecording()
robot.holdPosition(1) // s
robot.stopRecording()

// transmit joint data to database
jointData← robot.getRecording()
uploadData(jointData)

end while

// decouple from sphere
robot.decouple()
robot.move(homeFrame)

end for
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(a)

ΔxT

ΔxR

(b) (c)

Figure 6. Self-centring of the kinematic coupling under impedance control. (a) The combination of the
kinematic coupling, a strong magnet, and impedance control allows for a lower accuracy of the saved
sphere waypoints. (b) Upon contact, a commanded tool motion, ∆xT , will produce a resulting motion,
∆xR, that centres the nest onto the sphere (c).

The control architecture exploited the built-in real-time impedance control of the LBR robot as the
base control strategy (KUKA Sunrise.OS v1.10). The basic model was a virtual spring-damper system
with configurable values for stiffness and damping, allowing the KUKA LBR to be highly sensitive
and compliant (Figure 7). As outlined in Algorithm 2, the axis stiffness values, K, were independently
updated throughout different phases of the measurement process. The axis damping coefficients
(Lehr’s damping ratio) remained constant and were set to ζ = 0.7.

Subsequently, the robot will iterate through a series of coupled poses commanded by the external
controller. At each pose, the robot held a position under impedance control, allowing the strong
magnet to maintain proper coupling. The robot controller then logged the robot joint angles and torque
values at a rate of 1000 Hz for 1 s, allowing for mechanical stabilization. These data were transmitted
back to the external controller and uploaded to a database for future processing. During the calibration
process, the mean joint values of this logging process were used. Further mechanical stability analysis
demonstrated that even over a period of 30 s, the maximum deviations from the mean values were
negligible for the joint angles. Following the completion of the recording phase, the robot decoupled
itself from the sphere and repeated the process on the next sphere.

All calibration poses were defined as relative frames with respect the robot base orientation and
centred at the sphere. Thus, for each frame, the position of the TCP remained constant, but the tool
coupling rotated about the sphere. The frames were generated from a distribution of −20◦ to 20◦ in
10◦ steps about all three rotational axes. As the KUKA LBR is a redundant robot with seven axes,
each pose was further expanded by altering the redundant α angle (i.e., the angle formed between the
elbow of the robot and the vertical base axis) through the same angular distribution (Figure 8). A total
of 625 poses was generated and recorded on each sphere.

Using the data collected and the optimization algorithms and models presented in Section 3.2,
the robotic system was calibrated using relative distance errors. As 625 poses per sphere would result
in 1,756,875 combination pairs, the dataset was reduced to 100 pairs per sphere (44,850 combinations)
through random selection. Moreover, mini-batch optimization with a batch size of 32 was used for
computational efficiency [22].
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ΔX
K ζ 

PA 

PD 

Figure 7. The built-in real-time impedance control of the KUKA LBR iiwa robot (LBR). The model is
a virtual spring-damper system with configurable values for stiffness (K) and damping (ζ), allowing
the KUKA LBR to be highly sensitive and compliant. The resulting interaction forces are calculated
from the displacement (∆X) between the desired position (PD) and the actual position (PA) in each
Cartesian axis.

(a) (b) (c)

Figure 8. Expansion of coupled poses through redundant joint configurations. All three pictured
configurations represent the same Cartesian pose. The KUKA LBR is a redundant robot with seven
axes, and a non-singular pose has infinite joint configurations. The redundant α angle parameter
is defined as the angle formed between the elbow of the robot and the vertical base axis. (a) Robot
pose with the redundant α angle parameter set to −20◦. (b) Robot pose with the redundant α angle
parameter set to 0◦. (c) Robot pose with the redundant α angle parameter set to 20◦.
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4.3. Laser Measurement and Calibration

To validate the quality of the impedance control calibration method properly, traditional calibration
with a FARO ION laser tracker (uncertainty of±49 µm) and spherically-mounted retro-reflectors (SMR)
was performed (Figure 9). Following the procedure outlined in [1], 284 uniformly-distributed joint
configurations were recorded within the workspace of the robot for calibration (Table 3). An additional
dataset of 125 configurations was recorded for validation (Table 4). The 3D distribution of these points may
be seen in Figure 10.

(a) (b)

Figure 9. Traditional laser tracker calibration equipment. (a) A FARO ION laser tracker (uncertainty
of ±49 µm). (b) Spherically-mounted retro-reflectors (SMR) mounted to the same tooling described
in Section 2.2.

Table 3. Statistics of the 284 configurations used for laser calibration.

mean (mm) std (mm) min (mm) max (mm)

x 525.872 160.031 −7.304 947.042
y −69.712 220.397 −560.339 452.969
z 650.021 186.840 198.322 1197.046

Table 4. Statistics of the 125 configurations used for laser validation.

mean (mm) std (mm) min (mm) max (mm)

x 501.986 211.902 −24.214 995.460
y −7.856 252.262 −578.336 523.221
z 750.930 227.457 137.178 1135.052

To calibrate the robot base frame and the tool frame, 150 and 153 additional measurements were
recorded, respectively. The base frame measurements were generated by independently rotating
only Joints 1 and 2 to produce two 3D arc trajectories whose intersection gave the location of the
base frame. Similarly, the tool frame measurements were generated by independently rotating only
Joints 5, 6, and 7. The independently-measured base and tool frames were used not only during the
laser calibration, but also during validation, acting as control variables for the model comparison.
As a result, the calibrated robot models were isolated for comparison.
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Figure 10. 3D distribution of calibration and validation points. Two hundred eighty four configurations
were used for laser calibration. One hundred twenty five configurations were used for laser validation.

Like Section 3.2, the identified kinematic parameters were independently optimized using
absolute accuracy errors and the Nelder–Mead method. For absolute position optimization, using
Equations (1) to (3) and (8), the absolute position error (Eabsi

(q)) per measurement configuration is
described as follows:

Pmeasure =

xmeasure

ymeasure

zmeasure

 (12)

Eabsi
(q) = |(Pmeasurei − PTCP(q))| (13)

where i is the ith measured configuration measured by the laser tracker.

5. Results

Following impedance control and traditional calibrations, the absolute accuracy of the calibrated
models was compared against the nominal model using the 125 measures mentioned in Section 4.3
and Equation (13). Error distributions between the nominal model and the calibrated models are
visualized in Figures 11 and 12. As shown in Figure 11, both calibration methods offered significant
accuracy improvements over the nominal model. Figure 12 offers a more detailed comparison between
traditional laser tracker calibration and the impedance control method. Error statistics of all the models
are summarized in Table 5. The calibrated kinematic model of the KUKA LBR iiwa 7 using impedance
control may be seen in Table 6.
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Figure 11. Histogram of validation errors comparing the nominal and calibrated models.
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Figure 12. Histogram of validation errors comparing the calibrated models.

Table 5. Summary of validation errors between the nominal KUKA LBR kinematic model, sphere
calibration with impedance control, and traditional laser tracker calibration.

mean (mm) std (mm) min (mm) max (mm)

Laser 0.645 0.192 0.168 0.932
Sphere 0.677 0.206 0.225 0.990

Nominal 1.403 0.392 0.325 2.381
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Table 6. Calibrated kinematic model of the KUKA LBR iiwa 7 using the presented impedance
control approach.

i α a θ d

0 0.000000 0.000000 0.000000 340.000000
1 −1.570759 0.000061 0.000062 0.000062
2 1.571575 0.000056 −0.000490 400.574635
3 1.569842 0.000061 0.000061 0.000063
4 −1.570623 0.000062 0.000059 400.629881
5 −1.571451 0.000062 0.000061 0.000000
6 1.571136 0.000000 0.000000 125.505736

6. Discussion

This paper presented an impedance control approach to robot calibration and compared the
novel method to traditional calibration with a laser tracker. The calibration tooling has the advantage
of being low-cost, robust, and simple to use, with little start-up time required. As shown through
absolute accuracy validation, this calibration approach can improve the accuracy of a KUKA LBR iiwa
7 R800 collaborative robot upwards of 58.4% to a maximum error of 0.990 mm when compared to the
nominal model.

It should be noted that the sheer simplicity of the tooling used in this study makes for an interesting
comparison to typical calibration equipment, especially when considering the cost difference. While
the traditional laser tracker calibration was capable of reducing the maximum error to 0.932 mm,
the tooling presented in this study cost a total of approximately $2000 USD, while a laser tracker
costs in the range of $100.000 USD. Furthermore, the robot modelling software (Pybotics; https:
//github.com/nnadeau/pybotics) and the communication packages are open-source and available for
both industrial and academic use. It thus becomes an engineering economics issue in order to justify
a $98.000 USD cost difference for an additional percentage point of improvement.

With respect to previous studies, the present study advances the literature in several distinct
ways. First, while the nominal errors of the KUKA LBR agreed with [15], the presented calibration
approach has been validated with 12.5-times the number of validation points, offering a more robust
and confident examination of calibration quality. Compared to the self-calibration approach presented
in [16], while the resulting accuracies due to the methods cannot be directly compared (two different
robots), the difference between their method and the (same) laser tracker was relatively equivalent.
Yet, the method presented here is even less expensive and more durable for industrial environments.
While often undervalued, durability and robustness are key considerations, as repairs and workcell
downtime can be expensive.

Although this study used a redundant robot, this method can easily be applied to less
sophisticated robots with no major differences in procedure. While redundant motion allows many
joint configurations for a single Cartesian pose, the results of this process with a non-redundant robot
will produce a dataset without redundant configurations. Simply put, redundant motion produces
more joint configurations with less tool movement.

From a manufacturing and operations perspective, the authors of [23,24] described a set of
guidelines for a resilient manufacturing system (RMS), whereby the system is fault tolerant and
capable of recovering from failure. In the case of the presented calibration methodology, failure may
occur during any of the steps outlined in Section 4.2. During the contact, coupling, and motion
steps, force limits are set to prevent damage to the tooling, and the recovery process is to simply
decouple, move away, and restart the coupling procedure. Returning to a known stable position is not
required and slows the overall process. During the recording phase, the system follows redundancy
guidelines and records more poses than necessary for calibration optimization. Further reliability
can be achieved through the robot communication and control framework described in Section 4.1,
where data collection can be used to develop continuous improvement initiatives. This communication

https://github.com/nnadeau/pybotics
https://github.com/nnadeau/pybotics
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framework integration follows Guidelines II–IV presented in [23]. In an ideal integration, the presented
calibration tooling would become part of the robot workcell, allowing the robot to self-validate and
calibrate. As noted in [21], with a connected fleet of machines and an awareness of machine condition,
predictive maintenance and workload balancing become possible and maximize machine performance
and organization transparency.
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