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Accurate prediction of individuals’ brain age is critical to establish a baseline for normal brain development. This
study proposes to model brain development with a novel non-negative projective dictionary learning (NPDL)
approach, which learns a discriminative representation of multi-modal neuroimaging data for predicting brain
age. Our approach encodes the variability of subjects in different age groups using separate dictionaries, pro-
jecting features into a low-dimensional manifold such that information is preserved only for the corresponding
age group. The proposed framework improves upon previous discriminative dictionary learning methods by
incorporating orthogonality and non-negativity constraints, which remove representation redundancy and
perform implicit feature selection. We study brain development on multi-modal brain imaging data from the PING
dataset (N =841, age =3 — 21 years). The proposed analysis uses our NDPL framework to predict the age of
subjects based on cortical measures from T1-weighted MRI and connectome from diffusion weighted imaging
(DWI). We also investigate the association between age prediction and cognition, and study the influence of
gender on prediction accuracy. Experimental results demonstrate the usefulness of NDPL for modeling brain

development.

1. Introduction

Brain development is a dynamic and complex process lasting the
duration of childhood, adolescence and the early young adulthood. Brain
development and aging are highly variable and have a significant impact
on cognition and the occurrence of age-related diseases. Modeling this
process could therefore be essential to identify subjects with a high risk of
deterioration, estimate the progress of cognitive decline over time, and
help select optimal treatment. Investigations on brain maturity (or brain
age) have been facilitated by the development of advanced magnetic
resonance imaging (MRI) methods (Liem et al., 2017; Cole and Franke,
2017; Dosenbach et al., 2010), as well as by large-scale initiatives like the
Brain Development Cooperative Group (NIHPD) (Evans Groupet al,
2006) and the Pediatric Imaging, Neurocognition, and Genetics (PING)
(Walhovd et al., 2012) study. Cross-sectional and longitudinal neuro-
imaging studies based on MRI have shown developmental trajectories of
gray matter volumes, surface area and cortical thickness, contributing to
a better understanding of brain maturation. The prediction of brain
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maturity has also been studied for the early diagnosis of neuropsychiatric
diseases (Cole and Franke, 2017; Franke et al., 2012; Khundrakpam et al.,
2015; Ball et al., 2017). However, despite significant research efforts,
modeling brain development and aging remain a challenging task.

An effective way to analyze brain development (maturity) is training
a statistical model on lifespan data to estimate brain age, and then
comparing a subject’s chronological age with the one predicted by the
model. Differences between chronological and predicted age can suggest
a risk of developing a neurodevelopmental disorder, an information
which can later be used by clinicians for diagnosis. Voxel-based
morphometry (VBM) analysis (Franke et al., 2012) of T1-weighted MRI
data is one of the most common approaches for predicting brain maturity.
It has been shown that brain maturation and cognitive developmental
trajectories are associated with GM volumes and cortical thickness in
highly-localized brain regions (Giedd et al., 1999; Shaw et al., 2006).
Recently, machine learning has shown a great potential for modeling and
predicting brain maturity (Cole and Franke, 2017). For instance, Ball
et al. (2017) proposed manifold embedding as a means to learn a
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compact representation that captures variability in brain ageing. Like-
wise, Cole et al. (2017a) used deep learning to predict brain age from raw
T1-weighted MRI, achieving a mean absolute error (MAE) of 4.65 years
for a cohort of 2001 healthy subjects with mean age of 36.95 + 18.12
and age range of 18 — 90 years.

In addition to structural MRI, other modalities like resting-state
functional MRI (Barnes et al., 2010) and diffusion tensor imaging (Erus
et al., 2014) have also been explored for predicting brain age. For
instance, connectivity maps extracted from resting-state fMRI were
shown to provide unique information on brain development (Fair et al.,
2009). Studies employing diffusion tensor imaging (DTI) for the analysis
of brain development and aging have shown age-related differences in
apparent diffusion coefficient (ADC) and fractional anisotropy (FA)
(Pfefferbaum et al., 2000), potentially due to changes in myelin density
and structure of brain fibers (Salat et al., 2005). Several studies have
further investigated the benefit of combining data from multiple MRI
modalities to predict brain maturity (Liem et al., 2017; Brown et al.,
2012). Distinct MRI modalities contain complementary features, which
can be combined to provide richer information on the brain maturation
process. However, determining the best way to aggregate
high-dimensional features from separate modalities can be challenging.
Hence, combining them directly can lead to over-fitting of the prediction
model and may complicate the analysis of results. Although several
works have focused on predicting brain maturity (Cole and Franke, 2017;
Franke et al., 2012; Khundrakpam et al., 2015; Cole et al., 2017b; Adeli
et al., 2018), few of them have analyzed the individual contributions of
morphological measures from structural MRI, such as gray matter (GM)
volume, cortical thickness and surface area. Further, no study has pro-
posed a joint model combining these measures with other modalities like
diffusion MRI.

Discriminative subspace learning is a powerful approach for fusing
multi-modal data into a common feature space (Li et al., 2017; Zhang and
Desrosiers, 2018a). This approach, which has been used in various
brain-related applications such as the detection of Alzheimer’s disease
(Zhu et al., 2016) and the classification of EEG signals (Zhou et al., 2012),
exploits the low rank property of high dimensional data (Zhang et al.,
2018a, b; Zhang and Desrosiers, 2018b). The current study proposes a
discriminative subspace learning method, called Non-negative Projective
Dictionary Learning (NPDL) for predicting brain age. Based on the pro-
jective Dictionary Pair Learning (DPL) technique (Zhang et al., 2018a, b
Evans; Gu et al. 2014 Feng), our method seeks, for each age group, a
feature subspace which can accurately encode examples of a specific age
group, but not those of other age groups. In the proposed method,
class-specific subspaces are modeled as a pair of dictionaries, one to map
image features to a discriminative representation, and another one to
reconstruct these features from the representation. Our method differs
from unsupervised subspace learning approaches like autoencoders
(Hinton and Salakhutdinov, 2006), where input feature vectors are
mapped to a compact and information-preserving representation,
without considering their class. The major contributions of this work are
as follows:

e Novel framework: Our framework extends the algorithms of Zhang
et al. (Zhang et al., 2018a, b Evans) and Gu et al. (Gu et al. 2014.
Feng) in two important ways. While DPL applies simple norm con-
straints on the dictionary elements, we also impose these elements to
be uncorrelated. In addition to helping avoid overfitting, this facili-
tates the visualization and understanding of features learned in the
dictionary, as these features encode orthogonal components of the
data. Moreover, unlike DPL, our framework also enforces
non-negativity on the projected features. Non-negative constraints
have been shown to be useful in numerous optimization problems like
matrix factorization (Eskildsen et al., 2015). In our case, these con-
straints enforce sparsity in the encoding coefficients (see Section 3.3),
thereby acting as an implicit feature selection technique. Further-
more, since these coefficients are non-negative, the prediction
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Table 1
Demographic details about the subjects applied in this work.

Total number of subjects: (male/female) 841 (433/408)

Total number of scans: 1682
Total number of acquisition sites: 12
Age range 3-21y
Age 12.55 (+ 4.99)
Reading 138.19 (+ 68.34)
Flanker 8.99 (+ 1.49)
Attention 9.43 (£ 1.35)
DCCS. 8.79 (+ 1.39)
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Fig. 1. Distribution of female and male subjects sorted by increasing age.

corresponds to an affine combination of features, which is more
amenable to interpretation than a general linear combination.
Application: We evaluate our NPDL framework on the prediction of
brain maturity, using data from the PING study (Walhovd et al.,
2012), and show a higher accuracy compared to DPL and the model
without non-negativity constraints. Our experiments analyze features
of gray and white matter which are important for predicting brain
age, as well as the influence of gender on the prediction. The asso-
ciation between the predicted brain age and cognition is also inves-
tigated with the proposed NPDL model.

2. Materials: data and pre-processing

Our study uses 3 T T1-weighted MRI and diffusion tensor image (DTI)
data from the PING study.” The PING project created a comprehensive,
publicly shared, multi-modal data resource for studying standardized
assessments of neurocognition, neuroimaging and genetics in a deliber-
ately diverse cohort of typically-developing individuals. Cross-sectional
measurements on 1493 individuals, aged between 3 and 21 years, were
aggregated from different sites and scanners across the United States. A
detailed description of the cohort can be found in (Jernigan et al., 2016;
Akshoomoff et al., 2014). Subjects’ information related to neurological
disorders, history of trauma, preterm birth, autism/bipolar disorder,
pregnancy and medical history were obtained from parental question-
naires. Similar proportions of population in each age group and gender
participated across the entire age range. Neurocognitive abilities were
assessed using the NIH Toolbox Cognition Battery (NTCB®), a comput-
erized battery designed for administration across the lifespan
(Akshoomoff et al., 2014), which includes eight subtests spanning six

2 http://pingstudy.ucsd.edu/Data.php.
3 http://www.nihtoolbox.org/.
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Fig. 2. The proposed non-negative projective dictionary learning (NPDL) method for predicting brain maturity.

domains. In this study, we included the following four measures of ex-
ecutive function: Flanker Inhibitory Control (Flanker), Attention Test
(Attention), Dimensional Change Card Sort (DCCS), and language mea-
sures of the Oral Reading Recognition tests (Reading). The Demographic
details of the subjects and the age group distribution with gender are
shown in Table 1 and Fig. 1.

For image acquisition, all institutions participating in the PING study
used a standardized structural MRI protocol on experimental, consenting
procedures and methods (Jernigan et al., 2016). This protocol included a
3D T1-weighted inversion prepared RF-spoiled gradient echo scan using
prospective motion correction (PROMO), for cortical and subcortical
segmentation, 3D T2-weighted variable flip angle fast spin echo scan
using PROMO, for detection and quantification of white matter lesions
and segmentation of CSF.

MRI images were pre-processed using the CIVET* pipeline version
2.1.0. T1-weighted images are first non-uniformity corrected with the N3
algorithm (distance 125) (Sled et al., 1998) and a linear transformation
(Collins et al., 1994), and then linearly registered to the Talairach-like
MNI152 template (established with the ICBM152 dataset).
Non-uniformity correction is then repeated using the template mask. A
non-linear registration method is then applied to further align the
resulting volume to the MNI152 template. Following this, the registered
volume is segmented into gray matter (GM), white matter (WM), cere-
brospinal fluid (CSF) and background, using a neural net classifier (Zij-
denbos et al., 2002), and corrected for partial volume effects (Tohka
et al.,, 2004). Inner and outer gray matter (GM) surfaces are then
extracted using the Constrained Laplacian-based Automated Segmenta-
tion with Proximities (CLASP) algorithm (Kim et al., 2005), and cortical
thickness is measured in native space using the linked distance between
the two surfaces at 81,924 vertices. Each subject’s cortical thickness map
was blurred using a 30-mm full width at half maximum surface-based
diffusion smoothing kernel to impose a normal distribution on the cor-
ticometric data, and to increase the signal to noise ratio. The flowchart of
T1 MRI and DWI data pre-processing is shown in Appendix.

Quality control (QC) of these data was implemented by two inde-
pendent reviewers, which gave a rating of failed = 0, questionable =1 or
passed = 2 based on a low signal to noise ratio, motion artifacts, artifacts
of hyperintensities from blood vessels, surface-surface intersections, or
poor placement of the gray or white matter (GM and WM) surface.

4 http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET.

3. The proposed method
3.1. Input data

The proposed model for predicting brain age is trained with cortical
anatomy from T1-weighted MRI and structural connectivity features
(structural connectome) from DWI. Three types of cortical surface mea-
sures as considered as input features: cortical thickness, surface area and
volume. Considering the time complexity and efficiency of the proposed
model, these measures are averaged within each of the 31 cortical parcels
of the DKT40 parcellation atlas (Desikan et al., 2006), yielding a total of
62 features per type of measure for both brain hemispheres.

Structural connectomes were derived from diffusion weighted imag-
ing using the NDMG pipeline (Kiar et al., 2017), which consists of four
steps: registration, tensor estimation, tractography and graph generation.
In the registration step, the diffusion weighted tensor imaging (DTI) data
is aligned to the MNI152 template. In the tensor estimation stage, the
6-component tensor model of the DIPY package (Garyfallidis et al., 2014)
is then applied to get fractional anisotropy maps, which can reflect the
structure and arrangement of the tensors. The tractography stage then
generates and prunes streamlines. Lastly, in the graph generation stage,
the connectivity between all pairs of regions is quantified as a symmetric
connectivity matrix. Note that measures of connectomes vary based on
the parcellation resolution, and that there is no standard number of
parcels for real application (Liem et al., 2017). In this study, we recon-
structed connectivity matrices using 68 brain regions. To extract relevant
information and make the dimension of DWI-based features consistent
with cortical features from structural MRI, we applied singular value
decomposition (SVD) on the 68 x 68 DWI connectivity matrices and
selected the first 62 singular vectors as structural connectivity features.
Most information on connectivity is captured in the first few components,
hence using this subset of the 68 singular vectors does not affect results.

3.2. Predictive analysis

The proposed method is summarized in the flowchart of Fig. 2. In the
first step, the features of each subject are obtained from measures of
cortical thickness, surface area and volume, as well as from the DWI
connectivity matrix. Feature vectors corresponding to each feature type
are then normalized to have an [; norm of one. This normalization step,
which is similar to global correction for brain size (Ball et al., 2017), is
employed to emphasize the analysis of relative differences across gray
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Input: The training features Xy, k =1,...,

K and age group as label;

Output: The analysis dictionary Pj, € RM*S and synthesis dictionary D;, € RS*M

Set A, = P X, and Z, =0, k=1,...,K;

while not converged do

Find groups of each feature with same label k;

Update Py, k=1,..., K, using Eq. (4);

Update Dy, using Eq. '(5);
Update Ay, by solving Eq. (7);

Update Lagrange multiplier Zj, using Zj, := Zj, + (A — PrXy);

return Py and Dy ;

matter regions, and their relationship with brain development.

The data is split into training and testing sets using a 10-fold cross-
validation strategy. During each fold, we train a NPDL model for each
feature type (i.e., cortical surface area, thickness, volume, and singular
values of diffusion connectivity matrices) and age group. The recon-
struction error measured for the models of different age groups is then
used to predict brain age. Furthermore, predictions obtained for each
feature type are then combined via linear regression to obtain a final
predicted age. Accuracy is assessed with the mean absolute error (MAE),
root mean squared error (RMSE) and correlation (R). Finally, the per-
formance measures are averaged across all 10 folds.

3.3. Brain age prediction with non-negative projective dictionary learning
(NPDL)

We treat brain age prediction on each feature type as a general clas-
sification problem over K classes (age groups). Let X = [Xj, -+, X, -+, Xk
denote the data (feature) samples, where X; € RS*Ne contains the data
samples belonging to the k-th age class with S the number of features. The
total number of subjects is given by N = ", Nx.. We first discriminatively
model the data by performing separate projective dictionary learning on
the subsamples from each class. Specifically, we introduce an analysis
dictionary Py € RM*S and a synthesis dictionary Dy € R*M for each age
class k, such that P = [Py, -+, Py, -+, Px] and D = [Dy,--+,D,---,Dg], where
M is the dimension of the lower dimensional space. We then model data
using the following class-specific dictionary pair learning framework:

K
. S 2
min > 11X = DPXil; + AP, 1

k=1

where | - || is the Frobenius norm and X; denotes the complementary
data matrix of Xy in X, i.e. X = X1, -+, Xk-1, Xkt1, -+, XkJ. In this

framework, the regularization term HPk)A(ka- is used to ensure class-
specific dictionary learning by pushing PiX; towards zero over data
samples from any class j such that j # k. The analysis dictionary Py pro-
jects the samples Xy into an encoding coefficient matrix Ay = PiX,
which is then used to reconstruct X, with the synthesis dictionary D.
Parameter 4 > O controls the trade-off between the reconstruction ac-
curacy and regularization terms.

To avoid overfitting, dictionary pair learning methods like (Gu et al.
2014. Feng) normally use a Frobenius norm regularization term over Dy
or a Euclidean norm constraint over each column of this dictionary. Here,
we aim to identify a compact synthesis dictionary Dy with uncorrelated
dictionary basis vectors. Toward this goal, we impose an orthogonality
constraint over the dictionary: D,IDk =1, fork =1,...,K. Moreover, we
further assume the basis vectors of Dy model the representative latent
components of Xj. Hence, Xj can be taken as an additive combination of
these components by enforcing the encoding coefficients Ay = PiXj to
be non-negative. This leads to the following non-negative projective
dictionary learning (NPDL) problem:

. = 02
min D Ik = DPX|[7 + APl
’ =1 2

st. DD, =1, PX,>0 k=1, K.

The next section presents an efficient optimization approach to learn
dictionary sets D and P from training data.

3.4. Training the model

We solve the problem in (2) using an alternating direction method of
multipliers (ADMM). Specifically, we introduce an explicit encoding
coefficient matrix Ay with the equality constraint Ay = P¢Xj for each
class k, and then incorporate such constraints into the objective with
auxiliary variable matrices Zx. This leads to a minimization of the
following augmented Lagrangian function:

) s 2
max min ;HXA —DPXl; + APXllr + pllAc - PXe + Zi7

st. D/D,=1, A, >0,k=1,.. K.
3)

The ADMM algorithm then performs optimization in an iterative
manner. In each iteration, it alternatively updates each variable matrix
given the other variable matrices fixed, as follows. With fixed {D,A,Z},
the minimization over each Py is an unconstrained quadratic minimiza-
tion problem,

. S 2

min_ [|X, — DX} + APXilly + ulPeXe — (Ax+Zo)|7
k

which has the following closed-form solution:

o ol -1
Pr = (D] XeX] + u(Ax + Zo)X]) ((1+ )X X] + XX, +71) )]

Here, y is a small constant used to increase invertibility. Following
(Gu et al. 2014. Feng), we set this parameter to y = 10~*.

Considering {A, P, Z} as fixed, updating each Dy is an orthogonal
constrained optimization problem

min [[X, — DP.X( |2, s.t. D/ D=1
'k

which can be equivalently rewritten into
max (D] X X[ P} ), s.t. DDy =1, (5)
k

Let ULV’ be the singular value decomposition (SVD) of XX, Py .
Then, problem (5) has the following closed-form solution: D, = UV'.

To update each Ay, we fix {D,P,Z} and solve a non-negative con-
strained minimization problem

minA; — (PX; — Z)|3, st Ay >0, (6)
k

the solution of which is obtained with the hard-thresholding operator:
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[Ak]ij = max([Pka — Zk]ij, O). )

As mentioned before, having non-negative constraints acts as an im-
plicit feature selection technique, where only features for which
PeXy — Zk]ij > 0 are kept. Note that, for the case where [Zk]ij ~ 0, this
amounts to retaining only features that are positively correlated to the
corresponding dictionary atom. Finally, we update the dual variable Z;
by maximizing the objective of Eq. (3), which can be achieved with Z : =
Zi + (Ax — PiXk). The summary of the algorithm is listed in Algorithm 1.

Algorithm 1. Non-negative projective dictionary learning(NPDL)

3.5. Algorithm complexity and convergence

The computational complexity of the proposed dictionary learning
framework is as follows. For updating dictionaries Py with (4), since the
matrix to invert is constant, its inverse can be computed only once in pre-
processing. The complexity of this update step is therefore in #'(KM(S +
maxi{Ni})). Next, updating each Dy requires to calculate the SVD of Sx
M matrix XX/ Py . If the QR decomposition of X;X; is pre-computed,
assuming that M < S, this step has a total complexity of #(KM?).
Finally, updating all matrices Ax and Zj can be done in #/(KMmax;{Nk})
operations.

The convergence of augmented Lagrangian methods for biconvex
problems like the one in this work has been well-studied in the literature
(e.g., see (Gu et al. Feng; Gorski et al., 2007)). Since DkTDk =Tand P Xy >
0 are both convex sets and the cost function is biconvex, our problem can
be formulated in the general biconvex problem definition of Eq. (1) in
(Gorski et al., 2007), for which optimizing convex subproblems alter-
natively is shown to converge. Empirically, we observed a smooth
convergence of the method within 10-20 iterations.

3.6. Prediction on test samples

After training, the learned dictionaries can be used to classify new
samples by measuring the reconstruction error for each class. We first
consider the case of individual feature types (i.e., cortical surface area,
thickness, volume and singular vectors of connectivity matrices). Let x' €
R be the features of type i for the sample to classify. We define as e =
||x* — DiPixi||, the error of reconstructing x' with the dictionaries of
class k for feature type i. We then assign the sample to the class whose
dictionary gives the lowest error, i.e. ki = argminy ef.

To combine the information of multiple feature types, we need to
determine their relative importance on the final brain age prediction. To
achieve this goal, we use a subset of training examples (our validation
set) to learn a regression model where inputs are the predicted ages k; for
each feature type i and the output is the true subject age ke,

min (k,ea, - ?,»)27 st a=1, a0,V ®)

Constraints on regression coefficients ¢; enforce the final prediction to
be a convex combination of predicted values for each feature type.

4. Experiments and results

We assess the usefulness of our NPDL framework on the task of pre-
dicting the brain age of subjects from the PING dataset. Our experiments
also analyze the relevance of individual feature types on prediction ac-

curacy, the relationship between predicted age and cognition, as well as
the impact of gender on results.

4.1. Brain age prediction

We first evaluate the proposed framework on the task of predicting
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Table 2
Age prediction accuracy in terms of mean RMSE, obtained for subjects of
different age ranges.

Age range (N. of subjects)

3-10y (333) 3-14 (526) 3-18y (688) 3-21y (841)
DPL [27] 2.102 + 2.803 + 3.412 + 3.996 +

0.025 0.074 0.063 0.113
NPDL (w/0 non- 1.745 + 2.554 + 2.965 + 3.324 +

neg) 0.041 0.035 0.052 0.026
NPDL (ours) 1.720 + 2.549 + 2,959 + 3.286 +
0.022 0.046 0.030 0.056

Table 3
Age prediction accuracy in terms of mean MAE, obtained for subjects of different
age ranges.

Age range (N. of subjects)

3-10y (333) 3-14y (526) 3-18y (688) 3-21y (841)
DPL [27] 1.629 + 2192 + 2.633 + 2.985 +

0.019 0.062 0.043 0.086
NPDL (w/0 non- 1.398 + 2.035 + 2.399 + 2.615 +

neg) 0.039 0.033 0.049 0.035
NPDL (ours) 1.370 + 2.027 + 2.385 + 2.614 +
0.020 0.037 0.039 0.036

Table 4
Mean correlation coefficient (R) between real and predicted age, for different age
ranges.

Age range (N. of subjects)

3-10y (333) 3-14y (526) 3-18y (688) 3-21y (841)
DPL [27] 0.616 + 0.732 + 0.786 + 0.840 +

0.022 0.021 0.012 0.012
NPDL (w/0 non- 0.743 + 0.781 + 0.830 + 0.860 +

neg) 0.019 0.007 0.011 0.002
NPDL (ours) 0.752 + 0.782 + 0.828 + 0.863 +
0.007 0.008 0.004 0.005

the chronological age of PING subjects based on the combination of all
imaging features. We measure the contribution of orthogonality and non-
negativity constraints in our NPDL model by comparing results against
those of DPL (Gu et al. Feng), which is equivalent to our model without
these constraints, and those of NPDL without non-negativity constraints.
The same pre-processing and feature extraction pipelines were applied
for all tested methods.

Tables 2-4 give the prediction accuracy in terms of mean RMSE, MAE
and correlation coefficient (R). To evaluate the impact of feature vari-
ability on prediction, we report results obtained for training and testing
sets containing subjects within increasing age ranges. Specifically, four
age ranges are considered: 3-10 years, 3-14 years, 3-18 years and 3-21
years, the number of subjects in each age range are indicated in the ta-
bles. The last age range (i.e., 3-21 years) contains all 841 subjects of the
PING dataset. As can be seen, NPDL achieves a higher accuracy than DPL
or the proposed method without non-negativity constraints. In compar-
ison with DPL, using NDPL without non-negativity constraints leads to a
reduction of 16.82% in RMSE and 12.40% in MAE, for the age range
including all subjects. Likewise, also imposing non-negativity yields a
reduction of 17.77% in RMSE and 12.43% in MAE, compared to DPL. As
expected, a lower prediction accuracy is observed for broader age ranges
due to the more challenging regression problem. In contrast, all methods
give a higher correlation for larger age ranges, reflecting the fact that the
overall trend is easier to determine over the complete process of brain
development.

Plots of predicted age and prediction residuals (predicted age minus
real age) obtained by our model on the entire cohort of 841 subjects are
shown in Fig. 3. We see that the model learns the general relationship



M. Zhang et al. NeuroImage xxx (xxxx) XXX

Predicted Age
Predicted age residuals

0 5 10 15 20 0 5 10 15 20
Age Age
(a) Predicted age (b) Predicted age residuals

Fig. 3. Predicted age and prediction residuals versus age.

0

a) Same age class (RMSE=0.0541) b) Different age class (RMSE=0.0791)

Fig. 4. Example of cortical thickness reconstruction residuals for a 5 year old subject obtained with a) the dictionary of the same age class, and b) the dictionary
corresponding to age 6.

10 g 10 F g
20 - g 20 - g
30 g 30 | 1
40 E 40 | g
50 F — _
T - 7
_—
60 =
h
2 4 6 8 10 12 14 16 18 20
(a) Without non-negativity (b) With non-negativity
Fig. 5. Example of coefficients matrix A for age class 5, with and without non-negativity constraints.
between brain features and age, resulting in a high correlation between overestimated and the age of older ones is underestimated. This can be
real and predicted values. However, when considering prediction re- attributed to the well-known phenomenon of regression toward the
siduals, we observe a negative slope where the age of younger subjects is mean, reported in several studies on brain development (Erus et al.,
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Table 5
Age prediction accuracy, in terms of mean RMSE and MAE, obtained by NDPL on
all subjects, using different feature types.

Surface Thickness Volume DWI All
area
RMSE 5.149 + 3.806 + 4.637 + 5.698 + 3.286 +
0.087 0.029 0.113 0.047 0.056
MAE 3.946 + 2.799 + 3.507 + 4.464 + 2.614 +
0.077 0.026 0.078 0.038 0.036

2014; Varikuti et al., 2018).

To illustrate how classification works, we show in Fig. 4 an example
of cortical thickness reconstruction residuals (absolute value) for a sub-
ject of age 5, obtained with the same age class dictionary or with a dic-
tionary corresponding to age 6. We can see that the dictionary
corresponding to the subject’s real age leads to a smaller residual over the
whole cortex, with an RMSE of 0.0541 compared to 0.0791 for the dic-
tionary of age 6. The impact of imposing non-negativity on projected
features is illustrated in Fig. 5, showing an example of feature matrix A
obtained by our NPDL model and the model without non-negativity
constraints. As can be seen, enforcing features to be non-negative
yields a sparser representation, which illustrates the ability of our
model to act as a feature selection method.

4.2. Impact of features

In order to evaluate the usefulness of each feature type (i.e., cortical
surface area, thickness, volume and singular vectors of DWI connectivity

5
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matrix) for predicting brain age, we measured the relative performance
of NPDL trained with these different sets of features. Table 5 reports the
mean RMSE and MAE for predicting the brain age of all 841 PING sub-
jects, using individual feature types or the combination of all features.
Comparing features types, we see that cortical thickness features yield
the lowest error (mean RMSE of 3.806), followed by cortical volume
(mean RMSE of 4.637). The worst prediction is obtained for structural
connectivity based on DWI (mean RMSE of 5.698). Moreover, we observe
that combining all feature types, as described in Section 3.6, yields a
significantly better prediction, with a relative reduction of 13.66% in
RMSE and 6.61% in MAE, compared to employing only cortical thickness
features. To better understand the predictive value of each type of fea-
tures, Fig. 6 plots the distribution of features for subjects of increasing
age. In the figure, each point corresponds to the sum of feature values for
a given subject and feature type (e.g., for cortical features, the values are
summed across the 62 cortical regions). The relationship between
different brain features and age is further depicted in Fig. 7. Each plot of
this figure shows the value of individual features (i.e., 62 region mea-
surements for cortical thickness, area and volume, 62 SVD components
for DWI connectome) for all 841 subjects sorted by increasing age.
Separate dot colors are employed for each of the 62 features of every
feature type. We can see that the thickness in all parcels decreases line-
arly with age. Following the results of Table 5, cortical thickness features
show the highest correlation with chronological age, while DWI-based
connectome features display almost no correlation.

To further assess the relative importance of individual features for
predicting brain age, we show in Table 6 the regression coefficients o;
obtained using the model of Eq. (8) for each of the 10 cross-validation
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Fig. 6. Feature values versus age. Each dot corresponds to the sum of features values (e.g., over cortical regions) for a single subject.
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Fig. 7. Distribution of individual features of each feature type for all 841 subjects sorted by increasing age (each dot color corresponds to a different feature).

Table 6
Regression coefficients o; for each cross-validation fold and mean values over all 10 folds.
1 2 3 4 5 6 7 8 9 10 Mean
Surf. area 0.074 0.074 0.072 0.117 0.135 0.082 0.099 0.099 0.096 0.095 0.094
Thickness 0.581 0.581 0.597 0.626 0.598 0.564 0.547 0.547 0.600 0.583 0.583
Volume 0.310 0.310 0.282 0.236 0.246 0.310 0.315 0.315 0.285 0.289 0.290
DWI 0.065 0.065 0.067 0.065 0.071 0.086 0.079 0.079 0.067 0.071 0.071
folds. Although estimated coefficients vary across folds, their respective Table 7
able

contribution to the final prediction remains similar, with cortical thick-
ness being the most important feature, followed by volume, surface area
and finally DWI connectome. This follows the results obtained with in-
dividual feature sets (see Table 5), where cortical thickness measure-
ments led to the highest prediction accuracy.

4.3. Predicted age and cognition

We first study the correlation between age and four NTCB cognitive
measures, i.e., Flanker Inhibitory Control (Flanker), Attention Test
(Attention), Dimensional Change Card Sort (DCCS), and language mea-
sures of the Oral Reading Recognition tests (Reading). The correlation
coefficient (R) obtained on the cohort of 636 subjects with provided
cognitive scores is given in Table 7 (first row). Scatter plots of cognitive
scores versus age for the same cohort are shown in Fig. 8. A mild positive
correlation can be observed for all cognitive measures, with the highest

Correlation coefficient (R) between cognitive scores and real age, predicted age
or prediction residuals (predicted age minus real age). First row: cohort of 636
subjects with cognitive scores. Other rows: 127 subjects in the testing set.

Reading Flanker Attention DCCS
Real age (al) 0.346 0.281 0.245 0.279
Real age (test) 0.363 0.285 0.270 0.285
Predicted age (test) 0.366 0.301 0.282 0.282
Prediction residual (test) —0.190 - 0.135 - 0.132 —0.155

correlation of R =0.346 obtained for the Reading score. Next, we eval-
uate the correlation between the same cognitive measures and the brain
age predicted by our model. For this experiment, we randomly split the
636 subjects into a training set of 509 subjects and a testing set of 127
subjects. Results are provided in Table 7 and Fig. 9. A similar correlation
with cognitive scores is found for the actual age and the predicted age of
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Fig. 8. Cognitive scores with respect to subject age.

test subjects, as presented in the second and third rows of Table 7. From
the last row of this table and Fig. 9, we also observe that prediction re-
siduals are negatively correlated with cognitive scores.

In the next experiment, we determine whether differences between
chronological age and brain age predicted by our model correlates with
cognitive measures from the NTCB. We split the 127 test subjects in two
groups: subjects whose predicted age is greater or equal to their real age
(Above group), and those with a predicted age less than the real age
(Below group). We then compared the distribution of cognitive scores in
the two groups. The top row of Fig. 10 shows the histogram of scores for
the Above (blue line) and Below (red line) groups, with group averages
given between parentheses. We observed that subjects with a predicted
age greater or equal to their real age have lower cognitive scores, on
average, than those in the other group. We performed a one-tailed t-test
with null hypothesis of no difference between the groups and report the
p-values in Fig. 10. Results indicate that observed differences may not be
due to random sampling, for all cognitive scores (p < 0.05). A possible
confound in this analysis is that cognition is highly correlated with age in
developing subjects. To eliminate this confound, we normalized cogni-
tive scores of subjects by subtracting the mean score of subjects with the
same age, and dividing the result by the standard deviation of same-age
subjects. Hence, normalized values indicate how individual subjects
compare to those of the same age. The bottom row of Fig. 10 gives the
distribution of normalized scores for the subjects groups used in the
previous analysis (i.e., predicted age Above or Below the real age). Once
again, we observe higher mean normalized scores in the Below group
compared to the Above group. However, we cannot establish significance
in this case.

4.4. Impact of gender

We evaluate the sensitivity of the proposed model to gender differ-
ences by using female and male data separately for training. Results in
Fig. 11 reveal that the model may be less accurate on the female cohort,
with a larger mean and variance of prediction residuals for this cohort
(differences are significant with a t-test p-value of 0.0352). To gain
additional insight, we plot in Fig. 12 the distribution of cortical thickness
in relation to age for male and female subjects, since this feature type has
the greatest influence on prediction performance. We compare the
principal component of distributions computed for male and female
(dashed lines in the figure), which estimates the mean cortical thickness
as function of age. We find a smaller mean thickness for female compared
to male of similar age, which could partly explain why the female group
has higher prediction error compared to the male cohort.

5. Discussion

Several studies have investigated the relevance of neuroimaging
features such as cortical surface measures for analyzing brain develop-
ment and brain maturity (Cole and Franke, 2017; Ball et al., 2017; Brown
et al., 2012; Becker et al., 2018; Varikuti et al., 2018; Franke et al., 2018;
Pardoe and Kuzniecky, 2018; Cole, 2017; Yamaguchi and Honma, 2012).
Multi-modal and multivariate neuroimaging methods have been revealed
as a powerful tool for deriving spatial changes during aging (Cole et al.,
2017b; Fjell et al., 2013; Sowell et al., 2003). As reported in (Rosenberg
et al., 2018), large-scale datasets and computational tools based on ma-
chine learning have brought forward new ways to study developmental
changes in brain structure and behavior, that could offer translational



M. Zhang et al. NeuroImage xxx (xxxx) XXX
007 T on g [ IR R=-0.1898 0.05
2 R=-0.1349
0.06 0.045
0.05 | 004 |
0.035 |-
o 0.04 | _
3 2 o3l S
(5 © ° °
o 0.03 [ . o
0025 - N
0.02
0.02 | *
0.01 | . - 0.015 |-
. 9 > a.' y o
0 L L L ° L L ) 0.01 L | L | )
-10 5 0 5 10 15 -10 5 0 5 10 15
Predicted age residuals Predicted age residuals
(a) Reading (b) Flanker
0.05 005 -
R=-0.1323 . R=-0.1550
0.045 | 0.045
0.04 004 |
0.035 0.035 |
S A . @
E 0.03 - § 0.03 |
< b o
0.025 |- 0.025
002 - 0.02 | * i
0.015 | 0015 -
5 .
0.01 i i i | i 0.01 i i i . )
-10 5 0 5 10 15 -10 5 0 5 10 15
Predicted age residuals Predicted age residuals
(c) Attention (d) DCCSs
Fig. 9. Cognitive scores with respect to prediction residuals (predicted age minus real age).
60 60 60 60
[ Above (120.55) [——JAbove (8.86) [——JAbove (9.38) Above (8.50)
@ [ 1Below (160.51) 5] [ 1Below (9.35) i) [ ]Below (9.69) §2] [ 1Below (9.15)
3] 3] 3] 9]
D40} p=1e05 D40} p=0.0051 D40} p=0.032 D40} p=0.00037
Q Q Q Q
= =] =] S
[7) 7] » 7]
G 20 G 20 G 20 G 20
=z =z =z =z
0 , 0 | 0 L=m 1 ol=H
0 100 200 2 4 6 8 10 12 2 4 6 8 10 12 4 6 8 10
Reading Flanker Attention DCCS
60 60 60 60
[___1Above (-0.03) [__1Above (-0.02) [__JAbove (-0.02)
g [__1Below (0.03) g [_1Below (0.02) g [ 1Below (0.02) ,g
D40t p=033 D40t p=0.39 D40t p=037 D 40
Q o) Q Ke)
=] =) =] S
7] 7] 7] )
G 20 G20 G20 G20
=z =z 74 =z
0 0 0 0
-2 0 2 -4 -2 0 -4 -2 0 2 -2 0 2
Reading Flanker Attention DCCS

Fig. 10. Distribution of cognitive scores for subjects whose predicted age is greater or equal to (Above) or less than (Below) their real age. Top: unnormalized scores.
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benefits for personalized medicine and education. In (Cole et al., 2017b),
Cole et al. found that combining multivariate measures of biological
ageing helped in building accurate biomarkers for predicting cognitive
deterioration and mortality. Ball et al. (2017) suggested that variability
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in brain development could be modeled using a low dimensional data
representation. Our work follows these studies by showing the potential
of machine learning to derive neuroimaging biomarkers for predicting
brain maturity (Tables 2 and 3).
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We propose an extension of standard dictionary learning to predict
brain maturation progression in the PING dataset. By adding orthogo-
nality and non-negativity constraints to the paired dictionary approach,
we introduce potential modeling benefits, including better control of
overfitting, implicit feature selection and improved interpretability. Ex-
periments on predicting the age of 841 PING subjects between 3 and 21
years demonstrated the advantage of our NPDL model, compared to
Dictionary Pair Learning (DPL) (Gu et al. Feng), as well as the benefit of
imposing non-negativity constraints while learning the class-specific
dictionaries. Compared to recent studies based on the same data, how-
ever, the proposed method leads to a higher prediction error. For
instance, an MAE of 1.79 years is reported in (Ball et al., 2017), using
cortical measures corrected for global differences in intracranial volume.
Whereas this previous study used cortical measures at the voxel level, for
up to 300,000 measurements per surface, we here only considered
aggregated measures in atlas parcels. Hence, employing finer-grained
information could possibly improve the accuracy of our method.

The relation between gray matter density and brain age is well-
established in the literature (Khundrakpam et al., 2015; Giedd and
Rapoport, 2010; Sowell et al., 2002). Moreover, recent studies have
proposed predictive models combining several cortical measures (Ball
et al., 2017; Erus et al., 2014; Brown et al., 2012). However, the link
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between structural connectivity and brain maturity had not been fully
explored. Our results showed cortical thickness to be the most discrimi-
native feature among cortical measures, followed by cortical volume
(Table 5). This differs from the study in (Ball et al., 2017), also using the
PING cohort, where cortical thickness was found to be the least predic-
tive measure. This may be due to different measures of the cortical
thickness and should be further investigated. Although measures of
DWI-based connectome show a slight increase with age (Fig. 6), results of
our study indicate this information to have a low predictive power for
brain maturity.

We analyzed the relationship between brain age predictions and
cognition. Specifically, we considered the signed difference between the
predicted brain age and chronological age of subjects as a biomarker to
determine four NTCB cognitive measures, i.e., Flanker Inhibitory Control
(Flanker), Attention Test (Attention), Dimensional Change Card Sort
(DCCS), and language measures of the Oral Reading Recognition tests
(Reading). Results showed that subjects with a predicted age above their
real age had higher mean cognitive scores than those in the opposite
group. Although this difference is significant when using unnormalized
scores, significance disappears when normalizing the scores of a subject
with respect to same age subjects in the cohort. This could confirm the
result in (Ball et al., 2017), where no significant association was found
between model accuracy and cognitive performance. As pointed out in
previous studies such as (Le et al., 2018) and observed in our experiments
(Fig. 3), using prediction residuals (i.e., predicted age minus actual age)
as biomarker for cognitive scores can induce systematic bias due to a
regression toward the mean effect. Additional steps could be used to
avoid this bias, for instance including chronological age as regression
covariate (see (Le et al., 2018)).

Our experiments on the impact of gender revealed a reduced accuracy
of our model for predicting the brain age of female subjects. When
comparing the distribution of cortical thickness values across gender, we
found a slightly higher mean for male subjects of the same age (Fig. 12).
This observation is in line with previous studies indicating gender effects
in brain anatomical features, see for instance (Luders et al., 2006, 2012).

6. Conclusion

We proposed a novel non-negative projective dictionary learning
(NDPL) approach for predicting brain maturity. This approach extends
conventional methods for learning discriminative dictionaries by
imposing both orthogonality and non-negativity constraints, which re-
duces redundancy in the learned representation and acts as an implicit
feature selection technique. Experiments on the task of modeling brain
age showed the advantages of our approach compared to Dictionary Pair
Learning (DPL) and the model without non-negativity constraints. Our
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analysis indicates that cortical thickness is the most discriminative
feature for predicting brain age. Moreover, results highlight differences
in the prediction accuracy obtained for male and female subjects and
suggest a possible link between prediction residuals and cognition.
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1. The flowchart of data pre-processing
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