
1

From design to deployment: decentralized
coordination of heterogeneous robotic teams
David St-Onge 1,∗, Vivek Shankar Varadharajan 2 Ivan Svogor 2 and
Giovanni Beltrame 2

1INIT Robots laboratory, Department of Mechanical Engineering, École de
Technologie Supérieure, Quebec, Canada
2MIST laboratory, Department of Computer Engineering and Software Engineering,
Polytechnique Montreal, Quebec, Canada
Correspondence*:
David St-Onge
david.st-onge@etsmtl.ca

ABSTRACT2

Many applications benefit from the use of multiple robots, but their scalability and applicability3
are fundamentally limited when relying on a central control station. Getting beyond the centralized4
approach can increase the complexity of the embedded software, the sensitivity to the network5
topology, and render the deployment on physical devices tedious and error-prone. This work6
introduces a software-based solution to cope with these challenges on commercial hardware.7
We bring together our previous work on Buzz, the swarm-oriented programming language,8
and the many contributions of the Robotic Operating System (ROS) community into a reliable9
workflow, from rapid prototyping of decentralized behaviours up to robust field deployment. The10
Buzz programming language is a hardware independent, domain-specific (swarm-oriented),11
and composable language. From simulation to the field, a Buzz script can stay unmodified12
and almost seamlessly applicable to all units of a heterogeneous robotic team. We present the13
software structure of our solution, and the swarm-oriented paradigms it encompasses. While14
the design of a new behaviour can be achieved on a lightweight simulator, we show how our15
security mechanisms enhance field deployment robustness. In addition, developers can update16
their scripts in the field using a safe software release mechanism. Integrating Buzz in ROS,17
adding safety mechanisms and granting field updates are core contributions essential to swarm18
robotics deployment: from simulation to the field. We show the applicability of our work with19
the implementation of two practical decentralized scenarios: a robust generic task allocation20
strategy and an optimized area coverage algorithm. Both behaviours are explained and tested21
with simulations, then experimented with heterogeneous ground-and-air robotic teams.22

Keywords: decentralized behaviours, swarm intelligence, heterogeneous robotic teams, over-the-air update23

1 INTRODUCTION
The range of applications for multi-robot systems is constantly and rapidly expanding. Small groups24
of heterogeneous robots collaborating to extend their individual potential were repeatedly proven to25
be successful (Dudek and Milios, 2000; Kruijff et al., 2012; Lliffe, 2016). Unfortunately, each unit of26
these scenarios is necessary, to the point that a single failure will most likely cause the mission to fail. By27

1

Authors' accepted manuscript
Article accepted for publication in Frontiers in Robotics and AI
DOI: 10.3389/frobt.2020.00051
https://www.frontiersin.org/articles/10.3389/frobt.2020.00051/abstract

St-Onge, D. et al. ROSBuzz

leveraging a greater number of similar agents, individual failures can be compensated, while the imprecision28
of sensors can be mitigated by fusion of multiple sources. Swarm robotics has been known for decades to29
be a possible solution to many problems in dynamic, hostile, and unknown environments (Brambilla et al.,30
2013). A Swarm Robotics System (SRS) must be flexible, scalable, and robust (Şahin, 2004). Unfortunately,31
swarm robotics requires development tools specific to decentralized systems that are still hardly available.32

Researchers are very active in developing behaviours for robotic swarms (Bamberger et al., 2006; Brunet33
et al., 2008; Hauert et al., 2011; Bayindir, 2016; Davis et al., 2016), with support from a handful of34
companies and some open source initiatives (Goc et al., 2016; Pickem et al., 2016). These affordable35
platforms grant access to physical implementation with a significant number of robots, but lack a set of36
software tools for the implementation of their collective behaviour. Furthermore, swarms share common37
behavioural paradigms: no predefined roles, and control based on local interactions. For a swarm system,38
and in particular one with heterogeneous members, communication, neighbor management, and data39
sharing need to be re–implemented for each platform and experiment. For instance the work presented40
in (Hauert et al., 2011), similar to many of the previously mentioned ones, is hardware specific and cannot41
be ported to other robotic systems easily.42

The development of an optimized and specialized software infrastructure, one that is sufficiently flexible43
to make robotics researchers feel unconstrained, while simultaneously increasing their development44
efficiency is a tedious, and often unsuccessful, task. ROS has established itself as a standard for robot45
development, but the community is still exploring the challenges of swarm engineering (Davis et al., 2016).46
This issue became more apparent with the introduction of programming languages that are specific for47
swarm development (Bachrach et al., 2010; Pinciroli et al., 2015).48

Among those, Buzz is a domain-specific programming language for robot swarms (Pinciroli and Beltrame,49
2016). Its purpose is to help researchers and practitioners by providing a set of primitives which accelerates50
the implementation of swarm-specific behaviours. Buzz comes with an optimized virtual machine that runs51
on all swarm members, and each robot executes a common program or script. The main peculiarity of Buzz52
is that it merges bottom–up behaviour development (i.e. assigning tasks to specific robots) with a top–down53
strategy definition for the whole swarm (i.e. collaboration rules and mission goals). Buzz and its virtual54
machine allow a script to be deployed on any autonomous robot: from small desk robots, to Unmanned Air55
Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) of any size, and even satellites. While Buzz was56
natively deployed on embedded systems (Kilobots, Zooids, and Kheperas robots)1, larger robots require57
integration within a software ecosystem that allows roboticists to interface with different sensors, actuators,58
and complex algorithms easily.59

To address this issue we introduce ROSBuzz, the ROS implementation of the Buzz Virtual Machine60
(BVM). Much more than an adapter or a facade, it enables a) fast script–based programming of complex61
behaviours, b) seamless script porting on different hardware, c) safe field deployment, d) over-the-air62
updates on the field, and most importantly e) it allows a coherent design flow from simulation to field63
deployment. While a) and b) arise from the integration of Buzz in the ROS ecosystem, e) is possible only64
through ROSBuzz and its other core contributions c) and d). To present ROSBuzz we first recall the key65
primitives of Buzz from (Pinciroli and Beltrame, 2016) (subsection 2.1), then explain the details of this66
ROS node architecture (subsection 2.2), its specific simulation-to-field workflow (subsection 2.3), and the67
integrated mechanisms to minimize risk at deployment (subsection 2.4). To test the ROSBuzz performance68
we introduce two decentralized behaviours: a task allocation strategy (subsection 3.1), and an area coverage69

1 https://github.com/MISTLab/BittyBuzz

This is a provisional file, not the final typeset article 2

https://github.com/MISTLab/BittyBuzz

St-Onge, D. et al. ROSBuzz

algorithm (subsection 3.2). Both algorithms are assessed in term of robustness to packet loss and scalability70
in simulation and with real world experiments.71

2 METHODS
In academia and industry, ROS has become a de facto standard for any serious mobile robotics application.72
The sheer number of community-developed tools (e.g. Rviz 2, Rqt Graph 3, PlotJuggler 4, etc.) makes it73
almost indispensable for developing, testing and integrating all the software layers of the autonomy stack74
that a single robot requires. Though ROS can be used to simultaneously control multiple robots, it was75
never really designed for decentralized coordination of robotic teams.76

The long-awaited ROS 2.0 is welcome by the multi-robot research community: it brings solutions for77
some known issues in controlling multi-robot systems. Mostly, those are related to networking, real-time78
processing, and defining relationships between robots, but the challenges of decentralized multi-robot79
systems still remain: the main purpose of ROS 2.0 is to provide transparency of the network layer, while80
control resides in the implementation of the swarm behaviour.81

The main differences and challenges of controlling a swarm, as opposed to a single robot, are that by82
definition swarms must be a) decentralized, and b) programmed with the same behaviour.83

a) means that there cannot be a central point or a single robot in charge of defining the behaviour of84
the swarm. However, this does not mean that any member of the swarm cannot take specific roles, which85
brings us to b). The robots cannot be programmed as individuals, or in technical terms, the code deployed86
to each member of the swarm must be identical. Therefore, in the true spirit of the swarm behaviour, the87
implementation must be such that all the members of the swarm contain the same code, but the behaviour88
of the individual is defined and directed by the entire group and the environmental context.89

2.1 Buzz, swarm language and virtual machine90

To better understand our implementation choices, please consider the following factors which generally91
define a swarm: a) decentralized decision making, b) behaviour defined on local interactions and envi-92
ronmental context, and c) information propagation latency. Buzz grants the developer with premises and93
constructs that ease the deployment of top–down swarm strategies: a set of rules regulating the swarm94
members actions following their interaction and the mission’s goals. This aspect is core to most swarm95
intelligence algorithms developed in the past decades. However, real robotic systems benefit in many96
contexts from the heterogeneity of their abilities (for instance different sensors and locomotion modes).97
Buzz allows to program for sub-swarms, i.e. subset of the swarm with specific attributes to complete98
specific type of tasks Pinciroli and Beltrame (2016).99
2.1.1 The Buzz Toolbox100

Buzz provides literals and data structures to address three key concepts in defining a swarm behaviour5:101

• Virtual stigmergy (VS): a bio–inspired shared tuple space. The original concept of stigmergy is an102
environment–mediated communication modality used by social insects to coordinate activity (Camazine103
et al., 2002). VS is implemented as a shared memory table containing 〈key,value〉 pairs. The shared104
memory table stored in a local copy on each robot, which is synchronized via communication only105
when needed. Each 〈key,value〉 tuple is associated with a timestamp (a Lamport clock (Lamport,106

2 http://wiki.ros.org/rviz
3 http://wiki.ros.org/rqt
4 http://wiki.ros.org/plotjuggler
5 http://the.swarming.buzz/ICRA2017/cheat-sheet/

Frontiers 3

http://wiki.ros.org/rviz
http://wiki.ros.org/rqt
http://wiki.ros.org/plotjuggler
http://the.swarming.buzz/ICRA2017/cheat-sheet/

St-Onge, D. et al. ROSBuzz

1978)) and the ID of the last robot that modified the data. Tuples and metadata are shared between107
swarm members via a gossip algorithm (Pinciroli et al., 2016). Each robot locally decides when to108
re-broadcast information based on the timestamp and conflict detection and resolution mechanisms.109
Overall, robots always converge to a common set of tuples. The details of the inner workings of the110
Virtual Stigmergy can be found in a previous publication (Pinciroli et al., 2016).111

• Swarm Aggregation: is a literal which allows for grouping of robots into sub–swarms, through the112
principle of dynamic labeling (Pinciroli and Beltrame, 2016). The swarm construct is used to create a113
group of robots that can be attributed with a specific behaviour, which differs from the other robots,114
based either on the task or robot abilities.115

• Neighbors Operations: in Buzz refer to a rich set of functions (reduce, map, size, foreach,116
broadcast, listen, etc.) which can be performed with or on neighboring robots through situated117
communication (Støy, 2001). Neighbors are defined from a network perspective as robots which have118
a direct communication link with each other. With situated communication, whenever a robot receives119
a message, the origin position of the message is also known to the receiver.120

These primitives constitute essential functionality that comes with Buzz and enables robotics software121
engineers to accelerate their way to developing swarm behaviours. To demonstrate this consider the122
following code:123

var accum = neighbors.map(lj vector).reduce(lj sum, math.vec2.new(0.0, 0.0)).124

With this line, every robot in the swarm uses a neighbors structure to map a certain function to all the125
elements of the list (i.e. neighboring robots) and uses a rolling computation to reduce it to a single value126
used by a robot6. By rolling computation, we refer to the fact that reduce applies the function lj sum to127
each neighboring robot’s relative position to obtain a single value (accum) as per the logic defined in the128
lj sum function.129

Buzz is an extension language: if a user needs a specific primitive not provided by its current syntax, it130
can be easily added using C code. In fact, Buzz provides an intuitive way to expose any function written in131
C to the Buzz script, with access to the current execution context, i.e. C functions can access the literals132
and data sets used in the script.133

A Buzz script is compiled into a memory-efficient and platform-agnostic bytecode to be executed on the134
Buzz Virtual Machine (BVM). To interface the BVM with the robots’ actuators and sensors, we use ROS.135
The following section describes how ROS and Buzz are integrated to allow seamless and platform-agnostic136
execution and extension of Buzz scripts that define swarm behaviour.137

2.2 ROSBuzz138

ROS is a widely used tool, accepted by both researchers and professionals as it improves the productivity139
and compatibility of robotics development, while Buzz provides essentials for designing and developing140
swarm behaviours.141

A ROS node is generally an executable that uses ROS 7 to communicate with other nodes. ROSBuzz puts142
Buzz and ROS together, providing a ROS node which encapsulates the Buzz Virtual Machine. Furthermore,143
we implement communication between swarm members with the Micro-Air Vehicle Link (MAVLink)144
protocol, which is widely available through the MAVROS implementation. Buzz messages are serialized145
and packed into the MAVLink standard payload messages, while the ROSBuzz node provides the BVM146

6 https://the.swarming.buzz/wiki/doku.php?id=buzz_examples
7 http://www.ros.org/

This is a provisional file, not the final typeset article 4

https://the.swarming.buzz/wiki/doku.php?id=buzz_examples
http://www.ros.org/

St-Onge, D. et al. ROSBuzz

with access to these messages. As such, ROSBuzz allows any MAVLink-capable mobile robot to join the147
swarm, using the common behaviour defined by the buzz script provided by the ROS launch file.148

The software architecture of the ROSBuzz node (shown in Figure 1) is organized in three layers which149
reconcile the step–based (sense, plan, act) execution nature of Buzz and the event–based nature of ROS.150

Figure 1. Simplified class diagram of the ROSBuzz software architecture: step-based BVM (lower right)
integrated to the event-based ROS ecosystem.

The namespace ROSBuzz represents the entire ROS package. Upon launching, ROSBuzz initializes the151
main ROS loop and the necessary configuration parameters. Those consist of ROS callback functions for152
subscribers, publishers and services which hold references to MAVROS specific messages and153
expose them to the BVM. These messages can then be used for sensing, planning and acting.154

On top of Figure 1, the main namespace ROSBuzz contains two additional namespace: Communication155
and Coordinates. The latter is used to implement various data structures that represent positions in156
coordinate systems with different bases and the transformations between those. The Communication157
namespace is used to process the MAVROS payload and extract the information about the robots neighbors.158
Namely, BVMMsgs defines the ROS messages for the MAVROS communication, the Communication159
class processes the incoming and outgoing messages, while Neighbors is a class used to store neighbor160
information.161

There are two additional classes within the ROSBuzz namespace: ROSController, which defines the162
ROS node containing the main loop and implements the callback references; and the Robot class, which163
implements some logic and stores local information about the robot.164

To use this software stack, a user needs to install a ROSBuzz package, write a Buzz script, and point the165
ROS launch file to it. The BuzzVM interprets and executes the script, and executes the following loop: a)166
process incoming messages, b) update sensors information, c) perform a control step, d) process outgoing167
messages; and finally e) update the actuation commands. The BVMManager class is used to mediate the168
step-based nature of the Buzz and event-based nature of ROS. As messages come in in the main ROS loop169

Frontiers 5

St-Onge, D. et al. ROSBuzz

BAL (BuzzVM Abstraction Layer)

BuzzVM (BuzzVM Handling Layer - A singleton Class with VM)

RBAL - ROSBuzz Abstraction Layer
ROSBuzzImpl (ROSBuzz
Implementation Layer)

ROSBuzzNode - ROS Layer

+controlClosures : BuzzControlClosure*
+updateClosures : BuzzUpdateClosures*
-controlCallbacks : std::map<?>
-dataUpdates : std::map<?>
-buzz_vm_class_ : BuzzVM*

+BuzzUtility(controlCallbacks, updateCallbacks)
+ControlStep() : void
-UpdateActuators() : void
-UpdateSensors() : void
-ProcessInMessage() : void
-ProcessOutMessage() : void

BuzzUtil i ty

-controlCallbacks : map<name, ROSCallbackInterface>
-updateCallbacks : map<name, ROSCallbackInterface>
-buzz_utility_ : BuzzUtility*

+In i t ()
+Loop()
-ObtainBuzzParameters()

ROSController

+MoveTo()
+BuzzControlClosures(controlClosure...

BuzzControlClosures

+ROSCallbackInterface()
+In i t ()
+Execute()

<< In te r face>>
ROSCallbackInterface

<< In te r face>>
RCI_CurrentPosition

<< In te r face>>
RCI_GenericHandler

+BuzzUpdateClosures()
+UpdateCurrentPosition(buzz_vm_cla...

BuzzUpdateClosures

+CurrentPositionImpl()
+SetPosition(msg : GPS) : void
+GetPosition() : Postion::Gps
+Init(controller : RosController*, ...

CurrentPositionImpl

GenericHandlerImpl

Custom types

<< In te r face>>
. . .

. . .

Calls Get/Set functions from BuzzVM stack

Figure 2. Relationship between classes of the internal ROSBuzz software architecture.

(in the ROSController class), the BVMManager makes the latest information available to the BuzzVM170
interpreter.171 2.2.1 Under the Hood172

To extend Buzz, a designer needs only to use C to expose additional functionality to the Buzz script. In173
other words, it is possible to use existing libraries or algorithms from any other language outside of the174
BVM and still grant access to these functionalities inside a script. A C function can be exposed as a Buzz175
closure, which is bound and registered to the BuzzVM, making the closure available for use in the Buzz176
script. To provide more details in how Buzz and ROS actually work together, let us consider Figure 2 and177

This is a provisional file, not the final typeset article 6

St-Onge, D. et al. ROSBuzz

the following scenario: the Buzz script needs to access the latest positional information of the neighbors to178
avoid a collision. For this scenario, the control flow is as follows.179

Upon starting the ROSBuzz node, the update and control callbacks are initialized and the main ROS loop180
starts. In each step, the main loop calls a ControlStep function from a BuzzUtility instance. After181
processing all the in messages from the neighboring swarm members, the UpdateSensors function deli-182
vers the information about the current position to BuzzVM using the UpdateCurrentPosition function183
(which uses the updateClosures collection, which in turn provides access to the Execute function184
of the CurrentPositionImpl). With this setup, the Buzz script can access the position information185
during the execution of its ControlStep. However, to send actuation information back to ROS, after the186
ControlStep method, the main ROS loop calls the UpdateActuators which in the similar way uses187
the BuzzControlClosures to perform actuation via ROS callback functions.188

From a software engineering standpoint, ROSBuzz provides certain level of abstractions to make it189
maintainable, upgradeable, and extendable. Figure 2 shows the abstraction layers within ROSBuzz, with190
which an user can independently adapt the implementation layer to fit the current needs without changing191
any other layers of the software. ROSBuzz provides robotics researchers and practitioners a turnkey system192
that can transform a heterogeneous group of robots into a swarm.193

Furthermore, ROSBuzz provides the developer with a consistent simulation-to-deployment infrastructure,194
and mechanism to enhance the robustness of the deployment itself: over-the-air behaviour updates and195
barrier consensus. The next sections detail these features.196

2.3 Simulation to deployment197

robot0/ROSBuzz

Live Qt editor ARGoS Plugins

Text editor

CommunicationHub
Hardware Models

RcClient

ROS

...

DJI M100
(based on hector)

3DR Solo
(based on DroneKit)

Clearpath Husky
(based on robot_navigation)robot1/ROSBuzz

robotN/ROSBuzz

...

Buzz
script

Buzz
script

ARGoS
experiment

Physics

Situated
communication

Sensors
(ray, compass)

Wheel actuator

Figure 3. Simulation environments: a) with Gazebo and ROS nodes, allowing for accurate dynamics and
operator inputs, and b) with ARGoS to simulate large swarm size in a lightweight environment.

Designing applications for delicate and expensive hardware puts a lot of pressure on the developers.198
When tens of robots are deployed to achieve a coordinated task, the risk of failure and hardware damage199
increase rapidly. To cope with this issue, a common approach is to carefully simulate the control before200
taking it out to the field. ROSBuzz also provides a step-by-step workflow to minimize the risks of deploying201
decentralized behaviours: a low-resource simulator to iterate quickly on the design and test thousands202
of units, followed by a more realistic full-stack software-in-the-loop environment, extended whenever203
available to hardware-in-the-loop validation and finally to the deployment of the behaviour in the field.204

Figure 3 shows the modules and ecosystem of both simulation setups. Since the early development205
phases of Buzz, the BVM was integrated in the ARGoS simulator (Pinciroli et al., 2012), which features a206
Buzz editor, allowing for quick development and integration of behavioural scripts (Figure 3-b). While207

Frontiers 7

St-Onge, D. et al. ROSBuzz

ARGoS can support thousands of units, it does not accurately represent the dynamics of the robots, it is208
not compliant with the ROS architecture, and does not allow external control during mission operations.209
Therefore, we added a second simulation stage based on ROS and Gazebo (Figure 3-a), leveraging210
community packages available for ROS. Three hardware adapters are currently provided for Gazebo using211
the hector package (Meyer et al., 2012) for the Matrice 100, the DroneKit-SITL for the 3DR Solo, and212
the nodes provided by Clearpath for the Husky rover. Multiple instances of ROSBuzz are launched in213
a separate group namespace, alongside their hardware emulators. On a Core i7 laptop equipped with a214
NVIDIA graphics card, we are able to smoothly simulate 50 DJI Matrice 100 in Gazebo. The inter-robot215
communication is managed by a relay node that acts as a communication hub between ROSBuzz instances.216
The relay provides control over the communication simulation parameters with user-defined packet drop217
rates, latency, bandwidth, and communication range. In section 3, we use this simulation ecosystem to218
show the scalability of our system and its robustness to packet loss.219

2.4 Robustness-enhancing mechanisms220

The tools introduced in the above sections grant the developers with a software ecosystem easing221
the implementation, simulation and deployment of decentralized behaviours. This is at the core of the222
apparent needs in multi-robots team technology, but entirely rely on the developer to ensure minimal223
risk at deployment. To help the user enhance the robustness of the behaviour in the field, we integrate224
common safety mechanisms (described in subsubsection 3.2.3) and we provide two essential contributions225
with ROSBuzz: a consensus strategy referred to as ‘barrier’ and a safe Over-The-Air (OTA) script update226
mechanism.227

2.4.1 Barrier228

When dealing with the coordination of multiple robots, a group of robots that comes to an agreement229
on the value of some variable, is said to have reached consensus. One of the key elements for designing230
complex swarm behaviours, is the ability to create swarm-level state machines, where all robots agree on231
the current state of the swarm (or sub-swarm). For this purpose, we designed a barrier mechanism, which232
allows the synchronous transition of all swarm members from one state to another. The swarm construct of233
Buzz also broadens the use of the barrier on specialized subswarms; a handy feature to split the group over234
parallel missions. A safe waiting state (idle, hover) is used to wait for all robots to agree on the following235
state. The barrier uses a VS table (subsection 2.1): each robot updates a state value associated to its own236
unique id when it is ready to change state (i.e. behaviour). The robot IDs are attributed following the237
network interface address (for instance Xbee serial number or WiFi IP address). Consensus is reached238
when the table size equals the swarm size and all values correspond to the same outgoing state: then all239
robots can transition to the next behaviour.240

1 BARRIER VSTIG = 0 # A r b i t r a r y i n i t i a l VS v a l u e241
2 BARRIER TIMEOUT = 600 # Timeout v a l u e i n s t e p s242
3 # C r e a t e t h e b a r r i e r243
4 f u n c t i o n b a r r i e r c r e a t e () {244
5 # r e s e t t h e s t e p t i m e o u t c o u n t e r245
6 t i m e I n = 0246
7 # c r e a t e t h e b a r r i e r v i r t u a l s t i g m e r g y247
8 i f (b a r r i e r != n i l)248
9 b a r r i e r = n i l249

10 b a r r i e r = s t i g m e r g y . c r e a t e (BARRIER VSTIG)250
11 }251
12252
13 # E x e c u t e s t h e b a r r i e r253
14 f u n c t i o n b a r r i e r w a i t (S s i z e , t r a n s s t , r e s u m e s t) {254

This is a provisional file, not the final typeset article 8

St-Onge, D. et al. ROSBuzz

15 # s h a r e t h a t ‘ i d ’ i s i n t h e b a r r i e r w i th s t a t e ‘ s t ’255
16 b a r r i e r . p u t (id , s t)256
17 # look f o r t h e s t i g m e r g y s t a t u s257
18 b a r r i e r . g e t (i d)258
19 i f (b a r r i e r . g e t (” d ”) == 1) {259
20 # Going o u t .260
21 t i m e I n = 0261
22 # l a u n c h n e x t s t a t e262
23 t r a n s s t ()263
24 } e l s e i f (b a r r i e r . s i z e () >= S s i z e) {264
25 # Check t h e VS c o n t e n t265
26 i f (a l l s a m e s t a t e ()) {266
27 # Going o u t . Sha re t h a t you a r e ove r t h e b a r r i e r267
28 b a r r i e r . p u t (” d ” , 1)268
29 t i m e I n = 0269
30 # l a u n c h n e x t s t a t e270
31 t r a n s s t ()271
32 }272
33 } e l s e i f (timeW >= BARRIER TIMEOUT) {273
34 # t imed out , remove y o u r s e l f from s t i g m e r g y b a r r i e r274
35 b a r r i e r = n i l275
36 t i m e I n = 0276
37 # l a u n c h s a f e resume s t a t e277
38 r e s u m e s t ()278
39 }279
40 t i m e I n = t i m e I n +1280
41 }281

Listing 1. Barrier implementation of consensus in Buzz language.

The Buzz functions implementing the barrier are detailed in Listing 1. barrier create is called once282
and barrier wait at each step, until trans st or resume st are called, stopping the barrier loop.283

We first create the barrier data structure: we initialize a VS table with a unique key (BARRIER VSTIG).284
Then at each step of the BVM, the function barrier wait is called with a transition state and a resume285
state. At each step, the robot puts its state in the VS table with its ID as a key. The robot then checks286
the table size: if it reaches the swarm size, the robot checks all values to ensure every unit is ready to287
go to the next state. If they are, the robot transitions its state and pushes a new value, d, in the table288
so the others know the barrier is done without checking all states. Otherwise, after a timeout (timeIn289
equals BARRIER TIMEOUT), the robot resumes its previous behaviour. We acknowledge that such a barrier290
mechanism can impact the scalability of any swarm algorithm deployed with our infrastructure. For this291
reason, the first experiment presented below (subsection 3.1) assesses the performance and usage of the292
barrier.293
2.4.2 Update mechanism294

ROSBuzz provides a mechanism to hot swap the behaviour script of the robots safely, with rollback295
strategies in case of update failures. The need for a reliable in-mission script update arises quickly when296
developing and experimenting with new behaviours. Since all robots in the swarm run the exact same script,297
they need to update simultaneously and ensure they stay coordinated. Our Over-The-Air (OTA) mechanism298
gets triggered either by modifying the script file or by a neighbor propagating a new behaviour patch. The299
components of the update mechanism are summarized in figure Figure 4: the update monitor watches for300
changes in the script file and notifies the update manager of changes; then the new changes are compiled,301

Frontiers 9

St-Onge, D. et al. ROSBuzz

tested, and an encrypted binary patch is generated, to be sent to all the other robots. The newly generated302
code version (id) is propagated through gossip based broadcasts, and when a version mismatch is identified303
by a robot, this latter requests the patch to its neighbors. To ensure safe transitions across versions, the304
robots switched to a standby behaviour (a platform-dependent safe state) and a barrier is initialized to reach305
consensus on the code version to use on the swarm. For more information on this update mechanism, we306
refer the reader to the exhaustive presentation in (Varadharajan et al., 2018). The mechanism performance307
is closely dependent of the network quality. We tested our update system extensively with WiFi and Xbee308
mesh networks, and proved its convergence even in extremely poor network conditions in (Varadharajan309
et al., 2018).310

Buzz Virtual Machine (BVM)

Behavioural

Buzz Script

OTA Patches

Update

Monitor

Update

Test set

Standby

Script

Buzz Compiler

Update

Manager

Patch
generation

Figure 4. Update monitor within the Buzz Virtual Machine.

3 EXPERIMENTS
As previously stated, the software ecosystem is platform-agnostic. Any robot can have a MAVROS-311
compatible driver node and a peer-to-peer communication network (WiFi-based, Xbee/Zigbee, etc.). The312
rest of the paper presents the deployment of two decentralized behaviours, from design to field deployment,313
passing through simulation.314

ROSBuzz, alongside our custom Xbee manager node (XbeeMav), was deployed on NVIDIA boards315
(TK1, TX1 and TX2), all running Ubuntu (16.04 or 18.04) for onboard control of a fleet of DJI Matrice316
100 quadrotors (M100). DJI provides an onboard SDK that can be interfaced in ROS to be compliant with317
MAVROS. Using the same NVIDIA boards, we deployed ROSBuzz on a fleet of Pleaides Robotics Spiri318
quadcopters.319

We also integrated a smaller and more resource-limited platform: the 3DR Solos, running ROSBuzz on320
Raspberry Pis 3 with Raspbian. As long-demonstrated by the ArduPilot community, the MAVlink protocol321
is also perfectly fitted to command and monitor rovers8. ROSBuzz was thus ported to a Clearpath Husky to322
control its navigation within an heterogeneous ground to air swarm. All robots use a Xbee 900 Pro module323
for inter-robot communication. The serialized and optimized Buzz messages payloads are transferred324
through a MAVlink standard payload message (64b array).325

We conducted two outdoor experiments with backup pilots for each robot: an autonomous task allocation326
demonstration with Solos, Husky and M100 (subsection 3.1), and a user driven area coverage demonstration327
with Spiris and M100 (subsection 3.2).328

8 http://ardupilot.org/rover/

This is a provisional file, not the final typeset article 10

http://ardupilot.org/rover/

St-Onge, D. et al. ROSBuzz

3.1 Task allocation329

A common scenario for a robot group is to execute a given queue of tasks evolving throughout the330
mission. Before optimizing the allocation of the tasks, the swarm must have a mechanism to ensure it will331
reach consensus on a given set of allocations. To ease the behaviour visualization, let us represent the tasks332
with target positions in the following description. This demonstration is adapted from the work of (Li et al.,333
2017), where the authors progressively place robots in a formation starting from a root robot selecting334
neighbors to be placed in the formation and proceeding recursively, with the newly placed robots selecting335
more followers and so on until the formation is complete. We integrated our barrier mechanism in (Li et al.,336
2017)’s state machine, deployed the algorithm in ROSBuzz over a real decentralized network (Xbee, as337
opposed to an emulation using a communication hub and WiFi in (Li et al., 2017)) on UAVs (instead of338
wheeled indoor platforms), and we used the algorithm for task allocation instead of graph formation.339

3.1.1 Algorithm340

We assume that all robots involved in the mission are aware of the list of tasks and their location. This341
hypothesis is not limiting since the structure table can be shared before the robots’ deployment or through342
run-time broadcast using VS (refer to subsubsection 2.1.1 for a definition).

Turned Off Take Off Free

Asking

JoiningJoinedLock

root

Figure 5. The behaviour law of the progressive task allocation algorithm represented as a finite state
machine. Every robot joining the mission will experience states TurnedOff, TakeOff, Free, Asking, Joining
and Joined. Before switching to state Free and Lock the robots wait for consensus in a transition barrier
state.

343

This table contains spatial coordinates of each the tasks. However, robots are not pre-assigned to a344
specified task in the mission. The behaviour law allows them to find proper tasks through simple local345
interactions with other robots leveraging the Buzz neighbor structure (see subsubsection 2.1.1), including346
robots that are already part of the mission and robots that are not yet assigned a task. This process can drive347
free robots to participate in the mission gradually or, from the perspective of the mission, it will attract free348
robots to join, allowing it to grow dynamically.349

The mission process starts when a robot gets the task 0 of the list. The progressive attribution of tasks350
will start from this robot, called the root, it is thus considered joined in the mission as soon as it goes351
out of the barrier following TakeOff, as shown with the dashed line in Figure 5. This unique robot has to352
be elected through interaction between the robots (i.e. a consensus) or a special robot can be attributed353
this role. The behaviour law is represented as a finite state machine, shown in Figure 5. It consists of354
seven states: Turned Off, Take Off, Free, Asking, Joining, Joined and Lock. After a user asked to start the355
mission, the stakeholder, i.e. the drone the user is connected to, share the information for take off. The356
assignment of tasks will start only after the first barrier, waiting for all members to be at a safe height,357
hovering. In state Free, the robot will circle around the edge of the mission zone, namely the structure358
composed of Joining and Joined robots, and search for a proper task in the list, using only neighbour359
interaction (see subsubsection 2.1.1). When such a task is found, and both predecessors are within sight360
(from a network topology point-of-view), the Free robot will transit to state Asking, sending a message361

Frontiers 11

St-Onge, D. et al. ROSBuzz

to request for the task. Once the request is approved by the Joining and Joined robots, the robot transits362
to state Joining. From that point on, it is part of the formation and is attributed a task (position) of the363
mission. With the knowledge of its Joined parent and of its own task position, the robot will compute its364
target GPS coordinates and navigate to it. Furthermore, since each robot needs only one predecessor (a365
robot already joined in the tree), it is not necessary to keep the entire structure of the mission, but rather366
only a predecessor tree.367

This algorithm is a perfect fit for dynamic missions, i.e. changing number of robots and/or mission tasks.368
Its Buzz script is available online9 and was extensively tested in simulation (subsubsection 3.1.2) and in369
the field (subsubsection 3.1.3).370

3.1.2 Simulations371

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
R

o
b
o
ts

 i
n
 S

T
A

T
E
_J

O
IN

E
D

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Time (s)

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
R

o
b
o
ts

 i
n
 S

T
A

T
E
_J

O
IN

E
D

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Time (s)

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Time (s)

0.0

0.1

0.2

0.5

0.7

0.9

Figure 6. Robustness to packet drop of the task allocation algorithm presented in subsubsection 3.1.1. The
curves show the percentage of robots in the last state of the algorithm: JOINED. Each scenario (packet
drop rate) was ran 5 times and the variability of the results are shown in the area around the curves. All
simulations were ran with 6 robots. The algorithm converges in most runs up to 70% packet lost.

Before releasing the behaviour on field robots, we must assess its robustness to packet drop in the372
communication network. The task allocation algorithm is highly dependent on communication performance373
between peers in the swarm to reach consensus. The first set of simulations presented in Figure 6 test374
scenarios with up to 90% packet drop. It demonstrates the converge of the barrier mechanism used in the375
algorithm and its robustness to imperfect communication. The results of Figure 6 illustrate the time required376
by each robot to join a formation (i.e. reaching a JOINED state, as described in subsubsection 3.1.1). The377
conclusion is straightforward and expected: a higher drop rate requires more time to complete the mission.378
Without packet lost the simulated fleet converge in less than 30s while with a packet drop rate of 90%, the379

9 https://github.com/MISTLab/ROSBuzz/blob/master/buzz_scripts/include/taskallocate/graphformGPS.bzz

This is a provisional file, not the final typeset article 12

https://github.com/MISTLab/ROSBuzz/blob/master/buzz_scripts/include/taskallocate/graphformGPS.bzz

St-Onge, D. et al. ROSBuzz

robots take almost 45s. For 20% packet lost or less, all robots converged in all runs. For 70% and 90%,380
on average more than 90% of the robots converged to their final state, with a minimum of 80%. As for381
90%, packet lost, an harsh condition we never experienced in the field, only 70% of the robots converged382
on average, with a minimum as low as 50%, but still several runs showed 90% of the robots converging.383
Furthermore, if 90% packet lost can be observed in some rare cases, it will most likely change dynamically384
(since all robots are expected to be moving) as oppose to the constant drop rate used in these runs. These385
results show a really high robustness of our algorithm and communication layers to communication issues.

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
R

o
b
o
ts

 i
n
 S

T
A

T
E
_J

O
IN

E
D

Start Pos End Pos

5
0

1
0
0

1
5
0

2
0
0

Time (s)

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
R

o
b
o
ts

 i
n
 S

T
A

T
E
_J

O
IN

E
D

5
0

1
0
0

1
5
0

2
0
0

Time (s)

5
0

1
0
0

1
5
0

2
0
0

Time (s)

Robots = 6 Robots = 12 Robots = 18

Robots = 24 Robots = 30 Robots = 48

Figure 7. Scalability of the task allocation algorithm presented in subsubsection 3.1.1. The curves show
the percentage of robots in the last state of the algorithm: JOINED. Each scenario (packet drop rate) was
ran 5 times and the variability of the results are shown in the area around the curves. The gray dots illustrate
the launch position of the robots and the blue dots, their final position. All simulations were ran without
packet lost. The algorithm converges even with 48 simulated robots.

386

The most significant output of this set of simulations is that consensus is always reached, even with large387
packet drop probability. The time required to reach JOINED state is not representative of the time required388
by the consensus mechanism alone since all robots have to move to their task to reach this state. Indeed,389
as explained in subsubsection 3.1.1, each task is associated with a target location and the robot will be390
considered to have joined the mission only when they reached it.391

Frontiers 13

St-Onge, D. et al. ROSBuzz

As mentioned in the introduction, a swarm behaviour is expected to be scalable, i.e. to behave in a similar392
way with both small and large robot teams without changes in the script (Pinciroli et al., 2016). Figure 7393
shows simulations from 6 to 48 robots, and the time required for the robots to reach the JOINED state. For394
each scenario the task allocation, represented by a final formation, is different: 6 go to ‘P’, 12 to ‘PO’, 18395
to ‘POL’, 24 to ‘POLY’, 30 to ‘PPOLY’ and 48 to ‘YLOPPOLY’. While 6 robots converge in less than 30s,396
48 robots take more than 200s to reach their final formation. We must recall again that more distance is397
traveled by some robots, slowing down the convergence together with the increase of time for consensus398
between more robots.399
3.1.3 Field deployment400

We validated the task allocation algorithm in the field with small heterogeneous swarms: three M100,401
one or two Solos, and a Husky.402

0 100 200 300 400 500 600
Time (step = 0.1s)

0

1

2

3

4

5

6

7

R
o
b
o
ts

 in
 S

T
A
T
E
_J

O
IN

E
D

1) L, 4 UAVs, 1 rover
4) Y, 5 UAVs, 1 rover
2) Y, 4 UAVs, 1 rover
3) Y, 5 UAVs

Figure 8. Time required for all the robots to join on each of the four experiments conducted. Four
experiments had five robot while the orange one had six. To reach the STATE JOINED, each robot has to
reach the physical location of its task.

We conducted four outdoor experiments to test different topologies and formation geometries. Each403
mission had a different set of robots and different localized tasks, represented with 4 different graphs:404

1. 2 branches (‘L’ shape) with 4 quadrotors and a rover,405

2. 3 branches (‘Y’ shape) with 5 quadrotors and a rover,406

3. 3 branches (‘Y’ shape) with 4 quadrotors and a rover,407

4. 3 branches (‘Y’ shape) with 5 quadrotors only.408

The time required for each unit to join the mission, i.e. to get its assigned task and move to its target409
position, is illustrated in Figure 8. The first robot to join takes more than 150s to wait for the rest of the fleet410
to takeoff and get over the first barrier. As seen in the first experiment, some robots are parents (predecessor411
in the graph) to more than one subsequent task and make it possible to have two robots simultaneously412
joining the mission. In the last experiment, the first three robots joined in less than 250s most likely because413
the ground-to-air communication in the other scenarios is slowing down the attribution of the tasks. Except414
for the third experiment, the average time to get a new robot to join is less than half a minute.415

This is a provisional file, not the final typeset article 14

St-Onge, D. et al. ROSBuzz

TU
RN

ED
OFF

TA
KE

OFF

ST
AT

E_
AS

KI
NG

ST
AT

E_
JO

IN
IN

G

ST
AT

E_
LO

CK

TU
RN

ED
OFF

TA
KE

OFF

ST
AT

E_
AS

KI
NG

ST
AT

E_
JO

IN
IN

G

ST
AT

E_
LO

CK

TU
RN

ED
OFF

TA
KE

OFF

ST
AT

E_
AS

KI
NG

ST
AT

E_
JO

IN
IN

G

ST
AT

E_
LO

CK

TU
RN

ED
OFF

TA
KE

OFF

ST
AT

E_
AS

KI
NG

ST
AT

E_
JO

IN
IN

G

ST
AT

E_
LO

CK

States per experiment

 0

 20

 40

 60

 80

100

N
e
ig

h
b
o
u
r

m
sg

.
re

ce
iv

e
d
 (

%
)

1) L, 4 UAVs, 1 rover 4) Y, 5 UAVs, 1 rover 2) Y, 4 UAVs, 1 rover 3) Y, 5 UAVs

Figure 9. Average ratio of neighbors messages received over the total swarm member for different states.

The time required to join is influenced by the network performance since each robot need to be assigned416
a label from its parent before moving. With Xbee 900MHz, the range is large, but the low bandwidth and417
dropped packets can affect the performance.418

0 100 200 300 400 500
Time (step = 0.1 s)

 0

 10

 20

 30

 40

 50

B
a
n
d
w

id
th

 u
sa

g
e
 (

%
)

Barrier #1 Barrier #2

Figure 10. Moving average of the bandwidth usage based on a window of 30 samples (which are
represented by gray dots).

Figure 9 shows the ratio of neighbor messages received over the swarm size. Indeed, in a Buzz step, each419
robot sends a message to all its neighbors sharing its position together with a payload relevant to the current420
step operations. We can observe that in average the Turned Off and Take Off states catches fewer messages421
than the other states. This can be explained with the radio wave deflection created by the irregularities of422
the ground.423

Frontiers 15

St-Onge, D. et al. ROSBuzz

Finally, Figure 10 shows the worst example of bandwidth usage for all robots on all experiments. It is424
clear that the maximum available payload per step, i.e. the Xbee frame size (250B, illustrated as a ratio), is425
never exceeded.426
3.2 Semi-autonomous exploration427

In several application scenarios envisioned for robotic teams, they should not be fully autonomous: the428
operator expertise is mandatory to the success of the exploration mission. In post-disaster emergency429
response, for instance, successful missions highlighted the importance of collaborative and complementary430
work between human and robots, also known as a coactive approach (Szafir et al., 2017). A similar431
reasoning applies to many exploration missions in unknown and complex environments: in order to432
optimize the mission strategies under multi-objective pressure (geological analysis, mapping, specific433
ground feature search, etc.) a human expert is still required. The following demonstration is designed to let434
the user continuously monitor and control the swarm exploration mission.435

Human Input:Deployment Hotspots Convex Region Voronoi Tessellation
B C

Figure 11. Semi-autonomous fleet deployment algorithm: A- Operator hotspot inputs, B- generated convex
region from the hotspots list, and C- the tessellation and gradient descend to uniformly cover the region.

3.2.1 Algorithm436

The Voronoi tessellation (Alexandrov et al., 2018) is an algorithm that has been extensively studied for437
multi-robot deployment. It usually takes the initial robot positions as seeds to the tessellation problem and438
then partitions the area. The logic is simple: create a frontier halfway between each robot and then stop439
those lines when they cross another frontier or the region’s borders. We integrated in Buzz the sweeping440
line algorithm, also known as Fortune’s algorithm, one of the most efficient ways to extract cell lines from441
a set of seeds (Fortune, 1987).442

We then cut the open cells with a user-defined polygonal boundary, shown in Figure 11: a convex region443
is generated from the operator hotspot inputted. At this point, each robot has knowledge of its cell’s limits.444
For a uniform distribution of the robots in the area, we use a simple gradient descent towards the centroid of445
each cell, similar to the work of (Cort et al., 2004). Each robot recomputes the tessellation following updates446
on the relative position of its neighbours; an approach that is robust to both packet loss (shown in the next447
subsection) and environmental dynamics. If a robot is not in the target region to be explored, a random goal448
inside the region is generated. Meanwhile the other members of the swarm will cover the whole region449
without it (larger cells). This algorithm leverages the neighbour struct (see subsubsection 2.1.1) to compute450
the number of seed and their relative location. It also shares the user hotspots using VS to ensure each451
robot has it last updated value (see subsubsection 2.1.1).452

The Buzz script is available online10 and was extensively tested in simulations (subsubsection 3.2.2) and453
in the field (subsubsection 3.2.3).454

10 https://github.com/MISTLab/ROSBuzz/blob/master/buzz_scripts/include/act/states.bzz#L344

This is a provisional file, not the final typeset article 16

https://github.com/MISTLab/ROSBuzz/blob/master/buzz_scripts/include/act/states.bzz#L344

St-Onge, D. et al. ROSBuzz

0

2

4

6

8

10

D
is

ta
n
ce

0.0

0.1

0.2

0.5

0.7

0.9

4
0

6
0

8
0

1
0
0

1
2
0

Time (s)

0

2

4

6

8

10

D
is

ta
n
ce

4
0

6
0

8
0

1
0
0

1
2
0

Time (s)

Start Pos

End Pos

Focal points

4
0

6
0

8
0

1
0
0

1
2
0

Time (s)

Figure 12. Robustness to packet drop in communication for the coverage algorithm. The curves show the
distance to the ideal Voronoi cells centroids (taken as the one without packet lost) and robot trajectories for
different packet drop rates. The starting positions (green dots), final formation (blue squares) and hotspots
(red triangles) are plotted above the curves. Each scenario was ran 5 times and the colored area around the
curves show the variability of the results. Even with 90% packet drop rate, the swarm converge to the right
cell centroids.

3.2.2 Simulations455

Similar to subsubsection 3.1.2 for the first ROSBuzz algorithm demonstrated, we ran simulations to456
assess the robustness and scalability of the coverage algorithm. Figure 12 shows the convergence of the457
area coverage algorithm through a set of simulations with increasing packet drop rates.458

For each of the six simulated configurations, the robots were initially distributed over two lines as459
illustrated with the red dots of Figure 12. The curves of Figure 12 plot the difference (euclidean distance)460
over time between the each robot position and their ideal Voronoi cell centroid. The ideal case is obtained461
from the first scenario, without any packet lost. The trajectories taken by the robots to reach their final462
tessellated positions are shown above the curves. The hotspots (red triangles in Figure 12) are the same for463
all runs and were selected in order to ensure that all six robots were already in the region to cover before464
launch (no random goals generated). The flat line starting each curve represents the delay before the take465
off command is been sent and the hotspots shared over the whole fleet. These plots demonstrate that the466
uniform coverage algorithm converge to the same final formation even with 90% packet drop rate. Moreover,467
small packet drop rates generate periodic oscillations since neighbouring robots (seeds) disappear and468
reappear. Same reasoning apply to large drop rate: major and lasting changes in the neighbours list directly469
influenced the stability, but nevertheless do not prevent the fleet to converge.470

To study the scalability properties of the coverage algorithm, we conducted another set of experiments471
with up to 50 robots, no packet lost, and a similar configuration as the previous simulations. Figure 13472

Frontiers 17

St-Onge, D. et al. ROSBuzz

0

10

20

30

40

50

In
te

r-
R

o
b
o
t

D
is

ta
n
ce

Start Pos

End Pos

Focal points

2
0

4
0

6
0

8
0

1
0
0

1
2
0

Time (s)

0

10

20

30

40

50

In
te

r-
R

o
b
o
t

D
is

ta
n
ce

2
0

4
0

6
0

8
0

1
0
0

1
2
0

Time (s)

2
0

4
0

6
0

8
0

1
0
0

1
2
0

Time (s)

Robots = 6 Robots = 10 Robots = 15

Robots = 20 Robots = 30 Robots = 50

Figure 13. Distance between the robots while navigating to the Voronoi centroids, as the number of robots
in the swarm increases.

shows the average of all pairwise distances between robots of the swarm. After the robots agreed on the473
hotspot values, they need to navigate toward the region to cover. This motion regroup the robots and cause474
a steep drop in the inter-robot distance. Upon arrival in the region, they each compute a tessellation to475
get their own cell centroid and navigate towards it. Close to their cell’s centroid, the tessellation refined476
itself over time, slowly spreading the fleet over the area. The inter-robot distance slowly increases until it477
reaches a steady state. In the end, these results show that the software infrastructure and the algorithmic478
computation scales well.479 3.2.3 Field deployment480

The guarantee of robustness provided by the simulations above, allowed us to deploy the experiment481
in the field safely. The flights were conducted in an outdoor field with additional safety measures: a482
geofence and a velocity limit. The geofence helped to prevent the UAVs from flying too far as a result of483
the autonomous cells computation from arbitrary user inputs. The velocity limit make it easier for the user484
to understand and expect the UAVs motion.485

Three operators controlled a fleet of two M100 and three Spiris for 15 minutes aiming at the exploration486
the area comprised in the geofence limits. The resulting trajectories are shown in Figure 14. Wind burst487
pushed some robots out of the geofence (black polygon) on occasion. The plots tend to illustrate that the488
operators were using hotspots more as attracting locations for the fleet, i.e. not waiting for it to reach a489
stable uniformly deployed formation. Nevertheless, comments gathered from the participants indicate that490
they felt in control and enjoyed the experience. Where the first demonstration used pre-loaded task graphs,491
this one added a potential liability from its online computation of targets relying on the user inputs. The492

This is a provisional file, not the final typeset article 18

St-Onge, D. et al. ROSBuzz

50 0 50 100
x (m)

25

0

25

50

75

100

125

150

y
(m

)

50 0 50 100
x (m)

25

0

25

50

75

100

125

150

50 0 50 100
x (m)

25

0

25

50

75

100

125

150

Figure 14. Trajectories of five UAVs in semi-autonomous exploration task following the hotspots (red
triangles) inputted by each operator. The black polygon represents the geofence.

experiments still demonstrated the safe and robust software architecture, from design to simulation and493
field deployment.494

4 CONCLUSIONS
This paper describes the software infrastructure ROSBuzz for the deployment of coordination behaviours495
on multi-robot systems. ROSBuzz integrates both the swarm-oriented programming language Buzz and496
the ROS ecosystem. It grants the developer of decentralized behaviours with useful swarm programming497
primitives and a set of essential tools for robust deployment. We described the implementation of a498
swarm-level barrier mechanism and an OTA update mechanism. To demonstrate the software usage,499
workflow and performance, we discussed the implementation of progressive task allocation strategy500
and a semi-autonomous exploration algorithm. Simulations for both scripts show to be robust to large501
packet drop rate and to scale well. To test the concept and the whole platform-agnostic infrastructure,502
experiments with heterogeneous teams were conducted in the field. The missions succeeded in each503
scenario. The task assignment experiments specifically addressed the communication performance. It was504
shown that throughout the whole mission, robots used less than half the available bandwidth for inter-robot505
communication. The semi-autonomous exploration integrated an external variable: dynamic inputs from an506
operator. The participants enjoyed the experiment and the fleet show robust behaviour.507

Based on our experience and the results of our field experiments, we are providing ROSBuzz to the508
robotics community: it is available11 online, just as the scripts described in this paper. While this paper509
shown robust performance from algorithm design to the field, ROSBuzz is still in early stage of development.510
Among the future works, the implementation of new external code (hook) must be simplified and the511
limitation to run with global positioning system (GPS or indoor motion capture) is currently being addressed.512
More laboratories have started using Buzz in their set of software tools and we hope to see the community513
growing. As more research will be conducted with this infrastructure, Buzz and its ROS implementation514
will be enhanced to further support swarm robotics field research.515

CONFLICT OF INTEREST STATEMENT
The authors declare that the research was conducted in the absence of any commercial or financial516
relationships that could be construed as a potential conflict of interest.517

11 https://github.com/MISTLab/ROSBuzz/

Frontiers 19

https://github.com/MISTLab/ROSBuzz/

St-Onge, D. et al. ROSBuzz

AUTHOR CONTRIBUTIONS
DSO, VSV, IS, and GB designed with the architecture of the software; DSO, VSV, and IS implemented the518
software; DSO adapted both algorithms for the experiments and managed the experiments; VSV, IS, and519
GB helped conduct the experiments and generated the plots for the manuscript; DSO, VSV and IS wrote520
sections of the manuscript. All authors contributed to manuscript revision, read and approved the submitted521
version.522

FUNDING
The authors would like to acknowledge the financial support of NSERC (Strategic Partnership Grant523
479149-2015) and MITACS for this project.524

ACKNOWLEDGMENTS
The fundamental contribution of Carlo Pinciroli to Buzz were essential to this work as well as the generosity525
of professor Gregory Dudek, lending a Husky for the first set of experiments. Part of this manuscript has526
been released as a Pre-Print at (St-Onge et al., 2017).527

REFERENCES

Alexandrov, V., Kirik, K., and Kobrin, A. (2018). Multi-robot Voronoi tessellation based area partitioning528
algorithm study. Journal of Behavioral Robotics , 214–220529

Bachrach, J., Beal, J., and McLurkin, J. (2010). Composable continuous-space programs for robotic530
swarms. Neural Computing and Applications 19, 825–847. doi:10.1007/s00521-010-0382-8531

Bamberger, R. J., Watson, D. P., Scheidt, D. H., and Moore, K. L. (2006). Flight demonstrations of532
unmanned aerial vehicle swarming concepts. Johns Hopkins APL Technical Digest (Applied Physics533
Laboratory) 27, 41–55534

Bayindir, L. (2016). A review of swarm robotics tasks. Neurocomputing 172, 292–321. doi:10.1016/j.535
neucom.2015.05.116536

Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). Swarm robotics: A review from the537
swarm engineering perspective. Swarm Intelligence 7, 1–41. doi:10.1007/s11721-012-0075-2538

Brunet, L., Choi, H.-L., and How, J. P. (2008). Consensus-based auction approaches for decentralized task539
assignment. In AIAA Guidance, Navigation, and Control Conference. August, 1–24. doi:10.2514/6.540
2008-6839541

Camazine, S., Deneubourg, J.-L., Franks, N., Sneyd, J., Theraulaz, G., and Bonabeau, E. (2002). Self-542
organization in biological systems (Princeton University Press)543

Cort, J., Ieee, M., Mart, S., Ieee, M., Karatas, T., Bullo, F., et al. (2004). Coverage control for mobile sensing544
networks. IEEE Transactions on Robotics and Automation 20, 243–255. doi:10.1109/TRA.2004.824698545

Şahin, E. (2004). Swarm robotics: From sources of inspiration to domains of application. Swarm robotics ,546
10–20doi:10.1007/978-3-540-30552-1 2547

Davis, D. T., Chung, T. H., Clement, M. R., and Day, M. A. (2016). Consensus-Based Data Sharing548
for Large-Scale Aerial Swarm Coordination in Lossy Communications Environments. In IEEE/RSJ549
International Conference on Intelligent Robots and Systems (IROS). 3801–3808. doi:10.1109/IROS.550
2016.7759559551

Dudek, G. and Milios, E. E. (2000). Multi-Robot Collaboration for Robust Exploration , 64–69552
Fortune, S. (1987). A sweepline algorithm for voronoi diagrams. Algorithmica 2, 153. doi:10.1007/553

BF01840357554

This is a provisional file, not the final typeset article 20

St-Onge, D. et al. ROSBuzz

Goc, M. L., Kim, L. H., Parsaei, A., Fekete, J.-d., Dragicevic, P., and Follmer, S. (2016). Zooids : Building555
Blocks for Swarm User Interfaces. In UIST (Tokyo)556

Hauert, S., Leven, S., Varga, M., Ruini, F., Cangelosi, A., Zufferey, J. C., et al. (2011). Reynolds flocking557
in reality with fixed-wing robots: Communication range vs. maximum turning rate. IEEE International558
Conference on Intelligent Robots and Systems , 5015–5020doi:10.1109/IROS.2011.6048729559

Kruijff, G.-j. M., Tretyakov, V., Linder, T., Augustin, S., Pirri, F., Gianni, M., et al. (2012). Rescue Robots560
at Earthquake-Hit Mirandola , Italy : a Field Report. In International Symposium on Safety, Security,561
and Rescue Robotics (IEEE), July, 1–8. doi:10.1109/SSRR.2012.6523866562

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system. Communications of563
the ACM 21, 558–565564

Li, G., St-Onge, D., Pinciroli, C., Gasparri, A., Garone, E., and Beltrame, G. (2017). Decentralized565
progressive shape formation with robot swarms. Journal of Autonomous Robots566

Lliffe, M. (2016). Drones in Humanitarian Action. Tech. rep., The Swiss Foundation for Mine Action,567
Geneva/Brussels568

Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., and von Stryk, O. (2012). Comprehensive569
Simulation of Quadrotor UAVs using ROS and Gazebo. In Simulation, Modeling, and Program-570
ming for Autonomous Robots: Third International Conference (Tsukuba), November. doi:10.1007/571
978-3-642-34327-8572

Pickem, D., Glotfelter, P., Wang, L., Mote, M., Ames, A., Feron, E., et al. (2016). The Robotarium:573
A remotely accessible swarm robotics research testbed. In Proc. of the International Conference on574
Robotics and Automation (Stockholm). doi:10.1109/ICRA.2017.7989200575

Pinciroli, C. and Beltrame, G. (2016). Swarm-Oriented Programming of Distributed Robot Networks.576
Computer 49, 32–41. doi:10.1109/MC.2016.376577

Pinciroli, C., Lee-Brown, A., and Beltrame, G. (2015). Buzz: An Extensible Programming Language for578
Self-Organizing Heterogeneous Robot Swarms. arXiv:1507.05946 , 12579

Pinciroli, C., Lee-Brown, A., and Beltrame, G. (2016). A Tuple Space for Data Sharing in Robot Swarms.580
Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications581
Technologies (formerly BIONETICS) , 287–294doi:10.4108/eai.3-12-2015.2262503582

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2012). ARGoS:583
A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence 6, 271–295.584
doi:10.1007/s11721-012-0072-5585

St-Onge, D., Varadharajan, V. S., Li, G., Svogor, I., and Beltrame, G. (2017). ROS and buzz: consensus-586
based behaviors for heterogeneous teams. CoRR abs/1710.08843587

Støy, K. (2001). Using situated communication in distributed autonomous mobile robotics. In SCAI588
(Citeseer), vol. 1, 44–52589

Szafir, D., Mutlu, B., and Fong, T. (2017). Designing planning and control interfaces to support user590
collaboration with flying robots. International Journal of Robotics Research , 1–29doi:10.1177/591
0278364916688256592

Varadharajan, V. S., Onge, D. S., Guß, C., and Beltrame, G. (2018). Over-the-air updates for robotic593
swarms. IEEE Software 35, 44–50. doi:10.1109/MS.2018.111095718594

Frontiers 21

	INTRODUCTION
	Methods
	Buzz, swarm language and virtual machine
	The Buzz Toolbox

	ROSBuzz
	Under the Hood

	Simulation to deployment
	Robustness-enhancing mechanisms
	Barrier
	Update mechanism

	Experiments
	Task allocation
	Algorithm
	Simulations
	Field deployment

	Semi-autonomous exploration
	Algorithm
	Simulations
	Field deployment

	Conclusions

