
ORIGINAL RESEARCH
published: 07 May 2020

doi: 10.3389/frobt.2020.00051

Frontiers in Robotics and AI | www.frontiersin.org 1 May 2020 | Volume 7 | Article 51

Edited by:

Mauro Dragone,

Heriot-Watt University,

United Kingdom

Reviewed by:

Gabriele Valentini,

Arizona State University, United States

Rem Collier,

University College Dublin, Ireland

J. Michael Herrmann,

University of Edinburgh,

United Kingdom

*Correspondence:

David St-Onge

david.st-onge@etsmtl.ca

Specialty section:

This article was submitted to

Multi-Robot Systems,

a section of the journal

Frontiers in Robotics and AI

Received: 16 July 2019

Accepted: 20 March 2020

Published: 07 May 2020

Citation:

St-Onge D, Varadharajan VS, Švogor I

and Beltrame G (2020) From Design

to Deployment: Decentralized

Coordination of Heterogeneous

Robotic Teams. Front. Robot. AI 7:51.

doi: 10.3389/frobt.2020.00051

From Design to Deployment:
Decentralized Coordination of
Heterogeneous Robotic Teams

David St-Onge 1*, Vivek Shankar Varadharajan 2, Ivan Švogor 2 and Giovanni Beltrame 2

1 INIT Robots Laboratory, Department of Mechanical Engineering, École de technologie supérieure, Montreal, QC, Canada,
2MIST Laboratory, Department of Computer Engineering and Software Engineering, Polytechnique Montreal, Montreal,

QC, Canada

Many applications benefit from the use of multiple robots, but their scalability and

applicability are fundamentally limited when relying on a central control station. Getting

beyond the centralized approach can increase the complexity of the embedded software,

the sensitivity to the network topology, and render the deployment on physical devices

tedious and error-prone. This work introduces a software-based solution to cope

with these challenges on commercial hardware. We bring together our previous work

on Buzz, the swarm-oriented programming language, and the many contributions

of the Robotic Operating System (ROS) community into a reliable workflow, from

rapid prototyping of decentralized behaviors up to robust field deployment. The Buzz

programming language is a hardware independent, domain-specific (swarm-oriented),

and composable language. From simulation to the field, a Buzz script can stay

unmodified and almost seamlessly applicable to all units of a heterogeneous robotic

team. We present the software structure of our solution, and the swarm-oriented

paradigms it encompasses. While the design of a new behavior can be achieved on a

lightweight simulator, we show how our security mechanisms enhance field deployment

robustness. In addition, developers can update their scripts in the field using a safe

software release mechanism. Integrating Buzz in ROS, adding safety mechanisms and

granting field updates are core contributions essential to swarm robotics deployment:

from simulation to the field. We show the applicability of our work with the implementation

of two practical decentralized scenarios: a robust generic task allocation strategy and

an optimized area coverage algorithm. Both behaviors are explained and tested with

simulations, then experimented with heterogeneous ground-and-air robotic teams.

Keywords: decentralized behaviors, swarm intelligence, heterogeneous robotic teams, over-the-air update,

swarm systems, control framework, swarm programming

1. INTRODUCTION

The range of applications for multi-robot systems is constantly and rapidly expanding. Small
groups of heterogeneous robots collaborating to extend their individual potential were repeatedly
proven to be successful (Rekleitis et al., 2001; Kruijff et al., 2012; Lliffe, 2016). Unfortunately,
each unit of these scenarios is necessary, to the point that a single failure will most likely cause
the mission to fail. By leveraging a greater number of similar agents, individual failures can be
compensated, while the imprecision of sensors can be mitigated by fusion of multiple sources.
Swarm robotics has been known for decades to be a possible solution tomany problems in dynamic,

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.00051
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.00051&domain=pdf&date_stamp=2020-05-07
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:david.st-onge@etsmtl.ca
https://doi.org/10.3389/frobt.2020.00051
https://www.frontiersin.org/articles/10.3389/frobt.2020.00051/full
http://loop.frontiersin.org/people/689635/overview
http://loop.frontiersin.org/people/773606/overview
http://loop.frontiersin.org/people/773785/overview
http://loop.frontiersin.org/people/455492/overview

St-Onge et al. ROSBuzz

hostile, and unknown environments (Brambilla et al., 2013). A
Swarm Robotics System (SRS) must be flexible, scalable, and
robust (Şahin, 2004). Unfortunately, swarm robotics requires
development tools specific to decentralized systems that are still
hardly available.

Researchers are very active in developing behaviors for robotic
swarms (Bamberger et al., 2006; Brunet et al., 2008; Hauert et al.,
2011; Bayindir, 2016; Davis et al., 2016), with support from a
handful of companies and some open source initiatives (Goc
et al., 2016; Pickem et al., 2016). These affordable platforms grant
access to physical implementation with a significant number of
robots, but lack a set of software tools for the implementation
of their collective behavior. Furthermore, swarms share common
behavioral paradigms: no predefined roles, and control based
on local interactions. For a swarm system, and in particular
one with heterogeneous members, communication, neighbor
management, and data sharing need to be re–implemented for
each platform and experiment. For instance the work presented
in Hauert et al. (2011), similar to many of the previously
mentioned ones, is hardware specific and cannot be ported to
other robotic systems easily.

The development of an optimized and specialized software
infrastructure, one that is sufficiently flexible to make robotics
researchers feel unconstrained, while simultaneously increasing
their development efficiency is a tedious, and often unsuccessful,
task. ROS has established itself as a standard for robot
development, but the community is still exploring the challenges
of swarm engineering (Davis et al., 2016). This issue became
more apparent with the introduction of programming languages
that are specific for swarm development (Bachrach et al., 2010;
Pinciroli et al., 2015).

Among those, Buzz is a domain-specific programming
language for robot swarms (Pinciroli and Beltrame, 2016). Its
purpose is to help researchers and practitioners by providing a
set of primitives which accelerates the implementation of swarm-
specific behaviors. Buzz comes with an optimized virtual machine
that runs on all swarm members, and each robot executes a
common program or script. The main peculiarity of Buzz is that
it merges bottom–up behavior development with a top–down
strategy definition for the whole swarm (Crespi et al., 2008). Buzz
and its virtual machine allow a script to be deployed on any
autonomous robot: from small desk robots, to Unmanned Air
Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) of
any size, and even satellites. While Buzz was natively deployed
on embedded systems (Kilobots, Zooids, and Kheperas robots)1,
larger robots require integration within a software ecosystem that
allows roboticists to interface with different sensors, actuators,
and complex algorithms easily.

To address this issue we introduce ROSBuzz, the ROS
implementation of the Buzz Virtual Machine (BVM).Muchmore
than an adapter or a facade, it enables (a) fast script–based
programming of complex behaviors, (b) seamless script porting
on different hardware, (c) safe field deployment, (d) over-the-air
updates on the field, andmost importantly (e) it allows a coherent
design flow from simulation to field deployment. While (a) and

1https://github.com/MISTLab/BittyBuzz

(b) arise from the integration of Buzz in the ROS ecosystem, (e) is
possible only through ROSBuzz and its other core contributions
(c) and (d). To present ROSBuzz we first recall the key primitives
of Buzz from (Pinciroli and Beltrame, 2016) (section 2.1), then
explain the details of this ROS node architecture (section 2.2),
its specific simulation-to-field workflow (section 2.3), and the
integrated mechanisms to minimize risk at deployment (section
2.4). To test the ROSBuzz performance we introduce two
decentralized behaviors: a task allocation strategy (section 3.1),
and an area coverage algorithm (section 3.2). Both algorithms
are assessed in term of robustness to packet loss and scalability
in simulation and with real world experiments.

2. METHODS

In academia and industry, ROS has become a de facto
standard for any serious mobile robotics application. The sheer
number of community-developed tools (e.g., Rviz2, Rqt Graph3,
PlotJuggler4, etc.) makes it almost indispensable for developing,
testing and integrating all the software layers of the autonomy
stack that a single robot requires. Though ROS can be used
to simultaneously control multiple robots, it was never really
designed for decentralized coordination of robotic teams.

The long-awaited ROS 2.0 is welcome by the multi-robot
research community: it brings solutions for some known issues
in controlling multi-robot systems. Mostly, those are related
to networking, real-time processing, and defining relationships
between robots, but the challenges of decentralized multi-robot
systems still remain: the main purpose of ROS 2.0 is to provide
transparency of the network layer, while control resides in the
implementation of the swarm behavior.

Themain differences and challenges of controlling a swarm, as
opposed to a single robot, are that by definition swarms must be
(a) decentralized, and (b) programmed with the same behavior.

(a) means that there cannot be a central point or a single robot
in charge of defining the behavior of the swarm. However, this
does notmean that anymember of the swarm cannot take specific
roles, which brings us to (b). The robots cannot be programmed
as individuals, or in technical terms, the code deployed to each
member of the swarm must be identical. Therefore, in the true
spirit of the swarm behavior, the implementation must be such
that all the members of the swarm contain the same code, but the
behavior of the individual is defined and directed by the entire
group and the environmental context.

2.1. Buzz, Swarm Language, and Virtual
Machine
To better understand our implementation choices, please
consider the following factors which generally define a swarm:
(a) decentralized decision making, (b) behavior defined on local
interactions and environmental context, and (c) information
propagation latency. Buzz grants the developer with premises
and constructs that ease the deployment of top–down swarm

2http://wiki.ros.org/rviz
3http://wiki.ros.org/rqt
4http://wiki.ros.org/plotjuggler

Frontiers in Robotics and AI | www.frontiersin.org 2 May 2020 | Volume 7 | Article 51

https://github.com/MISTLab/BittyBuzz
http://wiki.ros.org/rviz
http://wiki.ros.org/rqt
http://wiki.ros.org/plotjuggler
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

St-Onge et al. ROSBuzz

strategies: a set of rules regulating the swarm members actions
following their interaction and the mission’s goals. This aspect is
core to most swarm intelligence algorithms developed in the past
decades. However, real robotic systems benefit in many contexts
from the heterogeneity of their abilities (for instance different
sensors and locomotion modes). Buzz allows to program for
sub-swarms, i.e., subset of the swarm with specific attributes to
complete specific type of tasks (Pinciroli and Beltrame, 2016).

2.1.1. The Buzz Toolbox
Buzz provides literals and data structures to address three key
concepts in defining a swarm behavior5:

• Virtual stigmergy (VS): a bio–inspired shared tuple space. The
original concept of stigmergy is an environment–mediated
communication modality used by social insects to coordinate
activity (Camazine et al., 2003). VS is implemented as a shared
memory table containing 〈key,value〉 pairs. The shared
memory table stored in a local copy on each robot, which
is synchronized via communication only when needed. Each
〈key,value〉 tuple is associated with a timestamp [a Lamport
clock Lamport, Lamport] and the ID of the last robot that
modified the data. Tuples and metadata are shared between
swarm members via a gossip algorithm (Pinciroli et al., 2016).
Each robot locally decides when to re-broadcast information
based on the timestamp and conflict detection and resolution
mechanisms. Overall, robots always converge to a common
set of tuples. The details of the inner workings of the Virtual
Stigmergy can be found in a previous publication (Pinciroli
et al., 2016).

• Swarm Aggregation: is a literal which allows for grouping of
robots into sub–swarms, through the principle of dynamic
labeling (Pinciroli and Beltrame, 2016). The swarm construct
is used to create a group of robots that can be attributed with
a specific behavior, which differs from the other robots, based
either on the task or robot abilities.

• Neighbors Operations: in Buzz refer to a rich set of functions
(reduce, map, size, foreach, broadcast, listen, etc.)
which can be performed with or on neighboring robots
through situated communication (Støy, 2001). Neighbors are
defined from a network perspective as robots which have a
direct communication link with each other. With situated
communication, whenever a robot receives a message, the
origin position of the message is also known to the receiver.

These primitives constitute essential functionality that comes
with Buzz and enables robotics software engineers to accelerate
their way to developing swarm behaviors. To demonstrate this
consider the following code:

var accum = neighbors.map(lj_vector).reduce(lj_

sum, math.vec2.new(0.0, 0.0)).
With this line, every robot in the swarm uses a neighbors

structure to map a certain function to all the elements of the
list (i.e., neighboring robots) and uses a rolling computation
to reduce it to a single value used by a robot6. By rolling

5http://the.swarming.buzz/ICRA2017/cheat-sheet/
6https://the.swarming.buzz/wiki/doku.php?id=buzz_examples

computation, we refer to the fact that reduce applies the
function lj_sum to each neighboring robot’s relative position
to obtain a single value (accum) as per the logic defined in the
lj_sum function.

Buzz is an extension language: if a user needs a specific
primitive not provided by its current syntax, it can be easily added
using C code. In fact, Buzz provides an intuitive way to expose
any function written in C to the Buzz script, with access to the
current execution context, i.e., C functions can access the literals
and data sets used in the script.

A Buzz script is compiled into a memory-efficient and
platform-agnostic bytecode to be executed on the Buzz Virtual
Machine (BVM). To interface the BVMwith the robots’ actuators
and sensors, we use ROS. The following section describes how
ROS and Buzz are integrated to allow seamless and platform-
agnostic execution and extension of Buzz scripts that define
swarm behavior.

2.2. ROSBuzz
ROS is a widely used tool, accepted by both researchers and
professionals as it improves the productivity and compatibility
of robotics development, while Buzz provides essentials for
designing and developing swarm behaviors.

A ROS node is generally an executable that uses ROS7 to
communicate with other nodes. ROSBuzz puts Buzz and ROS
together, providing a ROS node which encapsulates the Buzz
Virtual Machine. Furthermore, we implement communication
between swarm members with the Micro-Air Vehicle Link
(MAVLink) protocol, which is widely available through the
MAVROS implementation. Buzz messages are serialized and
packed into the MAVLink standard payload messages, while the
ROSBuzz node provides the BVM with access to these messages.
As such, ROSBuzz allows any MAVLink-capable mobile robot to
join the swarm, using the common behavior defined by the buzz
script provided by the ROS launch file.

The software architecture of the ROSBuzz node (shown
in Figure 1) is organized in three layers which reconcile the
step–based (sense, plan, act) execution nature of Buzz and the
event–based nature of ROS.

The namespace ROSBuzz represents the entire ROS package.
Upon launching, ROSBuzz initializes the main ROS loop and
the necessary configuration parameters. Those consist of ROS
callback functions for subscribers, publishers, and services
which hold references to MAVROS specific messages and expose
them to the BVM. These messages can then be used for sensing,
planning and acting.

On top of Figure 1, the main namespace ROSBuzz
contains two additional namespace: Communication and
Coordinates. The latter is used to implement various data
structures that represent positions in coordinate systems with
different bases and the transformations between those. The
Communication namespace is used to process the MAVROS
payload and extract the information about the robots neighbors.
Namely, BVMMsgs defines the ROS messages for the MAVROS
communication, the Communication class processes the

7http://www.ros.org/

Frontiers in Robotics and AI | www.frontiersin.org 3 May 2020 | Volume 7 | Article 51

http://the.swarming.buzz/ICRA2017/cheat-sheet/
https://the.swarming.buzz/wiki/doku.php?id=buzz_examples
http://www.ros.org/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

St-Onge et al. ROSBuzz

FIGURE 1 | Simplified class diagram of the ROSBuzz software architecture: step-based BVM (lower right) integrated to the event-based ROS ecosystem.

incoming and outgoing messages, while Neighbors is a class
used to store neighbor information.

There are two additional classes within the ROSBuzz
namespace: ROSController, which defines the ROS node
containing the main loop and implements the callback
references; and the Robot class, which implements some logic
and stores local information about the robot.

To use this software stack, a user needs to install a ROSBuzz
package, write a Buzz script, and point the ROS launch file
to it. The BuzzVM interprets and executes the script, and
executes the following loop: (a) process incoming messages,
(b) update sensors information, (c) perform a control step, (d)
process outgoing messages; and finally (e) update the actuation
commands. The BVMManager class is used to mediate the step-
based nature of the Buzz and event-based nature of ROS. As
messages come in the main ROS loop (in the ROSController

class), the BVMManager makes the latest information available to
the BuzzVM interpreter.

2.2.1. Under the Hood
To extend Buzz, a designer needs only to use C to expose
additional functionality to the Buzz script. In other words, it is
possible to use existing libraries or algorithms from any other
language outside of the BVM and still grant access to these
functionalities inside a script. A C function can be exposed as
a Buzz closure, which is bound and registered to the BuzzVM,
making the closure available for use in the Buzz script. To provide
more details in how Buzz and ROS actually work together,
let us consider Figure 2 and the following scenario: the Buzz
script needs to access the latest positional information of the

neighbors to avoid a collision. For this scenario, the control flow
is as follows.

Upon starting the ROSBuzz node, the update and control
callbacks are initialized and the main ROS loop starts. In
each step, the main loop calls a ControlStep function from a
BuzzUtility instance. After processing all the in messages from
the neighboring swarm members, the UpdateSensors function
delivers the information about the current position to BuzzVM
using the UpdateCurrentPosition function (which uses the
updateClosures collection, which in turn provides access to
the Execute function of the CurrentPositionImpl). With this
setup, the Buzz script can access the position information during
the execution of its ControlStep. However, to send actuation
information back to ROS, after the ControlStep method, the
main ROS loop calls the UpdateActuators which in the similar
way uses the BuzzControlClosures to perform actuation via
ROS callback functions.

From a software engineering standpoint, ROSBuzz provides
certain level of abstractions tomake it maintainable, upgradeable,
and extendable. Figure 2 shows the abstraction layers
within ROSBuzz, with which an user can independently
adapt the implementation layer to fit the current needs
without changing any other layers of the software. ROSBuzz
provides robotics researchers and practitioners a turnkey
system that can transform a heterogeneous group of robots
into a swarm.

Furthermore, ROSBuzz provides the developer with a
consistent simulation-to-deployment infrastructure, and
mechanism to enhance the robustness of the deployment itself:
over-the-air behavior updates and barrier consensus. The next
sections detail these features.

Frontiers in Robotics and AI | www.frontiersin.org 4 May 2020 | Volume 7 | Article 51

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

St-Onge et al. ROSBuzz

FIGURE 2 | Relationship between classes of the internal ROSBuzz software architecture.

2.3. Simulation to Deployment
Designing applications for delicate and expensive hardware puts
a lot of pressure on the developers. When tens of robots are

deployed to achieve a coordinated task, the risk of failure and
hardware damage increase rapidly. To cope with this issue, a
common approach is to carefully simulate the control before

Frontiers in Robotics and AI | www.frontiersin.org 5 May 2020 | Volume 7 | Article 51

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

St-Onge et al. ROSBuzz

FIGURE 3 | Simulation environments: (A) with Gazebo and ROS nodes, allowing for accurate dynamics and operator inputs, and (B) with ARGoS to simulate large

swarm size in a lightweight environment.

taking it out to the field. ROSBuzz also provides a step-by-
step workflow to minimize the risks of deploying decentralized
behaviors: a low-resource simulator to iterate quickly on the
design and test thousands of units, followed by a more realistic
full-stack software-in-the-loop environment, extended whenever
available to hardware-in-the-loop validation and finally to the
deployment of the behavior in the field.

Figure 3 shows themodules and ecosystem of both simulation
setups. Since the early development phases of Buzz, the BVM
was integrated in the ARGoS simulator (Pinciroli et al., 2012),
which features a Buzz editor, allowing for quick development
and integration of behavioral scripts (Figure 3B). While ARGoS
can support thousands of units, it does not accurately represent
the dynamics of the robots, it is not compliant with the ROS
architecture, and does not allow external control during mission
operations. Therefore, we added a second simulation stage
based on ROS and Gazebo (Figure 3A), leveraging community
packages available for ROS. Three hardware adapters are
currently provided for Gazebo using the hector package (Meyer
et al., 2012) for the Matrice 100, the DroneKit-SITL for the 3DR
Solo, and the nodes provided by Clearpath for the Husky rover.
Multiple instances of ROSBuzz are launched in a separate group
namespace, alongside their hardware emulators. On a Core i7
laptop equipped with a NVIDIA graphics card, we are able to
smoothly simulate 50 DJI Matrice 100 in Gazebo. The inter-
robot communication is managed by a relay node that acts as
a communication hub between ROSBuzz instances. The relay
provides control over the communication simulation parameters
with user-defined packet drop rates, latency, bandwidth, and
communication range. In section 3, we use this simulation
ecosystem to show the scalability of our system and its robustness
to packet loss.

2.4. Robustness-Enhancing Mechanisms
The tools introduced in the above sections grant the developers
with a software ecosystem easing the implementation, simulation
and deployment of decentralized behaviors. This is at the core of
the apparent needs in multi-robots team technology, but entirely
rely on the developer to ensure minimal risk at deployment.
To help the user enhance the robustness of the behavior in the
field, we integrate common safety mechanisms (described in

section 3.2.3) and we provide two essential contributions with
ROSBuzz: a consensus strategy referred to as “barrier” and a safe
Over-The-Air (OTA) script update mechanism.

2.4.1. Barrier
When dealing with the coordination of multiple robots, a group
of robots that comes to an agreement on the value of some
variable, is said to have reached consensus. One of the key
elements for designing complex swarm behaviors, is the ability
to create swarm-level state machines, where all robots agree on
the current state of the swarm (or sub-swarm). For this purpose,
we designed a barrier mechanism, which allows the synchronous
transition of all swarm members from one state to another. The
swarm construct of Buzz also broadens the use of the barrier on
specialized subswarms; a handy feature to split the group over
parallel missions. A safe waiting state (idle, hover) is used to wait
for all robots to agree on the following state. The barrier uses a VS
table (section 2.1): each robot updates a state value associated to
its own unique id when it is ready to change state (i.e., behavior).
The robot IDs are attributed following the network interface
address (for instance Xbee serial number or WiFi IP address).
Consensus is reached when the table size equals the swarm size
and all values correspond to the same outgoing state: then all
robots can transition to the next behavior.

1 BARRIER_VSTIG = 0 # A r b i t r a r y i n i t i a l VS v a l u e
2 BARRIER_TIMEOUT = 600 #Timeout v a l u e in~ s t e p s
3 # Cr e a t e t h e b a r r i e r
4 f u n c t i o n b a r r i e r _ c r e a t e () {
5 # r e s e t t h e s t e p t imeou t coun t e r
6 t ime In = 0
7 # c r e a t e t h e b a r r i e r v i r t u a l s t i gme r g y
8 i f (b a r r i e r != n i l)
9 b a r r i e r = n i l
10 b a r r i e r = s t i gme r g y . c r e a t e (BARRIER_VSTIG)
11 }
12

13 # Ex e cu t e s t h e b a r r i e r
14 f u n c t i o n b a r r i e r _ w a i t (S _ s i z e , t r a n s _ s t , r e sume_s t) {
15 # s h a r e t h a t ‘ i d ’ i s i n th e b a r r i e r w i th s t a t e ‘ s t ’
16 b a r r i e r . put (id , s t)
17 # look f o r th e s t i gme r g y s t a t u s
18 b a r r i e r . g e t (id)
19 i f (b a r r i e r . g e t (" d ") == 1) {
20 # Going out .

Frontiers in Robotics and AI | www.frontiersin.org 6 May 2020 | Volume 7 | Article 51

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

St-Onge et al. ROSBuzz

21 t ime In = 0
22 # l aunch nex t s t a t e
23 t r a n s _ s t ()
24 } e l s e i f (b a r r i e r . s i z e () >= S _ s i z e) {
25 # Check th e VS con t en t
26 i f { (} a l l _ s am e _ s t a t e () {) } {
27 # Going out . Sha r e t h a t you a r e ove r th e b a r r i e r
28 b a r r i e r . put (" d " , 1)
29 t ime In = 0
30 # l aunch nex t s t a t e
31 t r a n s _ s t ()
32 }
33 } e l s e i f (timeW >= BARRIER_TIMEOUT) {
34 # t imed out , remove y o u r s e l f from s t i gme r g y

b a r r i e r
35 b a r r i e r = n i l
36 t ime In = 0
37 # l aunch s a f e resume s t a t e
38 r e sume_s t ()
39 }
40 t ime In = t ime In +1
41 }

Listing 1 | Barrier implementation of consensus in Buzz language.

The Buzz functions implementing the barrier are detailed in
Listing 1. barrier_create is called once and barrier_wait at
each step, until trans_st or resume_st are called, stopping the
barrier loop.

We first create the barrier data structure: we initialize a VS
table with a unique key (BARRIER_VSTIG). Then at each step of
the BVM, the function barrier_wait is called with a transition
state and a resume state. At each step, the robot puts its state in
the VS table with its ID as a key. The robot then checks the table
size: if it reaches the swarm size, the robot checks all values to
ensure every unit is ready to go to the next state. If they are, the
robot transitions its state and pushes a new value, d, in the table
so the others know the barrier is done without checking all states.
Otherwise, after a timeout (timeIn equals BARRIER_TIMEOUT),
the robot resumes its previous behavior. We acknowledge that
such a barrier mechanism can impact the scalability of any swarm
algorithm deployed with our infrastructure. For this reason,
the first experiment presented below (section 3.1) assesses the
performance and usage of the barrier.

2.4.2. Update Mechanism
ROSBuzz provides a mechanism to hot swap the behavior script
of the robots safely, with rollback strategies in case of update
failures. The need for a reliable in-mission script update arises
quickly when developing and experimenting with new behaviors.
Since all robots in the swarm run the exact same script, they
need to update simultaneously and ensure they stay coordinated.
Our Over-The-Air (OTA) mechanism gets triggered either by
modifying the script file or by a neighbor propagating a new
behavior patch. The components of the update mechanism are
summarized in Figure 4: the update monitor watches for changes
in the script file and notifies the update manager of changes;
then the new changes are compiled, tested, and an encrypted
binary patch is generated, to be sent to all the other robots. The
newly generated code version (id) is propagated through gossip
based broadcasts, and when a version mismatch is identified
by a robot, this latter requests the patch to its neighbors. To

FIGURE 4 | Update monitor within the Buzz Virtual Machine.

ensure safe transitions across versions, the robots switched to a
standby behavior (a platform-dependent safe state) and a barrier
is initialized to reach consensus on the code version to use on
the swarm. For more information on this update mechanism, we
refer the reader to the exhaustive presentation in (Varadharajan
et al., 2018). The mechanism performance is closely dependent
of the network quality. We tested our update system extensively
with WiFi and Xbee mesh networks, and proved its convergence
even in extremely poor network conditions in (Varadharajan
et al., 2018).

3. EXPERIMENTS

As previously stated, the software ecosystem is platform-agnostic.
Any robot can have a MAVROS-compatible driver node and a
peer-to-peer communication network (WiFi-based, Xbee/Zigbee,
etc.). The rest of the paper presents the deployment of two
decentralized behaviors, from design to field deployment, passing
through simulation.

ROSBuzz, alongside our custom Xbee manager node
(XbeeMav), was deployed on NVIDIA boards (TK1, TX1, and
TX2), all running Ubuntu (16.04 or 18.04) for onboard control
of a fleet of DJI Matrice 100 quadrotors (M100). DJI provides
an onboard SDK that can be interfaced in ROS to be compliant
with MAVROS. Using the same NVIDIA boards, we deployed
ROSBuzz on a fleet of Pleaides Robotics Spiri quadcopters.

We also integrated a smaller and more resource-limited
platform: the 3DR Solos, running ROSBuzz on Raspberry
Pis 3 with Raspbian. As long-demonstrated by the ArduPilot
community, the MAVlink protocol is also perfectly fitted to
command and monitor rovers8. ROSBuzz was thus ported
to a Clearpath Husky to control its navigation within an
heterogeneous ground to air swarm. All robots use a Xbee 900
Pro module for inter-robot communication. The serialized and
optimized Buzz messages payloads are transferred through a
MAVlink standard payload message (64 b array).

We conducted two outdoor experiments with backup pilots
for each robot: an autonomous task allocation demonstration

8http://ardupilot.org/rover/

Frontiers in Robotics and AI | www.frontiersin.org 7 May 2020 | Volume 7 | Article 51

http://ardupilot.org/rover/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

St-Onge et al. ROSBuzz

FIGURE 5 | The behavior law of the progressive task allocation algorithm

represented as a finite state machine. Every robot joining the mission will

experience states TurnedOff, TakeOff, Free, Asking, Joining and Joined. Before
switching to state Free, and Lock the robots wait for consensus in a transition

barrier state.

with Solos, Husky and M100 (section 3.1), and a user driven area
coverage demonstration with Spiris and M100 (section 3.2).

3.1. Task Allocation
A common scenario for a robot group is to execute a given queue
of tasks evolving throughout the mission. Before optimizing the
allocation of the tasks, the swarm must have a mechanism to
ensure it will reach consensus on a given set of allocations. To
ease the behavior visualization, let us represent the tasks with
target positions in the following description. This demonstration
is adapted from the work of (Li et al., 2019), where the authors
progressively place robots in a formation starting from a root
robot selecting neighbors to be placed in the formation and
proceeding recursively, with the newly placed robots selecting
more followers and so on until the formation is complete.
We integrated our barrier mechanism in (Li et al., 2019)’s
state machine, deployed the algorithm in ROSBuzz over a real
decentralized network [Xbee, as opposed to an emulation using a
communication hub andWiFi in Li et al., 2019] on UAVs (instead
of wheeled indoor platforms), and we used the algorithm for task
allocation instead of graph formation.

3.1.1. Algorithm
We assume that all robots involved in the mission are aware
of the list of tasks and their location. This hypothesis is not
limiting since the structure table can be shared before the robots’
deployment or through run-time broadcast using VS (refer to
section 2.1.1 for a definition).

This table contains spatial coordinates of each the tasks.
However, robots are not pre-assigned to a specified task in the
mission. The behavior law allows them to find proper tasks
through simple local interactions with other robots leveraging
the Buzz neighbor structure (see section 2.1.1), including robots
that are already part of the mission and robots that are not yet
assigned a task. This process can drive free robots to participate
in the mission gradually or, from the perspective of the mission,
it will attract free robots to join, allowing it to grow dynamically.

The mission process starts when a robot gets the task 0 of
the list. The progressive attribution of tasks will start from this

robot, called the root, it is thus considered joined in the mission
as soon as it goes out of the barrier following TakeOff, as shown
with the dashed line in Figure 5. This unique robot has to be
elected through interaction between the robots (i.e., a consensus)
or a special robot can be attributed this role. The behavior
law is represented as a finite state machine, shown in Figure 5.
It consists of seven states: Turned Off, Take Off, Free, Asking,
Joining, Joined and Lock. After a user asked to start the mission,
the stakeholder, i.e., the drone the user is connected to, share
the information for take off. The assignment of tasks will start
only after the first barrier, waiting for all members to be at a
safe height, hovering. In state Free, the robot will circle around
the edge of the mission zone, namely the structure composed of
Joining and Joined robots, and search for a proper task in the list,
using only neighbor interaction (see section 2.1.1). When such
a task is found, and both predecessors are within sight (from a
network topology point-of-view), the Free robot will transit to
state Asking, sending a message to request for the task. Once the
request is approved by the Joining and Joined robots, the robot
transits to state Joining. From that point on, it is part of the
formation and is attributed a task (position) of the mission. With
the knowledge of its Joined parent and of its own task position,
the robot will compute its target GPS coordinates and navigate to
it. Furthermore, since each robot needs only one predecessor (a
robot already joined in the tree), it is not necessary to keep the
entire structure of the mission, but rather only a predecessor tree.

This algorithm is a perfect fit for dynamic missions, i.e.,
changing number of robots and/or mission tasks. Its Buzz script
is available online9 and was extensively tested in simulation
(section 3.1.2) and in the field (section 3.1.3).

3.1.2. Simulations
Before releasing the behavior on field robots, we must assess its
robustness to packet drop in the communication network. The
task allocation algorithm is highly dependent on communication
performance between peers in the swarm to reach consensus.
The first set of simulations presented in Figure 6 test scenarios
with up to 90% packet drop. It demonstrates the converge of the
barrier mechanism used in the algorithm and its robustness to
imperfect communication. The results of Figure 6 illustrate the
time required by each robot to join a formation (i.e., reaching a
JOINED state, as described in section 3.1.1). The conclusion is
straightforward and expected: a higher drop rate requires more
time to complete the mission. Without packet lost the simulated
fleet converge in <30 s while with a packet drop rate of 90%,
the robots take almost 45 s. For 20% packet loss or less, all
robots converged in all runs. For 70 and 90%, on average more
than 90% of the robots converged to their final state, with a
minimum of 80%. As for 90% packet loss, a harsh condition
that we never experienced in the field, only 70% of the robots
converged on average, with a minimum as low as 50%, but still
several runs showed 90% of the robots converging. Furthermore,
if 90% packet loss can be observed in some rare cases, it is
likely to not be continuous (since all robots are expected to be

9https://github.com/MISTLab/ROSBuzz/blob/master/buzz_scripts/include/
taskallocate/graphformGPS.bzz

Frontiers in Robotics and AI | www.frontiersin.org 8 May 2020 | Volume 7 | Article 51

https://github.com/MISTLab/ROSBuzz/blob/master/buzz_scripts/include/taskallocate/graphformGPS.bzz
https://github.com/MISTLab/ROSBuzz/blob/master/buzz_scripts/include/taskallocate/graphformGPS.bzz
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

St-Onge et al. ROSBuzz

FIGURE 6 | Robustness to packet drop of the task allocation algorithm presented in section 3.1.1. The curves show the percentage of robots in the last state of the

algorithm: JOINED. Each scenario (packet drop rate) was ran 5 times and the variability of the results are shown in the area around the curves. All simulations were ran

with 6 robots. The algorithm converges in most runs up to 70% packet loss.

moving), as opposed to the constant drop rate used in these runs.
These results show the high robustness of our algorithm and
communication layers to communication issues. A simulation
run with 30 robots is shown in the Supplementary Video.

The most significant output of this set of simulations is
that consensus is always reached, even with large packet drop
probability. The time required to reach JOINED state is not
representative of the time required by the consensus mechanism
alone since all robots have tomove to their task to reach this state.
Indeed, as explained in section 3.1.1, each task is associated with
a target location and the robot will be considered to have joined
the mission only when they reached it.

As mentioned in the introduction, a swarm behavior is
expected to be scalable, i.e., to behave in a similar way with
both small and large robot teams without changes in the
script (Pinciroli et al., 2016). Figure 7 shows simulations from
6 to 48 robots, and the time required for the robots to reach the
JOINED state. For each scenario the task allocation, represented
by a final formation, is different: 6 go to “P,” 12 to “PO,” 18 to
“POL,” 24 to “POLY,” 30 to “PPOLY,” and 48 to “YLOPPOLY.”
While 6 robots converge in <30 s, 48 robots take more than
200 s to reach their final formation. We must recall again that
more distance is traveled by some robots, slowing down the
convergence together with the increase of time for consensus
between more robots.

3.1.3. Field Deployment
We validated the task allocation algorithm in the field with
small heterogeneous swarms: three M100, one or two Solos, and
a Husky.

We conducted four outdoor experiments to test different
topologies and formation geometries. Each mission had a
different set of robots and different localized tasks, represented
with four different graphs:

1. 2 branches (“L” shape) with 4 quadrotors and a rover,
2. 3 branches (“Y” shape) with 5 quadrotors and a rover,
3. 3 branches (“Y” shape) with 4 quadrotors and a rover,
4. 3 branches (“Y” shape) with 5 quadrotors only.

The time required for each unit to join the mission, i.e., to get
its assigned task and move to its target position, is illustrated
in Figure 8. The first robot to join takes more than 150 s
to wait for the rest of the fleet to takeoff and get over the
first barrier. As seen in the first experiment, some robots are
parents (predecessor in the graph) to more than one subsequent
task and make it possible to have two robots simultaneously
joining the mission. In the last experiment, the first three
robots joined in <250 s most likely because the ground-to-
air communication in the other scenarios is slowing down
the attribution of the tasks. The last experiment is shown in
the Supplementary Video. Except for the third experiment,

Frontiers in Robotics and AI | www.frontiersin.org 9 May 2020 | Volume 7 | Article 51

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

St-Onge et al. ROSBuzz

FIGURE 7 | Scalability of the task allocation algorithm presented in section 3.1.1. The curves show the percentage of robots in the last state of the algorithm: JOINED.

Each scenario (packet drop rate) was ran 5 times and the variability of the results are shown in the area around the curves. The green dots illustrate the launch position

of the robots and the blue dots, their final position. All simulations were ran without packet lost. The algorithm converges even with 48 simulated robots.

FIGURE 8 | Time required for all the robots to join on each of the four experiments conducted. Four experiments had five robot while the orange one had six. To reach

the STATE_JOINED, each robot has to reach the physical location of its task.

Frontiers in Robotics and AI | www.frontiersin.org 10 May 2020 | Volume 7 | Article 51

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

St-Onge et al. ROSBuzz

FIGURE 9 | Average ratio of neighbors messages received over the total swarm member for different states.

the average time to get a new robot to join is less than half
a minute.

The time required to join is influenced by the network
performance since each robot need to be assigned a label from
its parent before moving. With Xbee 900 MHz, the range is
large, but the low bandwidth and dropped packets can affect
the performance.

Figure 9 shows the ratio of neighbor messages received over
the swarm size. Indeed, in a Buzz step, each robot sends amessage
to all its neighbors sharing its position together with a payload
relevant to the current step operations. We can observe that
in average the Turned Off and Take Off states catches fewer
messages than the other states. This can be explained with the
radio wave deflection created by the irregularities of the ground.

Finally, Figure 10 shows the worst example of bandwidth
usage for all robots on all experiments. It is clear that the
maximum available payload per step, i.e., the Xbee frame size
(250B, illustrated as a ratio), is never exceeded.

3.2. Semi-autonomous Exploration
In several application scenarios envisioned for robotic teams,
they should not be fully autonomous: the operator expertise is
mandatory to the success of the exploration mission. In post-
disaster emergency response, for instance, successful missions
highlighted the importance of collaborative and complementary
work between human and robots, also known as a coactive
approach (Szafir et al., 2017). A similar reasoning applies to many
exploration missions in unknown and complex environments: in

order to optimize the mission strategies under multi-objective
pressure (geological analysis, mapping, specific ground feature
search, etc.) a human expert is still required. The following
demonstration is designed to let the user continuously monitor
and control the swarm exploration mission.

3.2.1. Algorithm
The Voronoi tessellation (Alexandrov et al., 2018) is an algorithm
that has been extensively studied for multi-robot deployment. It
usually takes the initial robot positions as seeds to the tessellation
problem and then partitions the area. The logic is simple: create
a frontier halfway between each robot and then stop those lines
when they cross another frontier or the region’s borders. We
integrated in Buzz the sweeping line algorithm, also known as
Fortune’s algorithm, one of the most efficient ways to extract cell
lines from a set of seeds (Fortune, 1987).

We then cut the open cells with a user-defined polygonal
boundary, shown in Figure 11: a convex region is generated
from the operator hotspot inputted. At this point, each robot
has knowledge of its cell’s limits. For a uniform distribution
of the robots in the area, we use a simple gradient descent
toward the centroid of each cell, similar to the work of Cort
et al. (2004). Each robot recomputes the tessellation following
updates on the relative position of its neighbors; an approach
that is robust to both packet loss (shown in the next subsection)
and environmental dynamics. If a robot is not in the target
region to be explored, a random goal inside the region is
generated. Meanwhile the other members of the swarm will

Frontiers in Robotics and AI | www.frontiersin.org 11 May 2020 | Volume 7 | Article 51

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

St-Onge et al. ROSBuzz

FIGURE 10 | Moving average of the bandwidth usage based on a window of 30 samples (which are represented by gray dots).

FIGURE 11 | Semi-autonomous fleet deployment algorithm: (A) Operator hotspot inputs, (B) generated convex region from the hotspots list, and (C) the tessellation

and gradient descend to uniformly cover the region.

cover the whole region without it (larger cells). This algorithm
leverages the neighbor struct (see section 2.1.1) to compute the
number of seed and their relative location. It also shares the user
hotspots using VS to ensure each robot has it last updated value
(see section 2.1.1).

The Buzz script is available online10 and was extensively tested
in simulations (section 3.2.2) and in the field (section 3.2.3).

3.2.2. Simulations
Similar to section 3.1.2 for the first ROSBuzz algorithm
demonstrated, we ran simulations to assess the robustness
and scalability of the coverage algorithm. Figure 12 shows the
convergence of the area coverage algorithm through a set of
simulations with increasing packet drop rates.

For each of the six simulated configurations, the robots were
initially distributed over two lines as illustrated with the red
dots of Figure 12. The curves of Figure 12 plot the difference
(euclidean distance) over time between the each robot position
and their ideal Voronoi cell centroid. The ideal case is obtained
from the first scenario, without any packet lost. The trajectories
taken by the robots to reach their final tessellated positions are

10https://github.com/MISTLab/ROSBuzz/blob/master/buzz_scripts/include/act/
states.bzz#L344

shown above the curves. The hotspots (red triangles in Figure 12)
are the same for all runs and were selected in order to ensure that
all six robots were already in the region to cover before launch
(no random goals generated). The flat line starting each curve
represents the delay before the take off command is been sent and
the hotspots shared over the whole fleet. These plots demonstrate
that the uniform coverage algorithm converge to the same final
formation even with 90% packet drop rate. Moreover, small
packet drop rates generate periodic oscillations since neighboring
robots (seeds) disappear and reappear. Same reasoning apply to
large drop rate: major and lasting changes in the neighbors list
directly influenced the stability, but nevertheless do not prevent
the fleet to converge.

To study the scalability properties of the coverage algorithm,
we conducted another set of experiments with up to 50 robots,
no packet lost, and a similar configuration as the previous
simulations. Figure 13 shows the average of all pairwise distances
between robots of the swarm. After the robots agreed on the
hotspot values, they need to navigate toward the region to
cover. This motion regroup the robots and cause a steep drop
in the inter-robot distance. Upon arrival in the region, they
each compute a tessellation to get their own cell centroid
and navigate toward it. Close to their cell’s centroid, the
tessellation refined itself over time, slowly spreading the fleet

Frontiers in Robotics and AI | www.frontiersin.org 12 May 2020 | Volume 7 | Article 51

https://github.com/MISTLab/ROSBuzz/blob/master/buzz_scripts/include/act/states.bzz#L344
https://github.com/MISTLab/ROSBuzz/blob/master/buzz_scripts/include/act/states.bzz#L344
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

St-Onge et al. ROSBuzz

FIGURE 12 | Robustness to packet drop in communication for the coverage algorithm. The curves show the distance to the ideal Voronoi cells centroids (taken as the

one without packet lost) and robot trajectories for different packet drop rates. The starting positions (green dots), final formation (blue squares) and hotspots (red

triangles) are plotted above the curves. Each scenario was ran 5 times and the colored area around the curves show the variability of the results. Even with 90%

packet drop rate, the swarm converge to the right cell centroids.

over the area. The inter-robot distance slowly increases until
it reaches a steady state. In the end, these results show that
the software infrastructure and the algorithmic computation
scales well. A simulation run with 30 robots is shown in the
Supplementary Video.

3.2.3. Field Deployment
The guarantee of robustness provided by the simulations above,
allowed us to deploy the experiment in the field safely. The
flights were conducted in an outdoor field with additional safety
measures: a geofence and a velocity limit. The geofence helped
to prevent the UAVs from flying too far as a result of the
autonomous cells computation from arbitrary user inputs. The
velocity limit make it easier for the user to understand and expect
the UAVs motion.

Three operators controlled a fleet of two M100 and three
Spiris for 15 min aiming at the exploration the area comprised
in the geofence limits. The resulting trajectories are shown
in Figure 14. Wind burst pushed some robots out of the
geofence (black polygon) on occasion. The plots tend to illustrate
that the operators were using hotspots more as attracting
locations for the fleet, i.e., not waiting for it to reach a stable
uniformly deployed formation. Nevertheless, comments gathered

from the participants indicate that they felt in control and
enjoyed the experience. Where the first demonstration used pre-
loaded task graphs, this one added a potential liability from
its online computation of targets relying on the user inputs.
The experiments still demonstrated the safe and robust software
architecture, from design to simulation and field deployment.
A short excerpt from the operators control is shown in the
Supplementary Video.

4. CONCLUSIONS

This paper describes the software infrastructure ROSBuzz for
the deployment of coordination behaviors on multi-robot
systems. ROSBuzz integrates both the swarm-oriented
programming language Buzz and the ROS ecosystem. It
grants the developer of decentralized behaviors with useful
swarm programming primitives and a set of essential tools
for robust deployment. We described the implementation
of a swarm-level barrier mechanism and an OTA update
mechanism. To demonstrate the software usage, workflow and
performance, we discussed the implementation of progressive
task allocation strategy and a semi-autonomous exploration
algorithm. Simulations for both scripts show to be robust to

Frontiers in Robotics and AI | www.frontiersin.org 13 May 2020 | Volume 7 | Article 51

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

St-Onge et al. ROSBuzz

FIGURE 13 | Distance between the robots while navigating to the Voronoi centroids, as the number of robots in the swarm increases.

FIGURE 14 | Trajectories of five UAVs in semi-autonomous exploration task following the hotspots inputted by each operator. The black polygon represents the

geofence.

large packet drop rate and to scale well. To test the concept and
the whole platform-agnostic infrastructure, experiments with
heterogeneous teams were conducted in the field. The missions
succeeded in each scenario. The task assignment experiments
specifically addressed the communication performance.
It was shown that throughout the whole mission, robots
used less than half the available bandwidth for inter-robot
communication. The semi-autonomous exploration integrated

an external variable: dynamic inputs from an operator. The
participants enjoyed the experiment and the fleet show
robust behavior.

Based on our experience and the results of our field
experiments, we are providing ROSBuzz to the robotics
community: it is available11 online, just as the scripts described

11https://github.com/MISTLab/ROSBuzz/

Frontiers in Robotics and AI | www.frontiersin.org 14 May 2020 | Volume 7 | Article 51

https://github.com/MISTLab/ROSBuzz/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

St-Onge et al. ROSBuzz

in this paper. While this paper shown robust performance from
algorithm design to the field, ROSBuzz is still in early stage of
development. Among the future works, the implementation of
new external code (hook) must be simplified and the limitation
to run with global positioning system (GPS or indoor motion
capture) is currently being addressed. More laboratories have
started using Buzz in their set of software tools and we hope to
see the community growing. As more research will be conducted
with this infrastructure, Buzz and its ROS implementation
will be enhanced to further support swarm robotics
field research.

DATA AVAILABILITY STATEMENT

The datasets generated for this study including the scripts used
for parsing the datasets are available Online (St-Onge et al., 2020)

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Ethical committee of Polytechnique Montreal. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

DS-O, VV, IŠ, and GB designed the architecture of the software.
DS-O, VV, and IŠ implemented the software and wrote the
sections of the manuscript. DS-O adapted both algorithms for
the experiments and managed the experiments. VV, IŠ, and GB
helped conduct the experiments and generated the plots for the
manuscript. All authors contributed to manuscript revision, read
and approved the submitted version.

ACKNOWLEDGMENTS

The authors would like to acknowledge the financial support of
NSERC (Strategic Partnership Grant 479149-2015) and MITACS
for this project. The fundamental contribution of Carlo Pinciroli
to Buzz were essential to this work as well as the generosity
of professor Gregory Dudek, lending a Husky for the first set
of experiments. Part of this manuscript has been released as a
Pre-Print at (St-Onge et al., 2017).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.
2020.00051/full#supplementary-material

REFERENCES

Alexandrov, V., Kirik, K., and Kobrin, A. (2018). Multi-robot Voronoi tessellation
based area partitioning algorithm study. J. Behav. Robot. 9, 214–220.
doi: 10.1515/pjbr-2018-0014

Bachrach, J., Beal, J., and McLurkin, J. (2010). Composable continuous-
space programs for robotic swarms. Neural Comput. Appl. 19, 825–847.
doi: 10.1007/s00521-010-0382-8

Bamberger, R. J., Watson, D. P., Scheidt, D. H., and Moore, K. L. (2006). Flight
demonstrations of unmanned aerial vehicle swarming concepts. Johns Hopkins
APL Tech. Digest. 27, 41–55. Available online at: https://pdfs.semanticscholar.
org/6cbf/5905fa034cc8be107cb234bcbc0e185ed74c.pdf

Bayindir, L. (2016). A review of swarm robotics tasks. Neurocomputing 172,
292–321. doi: 10.1016/j.neucom.2015.05.116

Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). Swarm robotics:
a review from the swarm engineering perspective. Swarm Intell. 7, 1–41.
doi: 10.1007/s11721-012-0075-2

Brunet, L., Choi, H.-L., and How, J. P. (2008). “Consensus-based auction
approaches for decentralized task assignment,” in AIAA Guidance, Navigation,
and Control Conference (Hawaii), 1–24. doi: 10.2514/6.2008-6839

Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Bonabeau, E., and
Theraula, G. (2003). Self-Organization in Biological Systems. Vol. 7. Princeton
university press.

Cortes, J., Martinez, S., Karatas, T., Bullo, F. (2004). Coverage control
for mobile sensing networks. IEEE Trans. Robot. Automat. 20, 243–255.
doi: 10.1109/TRA.2004.824698

Crespi, V., Galstyan, A., and Lerman, K. (2008). Top-down vs bottom-up
methodologies in multi-agent system design. Auton. Robots 24, 303–313.
doi: 10.1007/s10514-007-9080-5

Davis, D. T., Chung, T. H., Clement, M. R., and Day, M. A. (2016).
“Consensus-based data sharing for large-scale aerial swarm coordination
in lossy communications environments,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (Daejeon), 3801–3808.
doi: 10.1109/IROS.2016.7759559

Fortune, S. (1987). A sweepline algorithm for voronoi diagrams. Algorithmica
2:153. doi: 10.1007/BF01840357

Goc, M. L., Kim, L. H., Parsaei, A., Fekete, J.-d., Dragicevic, P., and Follmer, S.
(2016). “Zooids: building blocks for swarm user interfaces,” in UIST (Tokyo).
doi: 10.1145/2984511.2984547

Hauert, S., Leven, S., Varga, M., Ruini, F., Cangelosi, A., Zufferey,
J. C., et al. (2011). “Reynolds flocking in reality with fixed-wing
robots: Communication range vs. maximum turning rate,” in
2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems (San Francisco, CA), 5015–5020. doi: 10.1109/IROS.2011.60
95129

Kruijff, G.-J. M., Tretyakov, V., Linder, T., Augustin, S., Pirri, F., Gianni, M., et al.
(2012). “Rescue robots at earthquake-hit Mirandola, Italy: A field report,” in
2012 IEEE International Symposium on Safety, Security, and Rescue Robotics
(SSRR) (College Station, TX), 1–8.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 558–565.

Li, G., St-Onge, D., Pinciroli, C., Gasparri, A., Garone, E., and Beltrame, G. (2019).
Decentralized progressive shape formation with robot swarms. Auton. Robot.
43, 1505–1521. doi: 10.1007/s10514-018-9807-5

Lliffe, M. (2016). Drones in Humanitarian Action. Technical report. The Swiss
Foundation for Mine Action. Geneva; Brussels.

Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., and von Stryk, O.
(2012). “Comprehensive simulation of quadrotor UAVs using ROS and
Gazebo,” in Simulation, Modeling, and Programming for Autonomous Robots:
Third International Conference (Tsukuba). doi: 10.1007/978-3-642-34327-
8_36

Pickem, D., Glotfelter, P., Wang, L., Mote, M., Ames, A., Feron, E., et al. (2016).
“The robotarium: a remotely accessible swarm robotics research testbed,”
in Proceedings of the International Conference on Robotics and Automation
(Stockholm). doi: 10.1109/ICRA.2017.7989200

Pinciroli, C., and Beltrame, G. (2016). Swarm-oriented programming of
distributed robot networks. Computer 49, 32–41. doi: 10.1109/MC.20
16.376

Frontiers in Robotics and AI | www.frontiersin.org 15 May 2020 | Volume 7 | Article 51

https://www.frontiersin.org/articles/10.3389/frobt.2020.00051/full#supplementary-material
https://doi.org/10.1515/pjbr-2018-0014
https://doi.org/10.1007/s00521-010-0382-8
https://pdfs.semanticscholar.org/6cbf/5905fa034cc8be107cb234bcbc0e185ed74c.pdf
https://pdfs.semanticscholar.org/6cbf/5905fa034cc8be107cb234bcbc0e185ed74c.pdf
https://doi.org/10.1016/j.neucom.2015.05.116
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.2514/6.2008-6839
https://doi.org/10.1109/TRA.2004.824698
https://doi.org/10.1007/s10514-007-9080-5
https://doi.org/10.1109/IROS.2016.7759559
https://doi.org/10.1007/BF01840357
https://doi.org/10.1145/2984511.2984547
https://doi.org/10.1109/IROS.2011.6095129
https://doi.org/10.1007/s10514-018-9807-5
https://doi.org/10.1007/978-3-642-34327-8_36
https://doi.org/10.1109/ICRA.2017.7989200
https://doi.org/10.1109/MC.2016.376
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

St-Onge et al. ROSBuzz

Pinciroli, C., Lee-Brown, A., and Beltrame, G. (2015). Buzz: an extensible
programming language for self-organizing heterogeneous robot swarms.
arXiv:1507.05946. doi: 10.1109/IROS.2016.7759558

Pinciroli, C., Lee-Brown, A., and Beltrame, G. (2016). “A tuple space for data
sharing in robot swarms,” in Proceedings of the 9th EAI International Conference
on Bio-inspired Information and Communications Technologies (formerly
BIONETICS) (Daejeon), 287–294. doi: 10.4108/eai.3-12-2015.2262503

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al.
(2012). ARGoS: a modular, parallel, multi-engine simulator for multi-robot
systems. Swarm Intell. 6, 271–295. doi: 10.1007/s11721-012-0072-5

Rekleitis, I., Dudek, G., and Milios, E. (2001). Multi-robot collaboration for robust
exploration. Ann. Math. Artif. Intel. 31, 7–40 . doi: 10.1023/A:1016636024246

Şahin, E. (2004). “Swarm robotics: from sources of inspiration to domains of
application,” in Swarm Robotics, eds E. Şahin and W. M. Spears (Berlin;
Heidelberg: Springer), 10–20. doi: 10.1007/978-3-540-30552-1_2

St-Onge, D., Shankar Varadharajan, V., Švogor, I., and Beltrame, G. (2020). “Two
decentralized behaviors for robotic swarms from simulation to the field,” in
IEEE Dataport. doi: 10.21227/5h0h-x104. (accessed Apr 08, 2020).

St-Onge, D., Varadharajan, V. S., Li, G., Svogor, I., and Beltrame, G. (2017). ROS
and buzz: consensus based behaviors for heterogeneous teams. arXiv [Preprint].
arXiv: 1710.08843.

Støy, K. (2001). “Using situated communication in distributed autonomous
mobile robots,” in Proceedings of the 7th Scandinavian Conference on Artificial
Intelligence (Amsterdam: Citeseer), 44–52.

Szafir, D., Mutlu, B., and Fong, T. (2017). Designing planning and control
interfaces to support user collaboration with flying robots. Int. J. Robot. Res.
36, 1–29. doi: 10.1177/5920278364916688256

Varadharajan, V. S., Onge, D. S., Guß, C., and Beltrame, G. (2018).
Over-the-air updates for robotic swarms. IEEE Softw. 35, 44–50.
doi: 10.1109/MS.2018.111095718

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 St-Onge, Varadharajan, Švogor and Beltrame. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 16 May 2020 | Volume 7 | Article 51

https://doi.org/10.1109/IROS.2016.7759558
https://doi.org/10.4108/eai.3-12-2015.2262503
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1023/A:1016636024246
https://doi.org/10.1007/978-3-540-30552-1_2
https://doi.org/10.21227/5h0h-x104
https://doi.org/10.1177/5920278364916688256
https://doi.org/10.1109/MS.2018.111095718
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	From Design to Deployment: Decentralized Coordination of Heterogeneous Robotic Teams
	1. Introduction
	2. Methods
	2.1. Buzz, Swarm Language, and Virtual Machine
	2.1.1. The Buzz Toolbox

	2.2. ROSBuzz
	2.2.1. Under the Hood

	2.3. Simulation to Deployment
	2.4. Robustness-Enhancing Mechanisms
	2.4.1. Barrier
	2.4.2. Update Mechanism

	3. Experiments
	3.1. Task Allocation
	3.1.1. Algorithm
	3.1.2. Simulations
	3.1.3. Field Deployment

	3.2. Semi-autonomous Exploration
	3.2.1. Algorithm
	3.2.2. Simulations
	3.2.3. Field Deployment

	4. Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

