
Received May 8, 2020, accepted May 20, 2020, date of publication June 1, 2020, date of current version June 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2998950

Table-Free Multiple Bit-Error Correction
Using the CRC Syndrome
VIVIEN BOUSSARD 1,2, (Graduate Student Member, IEEE),
STÉPHANE COULOMBE 1, (Senior Member, IEEE),
FRANÇOIS-XAVIER COUDOUX 2, (Senior Member, IEEE),
AND PATRICK CORLAY 2
1Department of Software and IT Engineering, École de technologie supérieure, Université du Québec, Montreal, QC H3C 1K3, Canada
2University Polytechnique Hauts-de-France, CNRS, University Lille, ISEN, Centrale Lille, UMR 8520–IEMN–Institut d’Électronique de Microélectronique et de
Nanotechnologie, DOAE–Département d’Opto-Acousto-Électronique, 59313 Valenciennes, France

Corresponding author: Vivien Boussard (vivien.boussard.1@etsmtl.net)

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant. The authors
also wish to thank UPHF for its financial support of this Ph.D. in international joint supervision.

ABSTRACT In this paper, we propose a novel method for correctingmultiple errors in data packets, using the
Cyclic Redundancy Check (CRC) syndrome present in low layers of protocol stacks. The proposed method
generates the whole list of error patterns, leading to a received syndrome containing up to a given maximum
number of errors. Our approach is table-free, is computationally efficient, and can instantly correct erroneous
packets when the output list contains a single element. A performance study is conducted, and shows that the
proposed approach outperforms existing ones in Bluetooth Low Energy (BLE) as it can correct all single-
and double-error patterns as well as most triple-error cases when considering small payloads used in Internet
of Things (IoT) applications.

INDEX TERMS Data communication, error correction, cyclic redundancy check (CRC), Internet of Things
(IoT), Bluetooth low energy (BLE).

I. INTRODUCTION
Cyclic Redundancy Check (CRC) codes constitute a
well-known special case of checksum functions, which are
typically used for packet error detection in a wide variety of
low-layer protocols [1]. Their main purpose is to validate the
integrity of received packets. If an error is detected by such
codes, the corrupted packet is normally discarded and a data
recovery mechanism can be set, as implemented in proto-
cols such as the Transmission Control Protocol (TCP) [2],
where reliability is ensured through retransmission of the
corrupted data. In order to avoid systematic retransmission,
which would lead to an increased amount of data and extra
delays within the network, error correction methods have
been proposed at the receiver side. In addition, error detection
codes such as CRCs and Checksums [3] have also been
demonstrated to allow error correction [4]–[11]. The prin-
ciple of CRC error detection is based on the computation of a
so-called CRC field at the transmitter side. The value of this
field is the remainder of the long division of the protected

The associate editor coordinating the review of this manuscript and

approving it for publication was Maurizio Murroni .

bit sequence, the data, which we will refer to as the payload,
denoted d(x), by a generator polynomial (a binary polynomial
of degree n defined by the protocol used, denoted g(x)). The
payload is left-shifted by n positions before the division.
In Eq.(1), the remainder is denoted r(x) and q(x) represents
the quotient of the long division [1]:

d(x).xn = q(x).g(x)+ r(x)⇒ CRC = r(x) (1)

The computed CRCfield r(x) is then appended to the payload
and sent to the receiver. The transmitted packet, comprising
the payload and its associated remainder, is denoted pT (x) =
d(x).xn + r(x).
At the receiver, a long division by g(x) is performed on

the received packet, denoted pR(x), in order to check it’s
integrity. An error-free packet (i.e., pR(x) = pT (x)) is thus
a multiple of g(x) and the remainder is zero. In the contrary
case, an error will modify pT (x) and produce a non-zero
value as the remainder. The result is called the syndrome
of the CRC, denoted s(x). The standard management here
consists in automatically discarding a received packet with
a non-null syndrome. However, such management leads to
a waste of information. In real-time applications such as

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 102357

https://orcid.org/0000-0002-4829-9852
https://orcid.org/0000-0003-4495-3906
https://orcid.org/0000-0002-5817-7429
https://orcid.org/0000-0002-3407-8805
https://orcid.org/0000-0002-4618-0698
scoulombe
SEE LIST OF CORRECTIONS AND CORRECTED PAPER VERSION AFTER THIS PAPER



V. Boussard et al.: Table-Free Multiple Bit-Error Correction Using the CRC Syndrome

video conferencing, packet retransmission is unavailable.
One would then benefit from extracting as much information
as possible from a received corrupted packet. Our approach
is to propose algorithms to attempt to repair such corrupted
data using the actual syndrome value.

CRC-based error correction techniques have been explored
in previous works, and can be divided into two main
categories:

1) Estimator approaches [11]–[13]: These approaches
use statistical estimators, such as the Maximum A Pos-
teriori (MAP) estimator, and aim at finding the most
probable binary sequence that has been sent, consid-
ering the received erroneous sequence. The CRC is
used to check the validity of the MAP sequence or
can be part of the estimation process. Such methods
can use optimization techniques such as the Alternat-
ing Direction Method of Multipliers (ADMM) [14]
or Belief Propagation (BP) [15]. These approaches to
MAP are costly, and generally use Log Likelihood
Ratios (LLR) [13] and provide information on the con-
fidence of the received bit, expressed as a real value
between −∞ and +∞, based on the received soft
values. Unfortunately, today’s TCP/IP and User Data-
gram Protocol UDP/IP protocol stacks are essentially
designed to deal with hard values (decoded bits), and
consequently, such approaches cannot be implemented
in current architectures without great effort.

2) Lookup table approaches [4]–[8]: These approaches
implement lookup tables prior to the communication,
in which each entry contains the syndrome result-
ing from one [6] or two [7] errors at specific posi-
tions. Upon reception, when a CRC check results in
a non-null syndrome, the table is scanned. If a match
is found, the corresponding bit positions are flipped to
correct the packet. By definition, the CRC codes are
designed such that each single error leads to a unique
syndrome within the period of the generator polyno-
mial used. The period of a generator polynomial is thus
the number of different syndromes it can output for sin-
gle errors. If the packet length surpasses the period of
the generator polynomial, several single-error positions
could lead to the same syndrome, thereby introducing
ambiguity. Recently, some CRC-aided error correction
methods have implemented a lookup table approach
to increase their correction capacities [5]. Besides
high memory requirements for storing the table, such
approaches raise two main issues:

• Lack of flexibility: lookup tables must be gen-
erated prior to the transmission, and cannot be
dynamically modified to support multiple genera-
tor polynomials and larger packet sizes than those
for which they were designed.

• Memory constraints: memory requirements for
lookup table-based approaches rapidly increase
with the number of errors to consider. In fact, such

methods must store the entire set of possible error
patterns and their associated syndrome.

In this paper, we propose a novel approach to error cor-
rection that outputs the exhaustive list of CRC-compliant
binary sequences containing up toN errors. This method does
not need any lookup table, which thus reduces the memory
resources needed and allows the algorithm to be flexible as
it can be used for any number of errors and any payload
length without the need to rebuild a lookup table. Whereas
CRC-aided Maximum Likelihood (ML) methods [4] typi-
cally use CRC to check the validity of the candidates at the
end of the MAP process, our method uses the CRC syndrome
itself to produce the list of candidates, thus ensuring the CRC
integrity of every candidate. The output list can be used to
instantly correct the packet if it contains a single element or it
can be used along with error correction or validation methods
from upper layers of the protocol stack in order to reduce the
list of candidates.

The paper is organized as follows. In section II, we give a
detailed description of the proposed method in three distinct
parts. The first one describes the concept of the approach and
its application to single-error correction. Challenges encoun-
tered with the double-error correction are then introduced
and generalization to any number of errors is explained. In
section III, we present the proposed algorithm’s performance
as compared to state-of-the-art approaches. Tests are con-
ducted according to different standards used in targeted appli-
cations, such as Wi-Fi [16] and Bluetooth Low Energy [17].
Simulation results demonstrate the superiority of the pro-
posed solution in terms of error correction rate, computa-
tional complexity and memory usage. They show that for
small-sized packets such as those found in IoT, we can
achieve a 100% correction rate for corrupted packets contain-
ing two errors or less, as well as high correction rates for three
errors. In section IV, we conclude and give an overview of
future research works.

II. PROPOSED METHOD
The proposed method uses the CRC syndrome value s(x)
computed at the receiver to list all the possible error patterns
that lead to such a specific syndrome, considering amaximum
number of errors. The resulting list can contain one or several
entries at the end of the process. Each entry represents the
positions of the bits to be flipped to recover a CRC-valid
packet, i.e., it reveals the error positions. When the list con-
tains only one element, we can instantly correct the packet,
but when it contains several entries, additional information is
required in order to identify the actual error pattern among the
candidates. The proposed approach is flexible, and lists the
whole set of possible error patterns with up toN errors, where
the parameter N can be set according to the observed channel
conditions, for instance. In this section, we first introduce
the basic theoretical concepts of the proposed method for the
single-error case. Then, we extend themethod to double-error
patterns, followed by multiple-error patterns.

102358 VOLUME 8, 2020



V. Boussard et al.: Table-Free Multiple Bit-Error Correction Using the CRC Syndrome

FIGURE 1. Illustration of the binary vector representation: each
polynomial g(x) with binary coefficients can be seen as a binary vector g.
Multiplying g(x) by xn corresponds to a left shift of g by n positions.

A. FUNDAMENTALS
For convenience, it is common to use a binary vector repre-
sentation of binary polynomials as described in [19] and illus-
trated in Fig. 1. Using the vector representation, the degree of
a coefficient corresponds to the bit position of the associated
element in the vector. The length, in bits, of a vector is equal
to the degree of the polynomial increased by 1, due to the
existence of degree 0 in the polynomial (i.e., a polynomial
of highest degree x15 will be represented as a 16-bit vector).
Vectors allow a better understanding of operators such as
exclusive or (XOR) and binary left shifts. Throughout this
paper, specific notations will be used. The following is a list
of such notations based on [18] and their definitions:
• a: binary vector [ak , . . . , a0] of length k+1 associated
with the binary polynomial a(x) of degree k

• ai: ith bit (entry) of binary vector a, starting from least
significant bit (LSB)

• m: payload length in bits
• n: syndrome length in bits
• M : total packet length in bits (M = m+ n)
• N : number of errors searched
• P1: error position obtained from the single-error correc-
tion algorithm (Algorithm 1)

• F : sorted list (F1, . . . ,Fk−1) of (k − 1) bit positions
forced to 1, such that Fi < Fi+1,∀i

• len(F): number of elements in the list F
• Ei: set of valid error patterns containing i errors or less
• sum(a): number of non-zero elements in a binary vector
a; also denoted

∑
when the context is clear

• ⊕: XOR operator between binary vectors
• + : XOR operator between polynomials
• �: left shift operator
• ←: affectation operator
• ti: ith step
We will frequently use the following binary vectors:
• 0: null vector (the length depends on the context)
• g: generator polynomial vector of length n+1 with g0=
1 and gn=1, given its definition [20]

• s: syndrome vector of length n
• e: error vector of lengthM = n+ m
According to the definition of the CRC [1], we know that

the syndrome s(x) is computed at the receiver as the remain-
der of the division of the received packet by the generator
polynomial, which can be expressed as:

s(x) = pR(x) mod g(x) (2)

When no error occurs, the syndrome s(x) is equal to a
null polynomial. If we consider an error pattern e(x), the

syndrome of the received packet can be expressed as:

s(x) = (pT (x)+ e(x)) mod g(x) (3)

where s(x) is a non-null syndrome. A given syndrome value
can be the result of several different error patterns e(x),
containing different numbers of errors. We denote EM (s(x))
the set of all valid error patterns leading to the syndrome s(x).
In order to lighten the notation, we will use EM since we are
interested in a single syndrome value throughout the process.
The error patterns in EM contain between 1 andM errors (all
bits of the packet are erroneous in the latter case). We denote
Ei the subset of EM comprising error patterns with i errors or
less (1 ≤ i ≤ M ). We thus have:

Ei ∈ Ei+1 ∀ 1 ≤ i ≤ M − 1 (4)

where the Ei are not disjoint sets. The number of elements
in EM and in each subset Ei depends on the syndrome, the
generator polynomial used and the packet length. We aim at
finding the actual error pattern eA(x) among the set of all error
patterns leading to the computed syndrome value s(x). Given
the definition of the modulo operator and Eq.(3), all error
patterns of EM are defined as:

EM = {e(x) ∈ GF(2M ) | e(x) = s(x)+ q(x).g(x)

with q(x) ∈ GF(2m)} (5)

where m is the payload length and GF(2m) is the Galois Field
of order 2m (i.e., the set of binary polynomials of length
m [19]). In other words, the error pattern corresponding to
the syndrome can be any binary polynomial of highest degree
m − 1 (that we denoted as q(x)) multiplied by the gener-
ator polynomial, with s(x) added. The set EM is called the
equivalence class containing s(x). Each element is equivalent
under mod g(x) operation since adding any multiple of g(x)
to s(x) does not affect the result. Every possible value of
q(x) in this equation will produce a CRC-compliant error
pattern e(x) (i.e., an element of EM ). The degrees of the
non-zero coefficients in the resulting e(x) correspond to the
erroneous positions in the corrupted packet. Assuming that
packets are not too damaged, the straightforward approach to
identifying candidates having a maximum number of errors
would be to test every possible value of q(x) and to count
the number of non-zero coefficients in the resulting error
polynomial e(x). If this number, denoted sum(e), is greater
than a fixed threshold, the candidate is discarded. Otherwise,
it is appended to the list of valid candidates. This method is
computationally complex, and would require 2m tests to con-
sider all the possible values of q(x). Such a complex process
is therefore prohibitive to conduct in real-time scenarios, such
as videoconferencing, for instance.

It can be verified that most of the possible values of q(x)
produce error polynomials e(x) containing many errors (i.e.,
corresponding to highly corrupted packets cases, where e(x)
and its associated vector e contain a significant amount of
non-null values). Considering the whole set of possibilities
would only increase the complexity of the method. We make

VOLUME 8, 2020 102359



V. Boussard et al.: Table-Free Multiple Bit-Error Correction Using the CRC Syndrome

the hypothesis that highly corrupted packets are too damaged
to be recovered. Thus, in the rest of this paper, we focus on
recovering slightly corrupted packets that are worth extract-
ing information from. Some indicators such as the Receiver
Signal Strength Indicator (RSSI), included in the 802.11
standard [16], can be used to indicate the degree of corruption
of a received packet. In the remainder of this section, we first
describe the single-error correction method (the search for
all elements in E1), and then we introduce the double-error
correction and extend it to any number N of errors (i.e., we
determine the elements of EN ).

B. SINGLE-ERROR CORRECTION
We exploit the knowledge on both the generator polynomial
and the way the syndrome is computed to reversely find the
position of the single error at the receiver side. With such
an approach, we are not testing possible values of q(x), but
rather, are gradually building a specific polynomial q(x), one
coefficient at a time. If a single candidate is identified at
the end of the process, the packet can be corrected. If not,
some additional processes must be used to determine the only
candidate to consider.

We now demonstrate that the proposed approach is guar-
anteed to identify single errors. Suppose that the error is at
position P1 (i.e., e(x) = xP1 ). We know from the definition
of Eq.(5) that:

xP1 = s(x)+ q(x).g(x) for a q(x) ∈ GF(2m) (6)

It is clear that q(x) must be constructed such that s(x) +
q(x).g(x) has zero coefficients for all positions i 6= P1. Hav-
ing coefficients at positions i < P1 is ensured by successively
determining, from LSB to MSB, the coefficient values of
q(x) meeting this condition. For simplicity, in the following
derivations, we can consider s(x) of degree m − 1 with si =
0, i > n− 1. We have:

xP1 =
m−1∑
i=0

six i +

(
m−1∑
i=0

qix i
) n∑

j=0

gjx j


=

m−1∑
i=0

six i +
m−1∑
i=0

qi.
n∑
j=0

gjx i+j

=

m−1∑
i=0

six i +
m−1∑
i=0

qi.
i+n∑
r=i

gr−ixr

=

m−1∑
i=0

six i +
m−1∑
i=0

qi.g0x i + qi. i+n∑
r=i+1

gr−ixr


=

m−1∑
i=0

(si + qi.g0)x i + qi.
i+n∑

r=i+1

gr−ixr


=

m−1∑
i=0

(si + qi)x i + qi.
i+n∑

r=i+1

gr−ixr

 , since g0 = 1

(7)

From Eq.(7), it is clear that for every value of i in the
main summation, (si + qi.g0)x i is of a lower degree than
qi.
∑i+n

r=i+1 gr−ix
r . Thus, for i = 0 and each successive value

of i, we can easily determine the qi value resulting in the
desired result, namely, zero coefficients for positions i < P1.
Of course, setting qi to 1 creates terms that must be considered
in subsequent positions. If s(x) was generated by a single
error, performing the process on increasing values of i would
eventually lead to a monomial (i.e., xP1 for a certain value
of P1). This must happen, otherwise, after position i = P1,
adding

∑i+n
r=i+1 gr−ix

r (i.e., qi 6= 0) would add a coefficient
at position i + n (the MSB) that cannot be canceled without
adding a coefficient of even higher degree.

Algorithm 1 SingleErrorCorrection(s,g,n,m)

Inputs:
s: the syndrome vector
g: the vector associated with the generator polynomial

used to compute the CRC
n: the length of the syndrome vector
m: the length of the payload vector

Output:
E1 the list of valid error patterns for a single bit error

1: E1← {}
2: Let e be a vector of length m+ n
3: e← 0⊕ s
4: if sum(e) = 1 then
5: Add e to E1
6: end if
7: for j = 0 to m− 1 do
8: if ej = 1 then
9: e← e⊕ (g� j)
10: if sum(e) = 1 then
11: Add e to E1
12: end if
13: end if
14: end for
15: Return E1

The search for single-error patterns is illustrated in Algo-
rithm 1 and the corresponding flowchart is given in Fig. 2.
Each step of the algorithm is identified in Fig. 2 using binary
notations. We provide further details in the following steps:

3: We first initialize the error e to a zero vector of length
M = m + n and replace the n LSB values with the com-
puted syndrome s, as shown in Fig. 3. We can note that it
corresponds in Eq.(5) to e(x) = q(x).g(x)+ s(x), where q(x)
is equal to zero. Such initialization allows to comply with
Eq.(5) andmaintains its equivalence relation as we are adding
shifted versions of g(x) to build q(x) in step 9.

4-5: At this point, we compute the sum of non-zero ele-
ments in e = s, denoted sum(e), equivalent to the number of

102360 VOLUME 8, 2020



V. Boussard et al.: Table-Free Multiple Bit-Error Correction Using the CRC Syndrome

FIGURE 2. Flowchart of the proposed method’s algorithm to correct a single error in the packet. Numbers show the corresponding steps in Algorithm 1.

errors in the computed syndrome. If it contains only one ele-
ment to 1, then it is itself a suitable candidate as a single-error
pattern.

7: We scan the m first payload positions from 0 to m − 1.
We do not consider the last n positions since they corre-
spond to the range of the XOR operation to perform. Hence,
it reaches the end of the payload at positionm−1 and beyond
this position would be out of the payload range.

8-9: For each scanned position, we check the jth bit value
of the current error vector. If this value is 0, we simply jump
to the next element. If it is 1, we cancel the non-zero value by
performing an XOR operation with g at this position, as its
LSB is 1 (i.e., g0 = 1). Note that for clarity, we simplified this
step in the figures and flowcharts by directly incrementing
the current position to the next element set to 1. Each time
we perform an XOR operation at position j, a 1 is added at
MSB position j + n since gn = 1. If the error pattern is a
single error at position k , the proposed method will reveal
this since the XOR operations will be able to cancel all bits at
positions j < k , and all bits at positions j > k are already set
to zero. The strategy is to cancel every LSB non-zero element
until the end of the packet is reached, and thus not miss any
single-error candidate.

10-11: After each cancelation, we check the number of
non-zero coefficients in the error vector e. If this number is

FIGURE 3. Structure of the initial error vector e = 0⊕ s.

equal to 1, a valid single-error candidate is identified and its
position is appended to the list.

At the end of the whole process, if the algorithm does not
provide any candidate, it means the syndrome was caused by
multiple errors in the packet.

So, depending on the packet size and syndrome, there can
be zero, one or multiple candidates. This latter case occurs in
long enough packets due to the periodic aspect of generator
polynomials, as discussed in the introduction. The whole
single-error search process is illustrated in Fig. 4. In the
present case, the payload consists of 10 data bits and the
CRC-4-ITU where a generator polynomial g(x) = x4+ x+1
is applied. At the receiver, the computed syndrome is s(x) =
x2 + 1, represented in dark grey boxes at step t0.
At step t0, the error vector e is initialized to m zeros, m

being the length of the protected data, and the syndrome s is
appended.Wefirst check the number of non-zero values in the
error vector to verify if the syndrome itself is a valid candidate

VOLUME 8, 2020 102361



V. Boussard et al.: Table-Free Multiple Bit-Error Correction Using the CRC Syndrome

FIGURE 4. Illustration of the single-error search applied to CRC-4-ITU,
where g(x) = x4 + x + 1 (yellow cells) with a syndrome s(x) = x2 + 1 (grey
cells). In this notation,

∑
represents sum(e). A single-error pattern is

found at bit position 8 at step t3. In this example: E1 = {8} (i.e., the red
cell).

(i.e., if the syndrome is corrupted). Since the sum of non-zero
values in s is greater than 1, the syndrome does not contain a
valid single-error pattern, and is thus not a candidate. At each
step until we reach the end of the packet, we successively
perform an XOR operation with g at each non-null position
and check the resulting number of 1s in the updated error
vector e. If this sum is equal to 1, the candidate is appended to
the list. Such a candidate is found at time t3, since there is only
one bit set in the error vector. A first single-error candidate is
thus identified, containing an error at position 8. Since there
could be several candidates, we continue the scanning of the
packet until the end. At step t5, the algorithm reaches the end
of the packet and the list of candidates contains a single entry.
Flipping the bit at position 8 in the corrupted packet is the
only valid correction if a single error has occurred.

C. DOUBLE-ERROR CORRECTION
1) PROBLEM WITH STRAIGHTFORWARD EXTENSION OF
ALGORITHM 1
Themethod described in the previous section produces as out-
put the exhaustive list of single-error patterns corresponding
to a non-null syndrome at the receiver, given the generator
polynomial used and the length of the protected data. To deal
with double-error patterns, a straightforward method would
be to run the exact same algorithm while appending all the
error vectors e with two coefficients set to 1 to the candidate
list. This approach would be able to output double-error
patterns, but cannot ensure that an exhaustive list of such
error patterns is provided. Actually, only one specific type of
double-error patterns will be output, namely, those in which
the double-error pattern covers n bits or less (i.e., are close
to each other). The single-error search aims at canceling
non-zero values from LSB to MSB. This cancelation is per-
formed thanks to an XOR operation between a shifted version
of the generator polynomial and the constantly updated error
vector. We can observe that there cannot be more than n bits
between the 1 located at the LSB position and the 1 at the

FIGURE 5. Illustration of the error range applied to CRC-CCITT-8 (n = 8).
Canceling LSB non-zero values by performing an XOR operation with a
generator polynomial of width n+ 1 bits produces an error range of n
bits.

MSB position, as illustrated in Fig. 5, which represents the
error vector during the single-error search. The MSB zeros
correspond to the positions still in the original state of e,
initialized as a null vector, and the LSB zeros correspond
to the already canceled positions. Between these two null
subvectors we have the possible non-zero positions, with a
maximum width of n bits. We will refer to the maximum
distance between the first and last non-zero coefficients as
the error range of the method. At step t9 of Algorithm 1, the
update of the error vector e can be expressed as:

m+n−1∑
i=0

eix i←
m+n−1∑
i=0

eix i +
j+n∑
i=j

g(i−j)x i

=

j+n∑
i=j+1

(ei + g(i−j)).x i

= x(j+n) +
j+n−1∑
i=j+1

(ei + g(i−j)).x i (8)

From Eq.(8), it is clear that the whole set of non-null values
in the error vector covers n positions at most. In fact, all the
values in e up to position j are already canceled and set to 0,
due to the design of the proposed algorithm, and all positions
above j + n are also set to 0 due to the initialization of the
error vector (i.e., e = 0 ⊕ s). As the highest degree term
of the generator polynomial is 1, we can see that position
x j+n is set. The other non-null positions are subject to the
values of the error vector at its current state and the other
terms of the generator polynomial. The range of non-null
values is denoted the error range, and is illustrated in Fig. 5.
In conclusion, a straightforward extension of Algorithm 1
would only yield error patterns in which errors are within a
range of n bits. A different approach is thus required.

2) PROPOSED DOUBLE-ERROR CORRECTION APPROACH
To obtain the exhaustive list of error patterns, we aim at
expanding the error range to have it cover the entire length
of the protected data. The method we propose is to force a bit
to 1 during the process. Forcing a position consists in setting
it (or leaving it) to 1 during the single-error search. In other
words, it is equivalent to making the hypothesis that a specific
position is actually erroneous in the packet. Hence, we force
one bit to 1 at position F1 during the process and run the
single-error algorithm on the remaining length of the packet.
If the bit is already 1, we leave it untouched. Otherwise, set-
ting a bit to 1 is done by applying an XOR operation with g(x)

102362 VOLUME 8, 2020



V. Boussard et al.: Table-Free Multiple Bit-Error Correction Using the CRC Syndrome

at position F1 in order to maintain the equivalence relation.
Throughout the cancelation process with the forced bit set,
if a single-error position (denoted hereafter P1) is obtained
from the single-error correction algorithm, we determine a
double-error pattern with errors at positions F1 and P1.
As we want to get the whole list and we do not know

the actual position of the first error, we test each possible
forced position in order to output all the double-error patterns
associated with the computed syndrome. In the proposed
algorithm, we suggest forcing positions starting from LSB
to MSB. Moreover, starting from LSB at each tested forced
positionwould lead to a cancelation of the same first positions
several over and degrade the computational efficiency. To
avoid verifying the same possibilities repeatedly, we store the
value of ewhen a bit is forced and recall this state to start from
it and save computations for the next forced position to test.

Fig. 6 illustrates the complete process for listing the
double-error patterns corresponding to the syndrome s(x) =
x3+ x2+1 applied to a CRC-4-ITU of generator polynomial
g(x) = x4+ x+1 protecting 6 data bits. In this figure, forced
positions are represented as black boxes through time. At step
t0, the error vector e is initialized as a null vector, to which
syndrome vector s(x) = x3 + x2 + 1 is appended. As we
start at position 0, and e0 is already set to 1, we simply jump
to the next element and start the single-error search from the
next non-zero position, checking at each step if the number of
non-zero coefficients in e equals 2. A first candidate appears
at t1, corresponding to errors at positions (F1 = 0,P1 = 6).
Canceling the next non-zero value would move the operation
out of the range of the packet, thus ending the search for
a single error for this forced position. At step t2 we recall
the initial state of the error vector from t0. The next forced
bit to test is at position 1. Hence, we cancel position 0 and
let position 1 be set to 1. From t3 to t6, we perform the
single-error algorithm on the remaining length. No new error
pattern is found. At time t7, we recall the previous state from
t3 and cancel the former forced bit at position 1. At t8, the
next forced position to test, position 2, is not yet set to 1.
We thus have to perform an XOR operation with g at this
position to set it. We identify such cases as dark grey boxes
in Fig. 6, at steps t8 and t15. We continue this process until
reaching the last forced bit position, corresponding to the mth

position starting from LSB. We can see at step t18 that we
cannot perform any XOR operation without going out of the
range of the packet. Hence, the algorithm is stopped at t18
and outputs the list of error patterns containing two errors
corresponding to the received syndrome. The sums of errors
in such cases are shown in red font in Fig. 6. The output list
contains the following error patterns: (F1 = 0,P1 = 6) ,
(F1 = 3,P1 = 8) and (F1 = 5,P1 = 7). The proposed
approach for double-error correction is exemplified in Fig. 6
and presented in Algorithm 2 using N = 2.

D. N-ERROR CORRECTION
We can further extend the proposed method to deal with any
number N of errors in a packet. The strategy applied is the

FIGURE 6. Visual example of the proposed algorithm applied to
double-error correction, performed over CRC-4-ITU (yellow cells)
protecting 6 data bits with a syndrome s(x) = x3 + x2 + 1 (grey cells).
Each forced bit position, represented as a black cell, is tested throughout
the process to get the exhaustive list of double-error patterns. In this
example there are three such cases at steps t1, t13 and t17, thus
E2 = {(0,6); (3,8); (5,7)}.

extension of the double-error correction approach described
in the previous section.

Much as we forced one position and scanned the remaining
length of the packet using the single-error search, we can
manage the N -error search. In such cases, we set (N − 1)
forced bits in the error vector, corresponding to the first
(N − 1) errors in the packet, and scan the remaining length
using the single-error search to identify the position of the
last error in the packet, if it exists. The (N − 1) forced binary
errors have to be tested in the packet. The proposed method
to generate the list of potential error patterns containing up to
N errors is illustrated in Algorithm 2.

VOLUME 8, 2020 102363



V. Boussard et al.: Table-Free Multiple Bit-Error Correction Using the CRC Syndrome

Algorithm 2 N -ErrorPatternsGeneration(s,g,n,m,N )

Inputs:
s: the syndrome
g: the vector associated with the generator polynomial

used to compute the CRC
n: the length of the syndrome vector
m: the length of the payload vector
N : the maximum number of bit errors considered

Output:
EN the list of valid error patterns up to N bit errors

1: EN ← {}
2: Let e be a vector of length m+ n
3: e← 0⊕ s
4: Let v be a vector of length m
5: if sum(e) ≤ N then
6: Add e to EN
7: end if
8: k ← N
9: while k ≥ 1 do
10: if k = 1 then
11: Add SingleErrorCorrection(s,g,n,m) to EN
12: else
13: Let F ← (0, . . . , k − 2)
14: v← PositionsToVector(F)
15: while F 6=(m− (k − 1), . . . ,m− 1) do
16: start← max(F1−1, 0)
17: for j = start to m− 1 do
18: if ej 6= vj then
19: e← e⊕ (g� j)
20: if sum(e) ≤ N then
21: Add e to EN
22: end if
23: end if
24: if j = F1 then
25: e′← e
26: end if
27: end for
28: F ← UpdateForcedPositions(F ,m)
29: v← PositionsToVector(F)
30: e← e′

31: end while
32: end if
33: e← 0⊕ s
34: k ← k − 1
35: end while
36: Remove duplicate elements in EN
37: Return EN

We now present the key steps of the proposed algorithm ,
while the corresponding flowchart is given in Fig. 8:

3: The binary vector of length M representing the error
vector e is initialized to m zeros, followed by n values, corre-
sponding to the computed syndrome s.

Algorithm 3 UpdateForcedPositions(F ,m)

Inputs:
F : sorted list (F1, . . . ,Fk−1) of (k − 1) bit positions

forced to 1, such that Fi < Fi+1,∀i
m: the length of the payload vector

Note that k = len(F)+ 1, with len(F) being the
number of elements in the list F

Output:
F ′: the updated sorted list of forced positions

1: if Fk−1 < (m− 1) then
2: Fk−1← Fk−1 + 1
3: Return F ′← (F1, . . . ,Fk−1)
4: else
5: for i = k − 2 to 1 do
6: if Fi < Fi+1 − 1 then
7: Fi← Fi + 1
8: j← i
9: while j < k − 1 do

10: Fj+1← Fj + 1
11: j← j+ 1
12: end while
13: Return F ′← (F1, . . . ,Fk−1)
14: end if
15: end for
16: end if

Algorithm 4 PositionsToVector(F)

Inputs:
F : sorted list (F1, . . . ,Fk−1) of (k − 1) bit positions

forced to 1, such that Fi < Fi+1,∀i.

Note that k = len(F)+ 1, with len(F) being the
number of elements in the list F

Output:
v: the corresponding vector of forced positions

1: v← 0
2: for i = 1 to k − 1 do
3: vFi ← 1
4: end for
5: Return v

5-6:We first check if the number of non-zero values in this
initial vector e is less than or equal to the targeted number of
errors N . If so, a first candidate is added to the list EN .
8-9: The local variable k represents the current number of

errors considered. k is initialized to N , then decreased at each
main loop of the algorithm to consider every number of errors
from N to 1.
10-11: In the last loop, the variable k equals 1. In this case,

no forced position must be set and the single-error correction

102364 VOLUME 8, 2020



V. Boussard et al.: Table-Free Multiple Bit-Error Correction Using the CRC Syndrome

FIGURE 7. Illustrative example of the proposed algorithm performed over
CRC-8-CCITT (yellow cells) protecting 10 data bits, where N = 3 and
s(x) = x6 + x4 + x2 + x + 1 (grey cells). Forced bit positions are
represented as black cells in the vector e. Three solutions are valid
candidates in this example, where

∑
, representing sum(e), equals 3

(shown in red font). Here, E3 = {(0,1,18); (1,6,16); (2,8,18)}.

algorithm is performed. The output candidate list is then
appended to the global candidate list EN .
13: The sorted list of forced positionsF is initialized to the

(k−1) LSB values at the first iteration. At this step, the set of
forced positionsF = (F1 = 0,F2 = 1, . . . ,Fk−1 = (k−2)).
The (k−1) forced positions in the setF are ordered such that
F1 < F2 < . . . < Fk−1.
14: The binary vector is set according to the forced posi-

tions in F . In Algorithm 4, the bits in v corresponding to
forced positions in F are set to 1. The other bits in v are set
to 0.

15: The forced positions will then be updated to cover the
entire set of possible fixed error positions (until the forced
positions are the (k − 1) MSB positions). For a packet of
M bits, there are

(M−n
k−1

)
such positions, thanks to the range

of the XOR operation performed. After setting these forced
positions, we are aiming at finding the last error by conduct-
ing the single-error algorithm on the remaining part of the
packet.

16: In order to save computations, we use as a starting point
the previously obtained vector e after cancelation of its LSB
positions up to F1, the LSB position we forced. With this
approach we will not have to cancel the same first positions
at each iteration as we increase F1.

17:We perform a scan on the remaining length of the error
vector e, from LSB to MSB (i.e., single-error search).

18-19: At each position j, we compare the values of ej and
vj to determine if the jth position corresponds to a forced
position. If vj and ej are both set to 0 or 1, it means that
position j either must not be forced (to 1) and is already
set to 0, or must be forced, but is already set to 1. In both
cases, the algorithm simply jumps to the next element since
what is required is already in place. However, when these two
elements are set to different values, it corresponds to the cases
where the position j has to be canceled and set to 1, or where
the position j has to be forced to 1, but is set to 0. In both cases,
an XOR operation with g must be performed to maintain the
equivalence relation and obtain what is required.

20-22: At each stage, the number of non-zero coefficients
in the newly accumulated e is observed, similarly to steps 5-6.
Whenever e contains N errors or less, a candidate is added to
the list EN .

25: We store the state of e in a vector e′ to avoid
re-canceling the same first LSBs at the next iteration.

28:At the end of each scan, the vector of forced positions is
updated using the UpdateForcedPosition function illustrated
in Algorithm 3. In this algorithm, the (k − 1) forced posi-
tions are successively updated to cover the entire message.
At step 1, we check if the MSB forced position has reached
its final position. If not, we increase its value by one. If it
has reached its final position, we successively check forced
positions fromMSB to LSB at step 5. When a forced position
can be increased, we reversely update the other positions,
from LSB to MSB.

29: Each time the set of forced positions is updated, the
binary vector v is modified.
30:We recall the state e′ to start from it at the next iteration.
33: We recall the initial state (syndrome) when we update

the number of errors to consider.
Fig. 7 shows a visual example of the algorithm applied to

a CRC-8-CCITT, which has a generator polynomial g(x) =
x8 + x2 + x + 1. This example illustrates a triple-error
management, with v having two non-zero values, represented
as black boxes in Fig. 7. Four stages are represented here:
the initial stage, where the forced error positions are (F1 =
0;F2=1), two different stages that produce a valid candidate,
namely (F1 = 1;F2 = 6) and (F1 = 2;F2 = 8), and the final
step, with the last two forced positions (F1 = 10;F2 = 11).
By definition, these positions must remain set to 1 at the end
of the scan. The other non-null values in e must be canceled
from LSB to MSB, using the single-error search method.
At each step, we successively add left-shifted versions of g
at these positions and if the sum of non-null values in e is
equal to 3 (N = 3), then e is considered as a valid candidate.
We can observe that this example produces three valid error
patterns with error positions (F1 = 0;F2 = 1;P1 = 18),
(F1 = 1;F2 = 6;P1 = 16) and (F1 = 2;F2 = 8;P1 = 18),
shown in red font in Fig. 7. The design of Algorithm 2 yields
a total complexity, measured in number of XOR operations,
of O(mN ). Testing the entire error pattern to determine which
would match the received syndrome (i.e., brute force scheme)
would have a complexity of O(mN+1). We can note that the

VOLUME 8, 2020 102365



V. Boussard et al.: Table-Free Multiple Bit-Error Correction Using the CRC Syndrome

FIGURE 8. Flowchart of the proposed method algorithm for correcting multiple errors in the packet. Numbers show the corresponding steps in
Algorithm 2.

complexity increases significantly with the number of errors
considered N . We thus recommend using the algorithm when
N is low, depending on the processing time constraints of the

targeted application. It is important to note that correcting a
single error using algorithm 1 is not computationally more
complex than performing a classic CRC check at the receiver.

102366 VOLUME 8, 2020



V. Boussard et al.: Table-Free Multiple Bit-Error Correction Using the CRC Syndrome

FIGURE 9. Single Candidate Ratio (SCR) for a payload length
from 0 to 500 bits protected by a CRC-16-CCITT [25] of generator
polynomial g(x) = x16 + x12 + x5 + 1, considering up to 4 errors.

III. SIMULATION AND RESULTS
In this section, we present the theoretical and simulation
performance of the proposed method, as compared to the
lookup table approaches from the literature. Finally, we apply
our method to Bluetooth Low Energy used in the IoT and
compare its performance to state-of-the-art methods.

A. CORRECTION RATE
In this section, we evaluate the performance of the pro-
posed error correction method. It is able to instantly correct
the packet when there is only one candidate in the output
candidate list. Hence, the performance can be expressed as
the percentage of error cases that produce only one can-
didate in the list. We will refer to such a percentage as
the Single Candidate Ratio (SCR). The SCR is a func-
tion of three parameters: the generator polynomial used,
the length of the protected data and the number of errors
considered. Given a generator polynomial g(x), we denote
the N -error patterns for a packet length m leading to a sin-
gle candidate as SinglePatterns(m,N ) and the total num-
ber of possible N -error patterns for the same length m as
TotalPatterns(m,N ), and we can express the SCR as:

SCR(m,N ) =
SinglePatterns(m,N )
TotalPatterns(m,N )

(9)

where SinglePatterns(m,N ) was determined by running the
algorithm over all the error cases and TotalPatterns(m,N ) =(m
N

)
. SCRs are thus not estimated but computed over the

entire set of possible error patterns. We verify that when
the length and the number of errors considered increase, the
SCR decreases rapidly. Moreover, the length of the generator
polynomial, as well as the number of non-zero coefficients,
modify the way the SCR decreases as the length of the
protected data increases.

In Figs. 9 and 10, we show the evolution of the SCR
for different generator polynomials and different numbers of
errors considered. We observe in Fig. 10 that when a long
generator polynomial is used and few errors are considered,
the SCR stays at 100% up to a significant length. On the other
hand, a short generator polynomial leads to a faster decrease

FIGURE 10. Single Candidate Ratio (SCR) for a payload length
from 0 to 10 000 bits protected by a CRC-24-BLE [17] of generator
polynomial g(x) = x24 + x10 + x9 + x6 + x4 + x3 + x + 1, considering up
to 4 errors.

of the SCR as the packet’s length increases, as illustrated in
Fig. 9.When the SCR is 100% up to a certain threshold length
for N errors, it means that if N errors or less occur during
the transmission of the packet, these errors can be identified
with a certainty of 100% and without any possible ambiguity
when the packet’s length is lower than this threshold. From
this threshold, the SCR does not fall to zero immediately.
Depending on the generator polynomial chosen, it can still
be at a high percentage level up to a significant packet size.
If we take the example of CRC-24 used in the Bluetooth
Low Energy protocol [17] (of generator polynomial g(x) =
x24+ x10+ x9+ x6+ x4+ x3+ x+1), the SCR is still above
80% for a payload of up to 2000 bits when considering that
two errors occurred in the packet. For three and four errors,
this number decreases greatly, but is still over 80% for up
to 220 bits for three errors and up to 85 bits when considering
four errors. The applications targeted by the CRC-24 used
in the Bluetooth Low Energy standard concern the Internet
of Things (IoT) [23], [24]. In IoT environments, the average
packet payload is often just a few bytes in size. Consequently,
the proposed error correction method will be able to instantly
correct most error patterns up to four errors, and even 100%
of error patterns up to two errors, given a packet of 450 bits
or less.

However, if the packet is highly corrupted, it may conceiv-
ably produce a syndrome the algorithm would recognize as
the result of a low number of errors. In such a case, we would
have a miscorrection. This corresponds, however, to very dis-
advantageous cases for all error correction methods. In fact,
there is no error correctionmethod that guarantees the validity
of the reconstructed sequence. However, what we have is no
more problematic than the case of highly corrupted packet
yielding a CRC syndrome of zero, letting the receiver believe
there is no error.

B. MEMORY REQUIREMENTS
The proposed method does not require storing any table.
In contrast, the main drawback of lookup approaches is
their memory requirements. The table must be stored in the

VOLUME 8, 2020 102367



V. Boussard et al.: Table-Free Multiple Bit-Error Correction Using the CRC Syndrome

TABLE 1. Memory requirements for storing the lookup tables considering a payload of 1500 bytes for several CRC lengths and number of errors
considered with implicit and explicit error positions.

FIGURE 11. Examples of the explicit design of a lookup table containing
all triple-error patterns for packet length up to 12000 bits.

receiver’s memory, as shown in Fig. 11. On very small-sized
packet lengths as considered in [6] and [7], the lookup table
represents a viable solution. When dealing with large pack-
ets, the required memory increases very rapidly. This rapid
increase is also seen as the number of errors considered
increases.

We evaluate the memory required when considering a
specific number of errors and for each common syndrome
length. Two different approaches are used to construct the
lookup table. In both cases, the number of entries in the
table corresponds to the number of possible error patterns.
From this definition, it becomes clear that a lookup table
that considers a packet length M and N errors would have(M
N

)
rows. At each of these entries, the table must store the

non-null syndrome for every possible error pattern. The syn-
drome is stored as a 1 to 4-byte number if we consider codes
from CRC-8 to CRC-32 (used in Ethernet [21], of generator
polynomial g(x) = x32+x26+x23+x22+x16+x12+x11+
x10 + x8 + x7 + x5 + x4 + x2 + x + 1). To retrieve error
positions, two strategies are used:
• The first one is to explicitly store the error positions
associated with the syndrome in the table, as numbers
coded on 16 bits (2 bytes) for each entry. There are N
such numbers per row. Using this lookup table design,
the required memory, denoted Bexp, is expressed as:

Bexp =
(
M
N

)
× [length(s)+ (2× N )] (10)

whereM is the total length of the packet,N is the number
of errors considered, and length(s) is the size in bytes

of the syndrome associated with the CRC used. The
expression (2 × N ) is the representation of N 2-byte
numbers per row, representing the positions of the N
errors considered. This implementation allows finding
directly the error patterns associated with the syndrome
but at a significant memory cost.

• The second strategy uses an implicit error position. With
this approach, the lookup table does not need to store
N 2-byte numbers per entry, which reduces the total
memory requirements by up to 9 times when considering
a CRC-8 and four errors, as compared to the afore-
mentioned strategy. The memory requirements, denoted
Bimp, can now be expressed as:

Bimp =
(
M
N

)
× length(s) (11)

However, such a strategy involves more calculations to
update the error pattern corresponding to the syndrome
as it navigates through the table.

We note that depending on the constraints present, one
can choose among the two proposed designs to either save
memory storage or save computations at the receiver side.
Table 1 illustrates the memory requirements for both explicit
and implicit implementations when considering large packets
of 1500 bytes. We can see a significant increase in the mem-
ory requirements when considering each additional error. For
such a packet length, considering three or four errors using a
lookup table approach would be intractable.

C. COMPUTATIONAL TIME COMPARISON
In terms of processing time, we ran the C implementation
of the proposed algorithm for a single- and a double-error
correction on a Raspberry Pi model 3B+ [22]. For compar-
ison purpose, we also implemented a table approach capa-
ble of considering every single-error position for packets
up to 1500 bytes. We executed both algorithms for packets
of different lengths, from a few bits to the maximum size
available here, set to 1500 bytes. The Raspberry model 3B+
used to conduct the experiment is equipped with a System on
a Chip (SoC) Broadcom BCM2837BOwith an ARMCortex-
A53 quad-core processor at 1.4 GHz and 1 GB SDRAM
LPDDR2.
Figs. 12 and 13 show the relative time for the error

correction method on single- and double-error patterns,

102368 VOLUME 8, 2020



V. Boussard et al.: Table-Free Multiple Bit-Error Correction Using the CRC Syndrome

FIGURE 12. Evolution of the normalized time ratio to run the proposed
method compared to lookup table-based approaches (explicit and
implicit) for a single error in the packet depending on the length of the
packet. The normalized time ratio corresponds to 155µs in this case.

FIGURE 13. Evolution of the normalized time ratio to run the proposed
method compared to lookup table-based approaches (explicit and
implicit) for two errors in the packet depending on the length of the
packet. The normalized time ratio corresponds to 1.4s in this case.

respectively. The proposed method’s complexity is compared
to both lookup table approaches (i.e., explicit and implicit) for
different packet sizes. Lookup table-based approaches have a
constant complexity since theymust always check every entry
of the table prior to conducting error correction to ensure that
all candidates are identified. When considering a single error,
both table-based approaches are of equal complexity, and the
conversion from explicit to implicit is straightforward. For
two errors, however, the implicit method is 10 to 15% slower
due to the computations required to convert the table index
into error positions. We note that for a large payload, the
methods are similar in terms of computational complexity.
The lookup table approach is still faster when considering
single errors in large packets. However, as the packet becomes
smaller with respect to the maximum allowed packet size,
the proposed method surpasses the lookup approach due to
its adaptability to the received packet size. The method can
be more than 10 times faster than lookup methods for very
small packets, and the gain in speed is even greater when
double-error correction is considered. When used as part of a
standalone error correction process, the algorithm performs
at its maximum in terms of both correction rate and com-
plexity for small packets or CRC-protected headers. In such
cases, the SCR is significantly high or at a maximum for
multiple-error correction.

Comparing the proposed algorithm to the lookup table
approaches in the literature, we can verify that it provides
improved capabilities in two main respects:

1) Flexibility. Our method is more flexible than
fixed-length lookup tables since it is not based on a
specific packet size, but rather, is dynamically applied
to protected data, and is thus adaptive to the data length.
Consequently, the method will provide full coverage
for any packet length. Furthermore, any generator poly-
nomial, apart from the input parameter can be used
with the proposed algorithm without modification.
Lookup tables must be entirely recomputed when the
generator polynomial considers changes. Alternatively,
a table should be stored for each generator polyno-
mial of interest, which significantly increases memory
requirements.

2) Memory-free multiple-error correction. The pro-
posed method does not assume that only single errors
are likely to occur. Even if this scenario can still be sup-
ported by setting the number of errors to 1 as the input
parameter, we can also assume that up to N > 1 errors
are possible and consider the whole set of possible
candidates up to this number. A lookup table approach
is able to list such error patterns but needs an intractable
amount of memory storage to consider the whole set
of N -error cases in large packets. In order to optimize
the management of the number N , further work can
be carried out to dynamically choose it by extracting
information about channel conditions, such as the chan-
nel Signal-to-Noise Ratio (CSNR) estimation at the
physical layer or the Receiver Signal Strength Indicator
(RSSI). The received RSSI level can be mapped to the
crossover probability bymeasuring an average BER for
each RSSI level. If this BER estimation is low enough
in terms of the length of the packet, we can set the
parameter N to be 1.

D. APPLICATION TO IoT
Considering the high performance of our method on small
packets protected by strong generator polynomials, applying
the proposed algorithm to the IoT domain can be highly
desirable. A study of error distribution in a real environment
of CRC-protected packets applied to the Internet of Things
(IoT) [24] domain is proposed in [11]. The authors con-
sider both Bluetooth Low Energy (BLE) packets protected
by a CRC-24 and IEEE 802.15.4 [25] packets protected by
CRC-16-CCITT. Two packet sizes, 21 bytes and 39 bytes, are
considered. The results of the experiments are represented in
Table 2 which shows that over 50% of the erroneous pack-
ets contain fewer than three errors in any selected scenario.
Moreover, more than 40% contain two errors or less, making
it an ideal context to evaluate our proposed method’s perfor-
mance. As noted the authors of [11], considering only slightly
damaged packets can thus still enable a significant recovery
rate.When soft information is unavailable, the authors of [11]

VOLUME 8, 2020 102369



V. Boussard et al.: Table-Free Multiple Bit-Error Correction Using the CRC Syndrome

TABLE 2. Error distribution in real environment for BLE and IEEE 801.15.4
and two packet sizes.

FIGURE 14. Error correction rate of the proposed method compared to
two methods recently proposed in [11] for different number of errors in
the packet.

propose to use a received packet’s RSSI to determine the Bit
Error Rate (BER).

In [11], the authors present the average correction rate of
their methods when a specific number of errors occur in the
packet. The simulation results can be seen in Fig. 14, con-
sidering three payload sizes: 8 bytes, 21 bytes and 39 bytes.
To compare our algorithm with these approaches, we tested
an exhaustive set of error patterns for each size and each
number of errors to get the average correction rate over
all possible error cases. We applied the algorithm for each
error case and checked the resulting list at the end of the
process. The correction is considered successful only if the
actual error pattern is the only candidate in the output list.
If there are no or several candidates in the list, the packet
is considered lost. For the Alternating Direction Method of
Multipliers (ADMM) and Belief Propagation (BP) [11], the
simulation results in Fig. 14 show a maximum correction
rate for single-error correction for all methods considered.
For double-error correction, only the proposed method is
able to achieve a 100% error correction. ADMM can correct
an average of 80% for 8-byte payloads, which falls to less
than 25% for 39-byte payloads. The results considering three
errors are even more significant. The proposed method offers
a 100% error correction rate for 8-byte payloads, whereas
both ADMM and BP achieve 25%. When the payload length
increases, the proposedmethod still can correct 86% and 47%
for 21- and 39-byte payloads, respectively. Othermethods can
achieve a maximum of 5% error correction for such payloads.

These results can be retrieved in Fig. 10, where the three
vertical bars correspond to the three payloads considered
here. We can see that the correction rate for more than three
errors is very low for all methods. In fact, it involves consid-
ering every error pattern containing more than three errors,
which leads to a poor ratio since as the number of errors
considered increases, the SCR decreases, becoming zero for
large numbers of errors. However, we can note that we can
still operate on four errors for small packets, as illustrated in
Fig. 10 for 8-byte payloads, where the SCR is still 78%.
In [11], the authors propose a configurable iterative decod-

ing process, which means that its performance will depend on
the number of iterations performed on the corrupted packet.
The results provided here consider 1000 iterations at the
decoder. The timing for this decoding applied to the fastest
method (ADMM) takes an average of 85 ms for 21-byte
packets on a desktop computer with an Intel i7 3.1 GHz
CPU, 8 GB RAM and Microsoft Visual C++ 2010 Compiler.
We tested our method on a desktop computer with an Intel i7
3.4 GHz CPU, 8 GB RAM and GCC compiler, and we noted
that depending on the number of errors to consider, it takes an
average time ranging from 2 µs for single-error correction to
8 ms for three errors or less. Double-error correction takes an
average of 150 µs. Therefore, the proposed method not only
allows dramatically correcting more double- and triple-error
cases, but it is also significantly faster than the state-of-the-art
methods presented in [11].

E. FUTURE WORK
In this paper, we have considered our algorithm as a stan-
dalone process that can only correct a packet when its output
list contains a single element. In order to further increase
the proposedmethod’s error correction performance, it can be
jointly used with other methods providing a list of potential
error patterns as their output. For example, the work on
UDP checksum proposed in [9], [26], [27] can be combined
with our algorithm. Crosschecking both candidate lists would
generate a matching list with a reduced number of entries.
If our method is used in addition to the UDP checksum
method, greater protected data lengths or a higher number of
errors can be targeted for applications such as error correction
on Ethernet frames, where a CRC covers the entire packet.
Similarly, we could eliminate candidates leading to wrong
values of known protocol fields, such as constant and pre-
dictable fields in the protocol’s header (reserved and version
fields are constant values during a communication, and some
fields such as the sequence number in RTP are predictable
since they are increased by 1 at each new packet throughout
the communication). Some methods which consider a MAP
approach have already proposed to use a CRC lookup table
to validate their reconstruction, as described in [4] on Polar
codes [28].It could be beneficial to compute only the proba-
bility of valid candidates rather than considering the whole set
of possible sequences, determining their probability of being
sent, and finally checking their CRC compliance.

102370 VOLUME 8, 2020



V. Boussard et al.: Table-Free Multiple Bit-Error Correction Using the CRC Syndrome

IV. CONCLUSION
In this work, we have proposed a novel algorithm to correct
transmission errors within data covered by a CRC, using the
computed non-null syndrome at the receiver. This method
is able to instantly correct single errors if the protected
data length does not exceed the period of the generator
polynomial. This method is also able to correct multiple
errors in small-sized packets, as used in the Bluetooth Low
Energy standard. In such an environment, the proposed
method achieves better error correction rates than the state-
of-the-art methods considering up to three errors in the
packet. The standalone error correction rate in BLE is at a
maximum for single-, double- and some triple-error cases
presented.

When instant correction is not possible, the algorithm still
generates the list of all the possible error patterns that lead to
the computed syndrome, according to a maximum number of
errors considered. This list is usually small if we consider a
reasonable number of errors. Further work to improve this
method should use it in addition to existing methods that
output a list of candidates. Crosschecking the lists of different
methods would reduce the number of valid candidates, which
would lead to fewer sequences to test or even to a reduction of
the list size to a single candidate, allowing instant correction
of damaged packets.

REFERENCES

[1] J. Sobolewski, ‘‘Cyclic redundancy check,’’ in Encyclopedia of Computer
Science. Hoboken, NJ, USA: Wiley, 2003.

[2] J. Postel, Transmission Control Protocol, vol. 793. Fremont, CA, USA:
IETF, RFC, Sep. 1981. [Online]. Available: https://www.rfc-editor.org/
rfc/rfc793.txt

[3] R. T. Braden, D. A. Borman, and C. Partridge, Computing the Internet
Checksum, vol. 1071. Fremont, CA, USA: IETF, RFC, Sep. 1988. [Online].
Available: https://www.rfc-editor.org/rfc/rfc1071.txt

[4] K. Niu and K. Chen, ‘‘CRC-aided decoding of polar codes,’’ IEEE Com-
mun. Lett., vol. 16, no. 10, pp. 1668–1671, Oct. 2012.

[5] X. Liu, S. Wu, X. Xu, J. Jiao, and Q. Zhang, ‘‘Improved polar SCL
decoding by exploiting the error correction capability of CRC,’’ IEEE
Access, vol. 7, pp. 7032–7040, 2018.

[6] S. Shukla and N. W. Bergmann, ‘‘Single bit error correction implemen-
tation in CRC-16 on FPGA,’’ in Proc. IEEE Int. Conf. Field- Program.
Technol., Dec. 2004, pp. 319–322.

[7] S. Babaie, A. K. Zadeh, S. H. Es-hagi, and N. J. Navimipour, ‘‘Double bits
error correction using CRC method,’’ in Proc. 5th Int. Conf. Semantics,
Knowl. Grid, 2009, pp. 254–257.

[8] A. S. Aiswarya and A. George, ‘‘Fixed latency serial transceiver with
single bit error correction on FPGA,’’ in Proc. Int. Conf. Trends Electron.
Informat. (ICEI), May 2017, pp. 11–12.

[9] F. Golaghazadeh, S. Coulombe, F.-X. Coudoux, and P. Corlay,
‘‘Checksum-filtered list decoding applied to H.264 and H.265 video
error correction,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 28, no. 8,
pp. 1993–2006, Aug. 2018.

[10] E. Tsimbalo, X. Fafoutis, and R. Piechocki, ‘‘Fix it, don’t bin it!–CRC
error correction in Bluetooth low energy,’’ in Proc. IEEE 2nd World Forum
Internet Things (WF-IoT), Dec. 2015, pp. 286–290.

[11] E. Tsimbalo, X. Fafoutis, and R. J. Piechocki, ‘‘CRC error correction in
IoT applications,’’ IEEE Trans. Ind. Informat., vol. 13, no. 1, pp. 361–369,
Feb. 2017.

[12] F. Caron and S. Coulombe, ‘‘Video error correction using soft-output
and hard-output maximum likelihood decoding applied to an H.264 base-
line profile,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 7,
pp. 1161–1174, Jul. 2015.

[13] P. Duhamel and M. Kieffer, Joint Source-Channel Decoding: A
Cross-Layer Perspective With Applications in Video Broadcasting. New
York, NY, USA: Academic, 2009.

[14] G. Zhang, R. Heusdens, and W. B. Kleijn, ‘‘Large scale LP decoding with
low complexity,’’ IEEE Commun. Lett., vol. 17, no. 11, pp. 2152–2155,
Nov. 2013.

[15] S. Sankaranarayanan and B. Vasic, ‘‘Iterative decoding of linear block
codes: A parity-check orthogonalization approach,’’ IEEE Trans. Inf. The-
ory, vol. 51, no. 9, pp. 3347–3353, Sep. 2005.

[16] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, Standard P802.11bc, Dec. 2016.

[17] (2013). Specification of the Bluetooth System. Core Version 4.1. Bluetooth
SIG. [Online]. Available: http://www.bluetooth.com

[18] S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra—
Vectors, Matrices, and Least Squares. Cambridge, U.K.: Cambridge Univ.
Press, 2018.

[19] J. Arndt, ‘‘Binary polynomials,’’ in Matters Computational. Berlin, Ger-
many: Springer, 2011, pp. 822–863.

[20] N. Bhatnagar, Mathematical Principles of the Internet, Volume 1: Engi-
neering. London, U.K.: Chapman & Hall, Dec. 2018.

[21] IEEE Standard for Ethernet, Standard 802.3-2018, IEEE Standard Asso-
ciation, 2018. [Online]. Available: https://standards.ieee.org/standard/
802_3-2018.html

[22] Raspberry PI 3 Model B+. Accessed: May 31, 2020. [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

[23] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, ‘‘Internet of
Things for smart cities,’’ IEEE Internet Things J., vol. 1, no. 1, pp. 22–32,
Feb. 2014.

[24] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
‘‘Internet of Things: A survey on enabling technologies, protocols, and
applications,’’ IEEECommun. Surveys Tuts., vol. 17, no. 4, pp. 2347–2376,
Jun. 2015.

[25] IEEE Standard for Information Technology—Telecommunications and
Information Exchange Between Systems—Local and Metropolitan Area
Networks—Specific Requirements Part 15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate
Wireless Personal Area Networks (WPANs), Standard 802.15.4-2006,
2007.

[26] F. Golaghazadeh, S. Coulombe, F.-X. Coudoux, and P. Corlay, ‘‘The impact
of H.264 non-desynchronizing bits on visual quality and its application to
robust video decoding,’’ in Proc. 12th Int. Conf. Signal Process. Commun.
Syst. (ICSPCS), Dec. 2018, pp. 17–19.

[27] F. Golaghazadeh, S. Coulombe, F.-X. Coudoux, and P. Corlay, ‘‘Low com-
plexity H.264 list decoder for enhanced quality real-time video over IP,’’
in Proc. IEEE 30th Can. Conf. Electr. Comput. Eng. (CCECE), Apr. 2017,
pp. 1–6.

[28] E. Arikan, ‘‘Channel polarization: A method for constructing
capacity-achieving codes for symmetric binary-input memoryless
channels,’’ IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073,
Jul. 2009.

VIVIEN BOUSSARD (Graduate Student Mem-
ber, IEEE) received the B.Sc. and M.Sc. degrees
in broadcast engineering from Université Poly-
technique Hauts-de-France, Valenciennes, France,
in 2015 and 2017, respectively. He is currently
pursuing the Ph.D. degree with the Department
of Software Engineering and Information Tech-
nology, École de Technologie Supérieure, Univer-
sité du Québec, Montreal, QC, Canada, and the
Department of Opto-Acousto-Electronics, Insti-

tute of Electronics, Microelectronics, and Nanotechnologies, Valenciennes,
(UMR 8520). His current research interests include error correction, vehic-
ular communication, image, and video transmission.

VOLUME 8, 2020 102371



V. Boussard et al.: Table-Free Multiple Bit-Error Correction Using the CRC Syndrome

STÉPHANE COULOMBE (Senior Member,
IEEE) received the B.Eng. degree in electri-
cal engineering from the École Polytechnique
de Montréal, Canada, in 1991, and the Ph.D.
degree in telecommunications (image process-
ing) from INRS-Telecommunications, Montreal,
in 1996. He is currently a Professor with the
Department of Software and IT Engineering,
École de technologie supérieure (ÉTS is a con-
stituent of the Université du Québec network).

From 1997 to 1999, he was with Nortel Wireless Network Group, Montreal,
and from 1999 to 2004, he worked with the Nokia Research Center, Dallas,
TX, USA, as Senior Research Engineer and as a Program Manager with
the Audiovisual Systems Laboratory. He joined ETS, in 2004, where he
currently carries out research and development on video processing and
systems, compression, and transcoding. From 2009 to 2018, he has held the
Vantrix Industrial Research Chair in Video Optimization.

FRANÇOIS-XAVIER COUDOUX (Senior Mem-
ber, IEEE) received the M.S. and Ph.D. degrees
in electrical engineering from Université Poly-
technique Hauts-de-France, Valenciennes, France,
in 1991 and 1994, respectively. Since 2004,
he has been a Professor with the Department
of Opto-Acousto-Electronics, Institute of Elec-
tronics, Microelectronics, and Nanotechnologies,
Valenciennes, (UMR 8520). His research interests
include telecommunications, multimedia delivery

over wired and wireless networks, image quality, and adaptive video
processing.

PATRICK CORLAY received the Ph.D. degree
from Université Polytechnique Hauts-de-France,
Valenciennes, France, in 1994. Since 2016, he has
been a Professor with the Department of Opto-
Acousto-Electronics, Institute of Electronics,
Microelectronics, and Nanotechnologies, France
(UMR 8520). His current research interests are
in telecommunications, multimedia delivery over
wired and wireless networks, and optimal quality
of service for video transmission.

102372 VOLUME 8, 2020



Erratum to ”Table-Free Multiple Bit-Error Correction Using the CRC

Syndrome”

Zouhair Ziani and Stéphane Coulombe
Validated by Vivien Boussard, François-Xavier Coudoux and Patrick Corlay

August 2023

In [1], the proposed Algorithm 2 for N -error correction doesn’t select some particular candidates in which the error
positions are in the MSBs since positions greater than m − 1 can not be chosen as forced bits. For example, the
3-error search performed over CRC-8-SAE-J1850 (g(x) = x8 + x4 + x3 + x2 + 1) protecting 12 data bits, where
the syndrome is s(x) = x4, doesn’t detect the pattern (12, 13, 19). In order to solve this issue, an adaptation
SingleErrorCorrectionMult (Algorithm 5) of the single-error correction algorithm is proposed. This version allows
the multiple-error candidates observed during the process to be added to EN alongside the single-error patterns, and
thus should be called in the case k = 1 of Algorithm 2. The flowchart (Fig. 8.) has to include this change, and the
explanation of the 10-11th lines must be updated:

10-11: In the last loop, the variable k equals 1. In this case, no forced position must be set and a modified
version of the single-error correction algorithm, which accepts solutions where e contains N errors or less,
is performed (see Algorithm 5). The solutions are appended to the global candidate list EN .

Two other errors occurred:

• In Fig. 7., the CRC code protects 12 bits instead of 10, and since the syndrome length is 8 bits, an additional
bit should be colored in gray.

• In section III.A., the total number of possibleN -error patterns for the payload lengthm is TotalPatterns(m,N) =(
m+n
N

)
.

References

[1] Vivien Boussard, Stéphane Coulombe, François-Xavier Coudoux, and Patrick Corlay. Table-Free Multiple Bit-
Error Correction Using the CRC Syndrome. IEEE Access, 8:102357–102372, 2020.

1



Algorithm 2 N -ErrorPatternsGeneration(s,g, n,m,N)

Inputs:
s: the syndrome
g: the vector associated with the generator polynomial used to compute the CRC
n: the length of the syndrome vector
m: the length of the payload vector
N : the maximum number of bit errors considered

Output:
EN : the list of valid error patterns up to N bits

1: EN ← {}
2: Let e be a vector of length m+ n
3: e← 0⊕ s
4: Let v be a vector of length m
5: if sum(e) ≤ N then
6: Add e to EN

7: end if
8: k ← N
9: while k ≥ 1 do

10: if k = 1 then
11: Add SingleErrorCorrectionMult(s,g, n,m,N) to EN

12: else
13: Let F ← (0, ..., k − 2)
14: v ← PositionsToVector(F)
15: while F ̸= (m− (k − 1), ...,m− 1) do
16: start← max(F1 − 1, 0)
17: for j = start to m− 1 do
18: if ej ̸= vj then
19: e← e⊕ (g≪ j)
20: if sum(e) ≤ N then
21: Add e to EN

22: end if
23: end if
24: if j = F1 then
25: e′ ← e
26: end if
27: end for
28: F ← UpdateForcedPositions(F ,m)
29: v← PositionsToVector(F)
30: e← e′

31: end while
32: end if
33: e← 0⊕ s
34: k ← k − 1
35: end while
36: Remove duplicate elements in EN

37: Return EN

2



Algorithm 5 SingleErrorCorrectionMult(s,g, n,m,N)

Inputs:
s: the syndrome
g: the vector associated with the generator polynomial used to compute the CRC
n: the length of the syndrome vector
m: the length of the payload vector
N : the maximum number of bit errors considered

Output:
ẼN : the list of valid error patterns obtained during the single-bit error correction process and containing up to

N errors

1: ẼN ← {}
2: Let e be a vector of length m+ n
3: e← 0⊕ s
4: if sum(e) ≤ N then
5: Add e to ẼN

6: end if
7: for j = 0 to m− 1 do
8: if ej = 1 then
9: e← e⊕ (g≪ j)

10: if sum(e) ≤ N then
11: Add e to ẼN

12: end if
13: end if
14: end for
15: Return ẼN

3



Figure 7: Illustrative example of the proposed algorithm performed over CRC-8-CCITT (yellow cells) protecting 12
data bits, where N = 3 and s(x) = x6 + x4 + x2 + x + 1 (grey cells). Forced bit positions are represented as black
cells in the vector e. Three solutions are valid candidates in this example, where

∑
, representing sum(e), equals 3

(shown in red font). Here, E3 = {(0, 1, 18); (1, 6, 16); (2, 8, 18)}.

4



Figure 8: Flowchart of the proposed method algorithm for correcting multiple errors in the packet. Numbers show
the corresponding steps in Algorithm 2.

5



Table-free multiple bit-error correction
using the CRC syndrome
VIVIEN BOUSSARD1,2, STÉPHANE COULOMBE1, FRANÇOIS-XAVIER COUDOUX2 AND 
PATRICK CORLAY2,
1Department of Software and IT Engineering, École de technologie supérieure, Université du Québec, Montreal, QC, H3C 1K3, Canada
2Univ. Polytechnique Hauts-de-France, CNRS, Univ. Lille, ISEN, Centrale Lille, UMR 8520 - IEMN - Institut d’Électronique de Microélectronique et de 
Nanotechnologie, DOAE - Département d’Opto-Acousto-Électronique, F-59313 Valenciennes, France

Corresponding author: V. Boussard (e-mail: vivien.boussard.1@etsmtl.net).

ABSTRACT In this paper, we propose a novel method for correcting multiple errors in data packets, using
the Cyclic Redundancy Check (CRC) syndrome present in low layers of protocol stacks. The proposed
method generates the whole list of error patterns, leading to a received syndrome containing up to a given
maximum number of errors. Our approach is table-free, is computationally efficient, and can instantly
correct erroneous packets when the output list contains a single element. A performance study is conducted,
and shows that the proposed approach outperforms existing ones in Bluetooth Low Energy (BLE) as it
can correct all single- and double-error patterns as well as most triple-error cases when considering small
payloads used in Internet of Things (IoT) applications.

INDEX TERMS Data communication, Error correction, Cyclic Redundancy Check (CRC), Internet of
Things (IoT), Bluetooth Low Energy (BLE)

I. INTRODUCTION

CYCLIC Redundancy Check (CRC) codes constitute a
well-known special case of checksum functions, which

represents the quotient of the long division [1]:

d(x).xn = q(x).g(x) + r(x)⇒ CRC = r(x) (1)

The computed CRC field r(x) is then appended to the pay-
load and sent to the receiver. The transmitted packet, com-
prising the payload and its associated remainder, is denoted
pT (x) = d(x).xn + r(x).

At the receiver, a long division by g(x) is performed on
the received packet, denoted pR(x), in order to check it’s
integrity. An error-free packet (i.e., pR(x) = pT (x)) is thus a
multiple of g(x) and the remainder is zero. In the contrary
case, an error will modify pT (x) and produce a non-zero
value as the remainder. The result is called the syndrome
of the CRC, denoted s(x). The standard management here
consists in automatically discarding a received packet with
a non-null syndrome. However, such management leads to
a waste of information. In real-time applications such as
video conferencing, packet retransmission is unavailable.
One would then benefit from extracting as much information
as possible from a received corrupted packet. Our approach
is to propose algorithms to attempt to repair such corrupted
data using the actual syndrome value.

CRC-based error correction techniques have been explored
in previous works, and can be divided into two main cate-
gories:

are typically used for packet error detection in a wide variety 
of low-layer protocols [1]. Their main purpose is to validate 
the integrity of received packets. If an error is detected by 
such codes, the corrupted packet is normally discarded and a 
data recovery mechanism can be set, as implemented in pro-
tocols such as the Transmission Control Protocol (TCP) [2], 
where reliability is ensured through retransmission of the 
corrupted data. In order to avoid systematic retransmission, 
which would lead to an increased amount of data and extra 
delays within the network, error correction methods have 
been proposed at the receiver side. In addition, error de-
tection codes such as CRCs and Checksums [3] have also 
been demonstrated to allow error correction [4]–[11]. The 
principle of CRC error detection is based on the computation 
of a so-called CRC field at the transmitter side. The value 
of this field is the remainder of the long division of the 
protected bit sequence, the data, which we will refer to as the 
payload, denoted d(x), by a generator polynomial (a binary 
polynomial of degree n defined by the protocol used, denoted 
g(x)). The payload is left-shifted by n positions before the 
division. In Eq.(1), the remainder is denoted r(x) and q(x)

1

scoulombe
WITH CORRECTIONS APPLIED



Boussard et al.: Table-free multiple bit-error correction using the CRC syndrome

1) Estimator approaches [11]–[13]: These approaches use
statistical estimators, such as the Maximum A Posteriori
(MAP) estimator, and aim at finding the most probable bi-
nary sequence that has been sent, considering the received
erroneous sequence. The CRC is used to check the valid-
ity of the MAP sequence or can be part of the estimation
process. Such methods can use optimization techniques
such as the Alternating Direction Method of Multipliers
(ADMM) [14] or Belief Propagation (BP) [15]. These
approaches to MAP are costly, and generally use Log
Likelihood Ratios (LLR) [13] and provide information
on the confidence of the received bit, expressed as a real
value between −∞ and +∞, based on the received soft
values. Unfortunately, today’s TCP/IP and User Data-
gram Protocol UDP/IP protocol stacks are essentially
designed to deal with hard values (decoded bits), and
consequently, such approaches cannot be implemented in
current architectures without great effort.

2) Lookup table approaches [4]–[8]: These approaches
implement lookup tables prior to the communication,
in which each entry contains the syndrome resulting
from one [6] or two [7] errors at specific positions.
Upon reception, when a CRC check results in a non-
null syndrome, the table is scanned. If a match is found,
the corresponding bit positions are flipped to correct the
packet. By definition, the CRC codes are designed such
that each single error leads to a unique syndrome within
the period of the generator polynomial used. The period
of a generator polynomial is thus the number of different
syndromes it can output for single errors. If the packet
length surpasses the period of the generator polynomial,
several single-error positions could lead to the same syn-
drome, thereby introducing ambiguity. Recently, some
CRC-aided error correction methods have implemented a
lookup table approach to increase their correction capac-
ities [5]. Besides high memory requirements for storing
the table, such approaches raise two main issues:

• Lack of flexibility: lookup tables must be generated
prior to the transmission, and cannot be dynamically
modified to support multiple generator polynomials
and larger packet sizes than those for which they
were designed.

• Memory constraints: memory requirements for
lookup table-based approaches rapidly increase with
the number of errors to consider. In fact, such meth-
ods must store the entire set of possible error patterns
and their associated syndrome.

In this paper, we propose a novel approach to error correc-
tion that outputs the exhaustive list of CRC-compliant binary
sequences containing up to N errors. This method does
not need any lookup table, which thus reduces the memory
resources needed and allows the algorithm to be flexible as it
can be used for any number of errors and any payload length
without the need to rebuild a lookup table. Whereas CRC-
aided Maximum Likelihood (ML) methods [4] typically use

CRC to check the validity of the candidates at the end of
the MAP process, our method uses the CRC syndrome itself
to produce the list of candidates, thus ensuring the CRC
integrity of every candidate. The output list can be used to
instantly correct the packet if it contains a single element or it
can be used along with error correction or validation methods
from upper layers of the protocol stack in order to reduce the
list of candidates.

The paper is organized as follows. In section II, we give a
detailed description of the proposed method in three distinct
parts. The first one describes the concept of the approach and
its application to single-error correction. Challenges encoun-
tered with the double-error correction are then introduced and
generalization to any number of errors is explained. In section
III, we present the proposed algorithm’s performance as
compared to state-of-the-art approaches. Tests are conducted
according to different standards used in targeted applications,
such as Wi-Fi [16] and Bluetooth Low Energy [17]. Sim-
ulation results demonstrate the superiority of the proposed
solution in terms of error correction rate, computational
complexity and memory usage. They show that for small-
sized packets such as those found in IoT, we can achieve a
100% correction rate for corrupted packets containing two
errors or less, as well as high correction rates for three errors.
In section IV, we conclude and give an overview of future
research works.

II. PROPOSED METHOD
The proposed method uses the CRC syndrome value s(x)
computed at the receiver to list all the possible error patterns
that lead to such a specific syndrome, considering a maxi-
mum number of errors. The resulting list can contain one or
several entries at the end of the process. Each entry represents
the positions of the bits to be flipped to recover a CRC-
valid packet, i.e., it reveals the error positions. When the
list contains only one element, we can instantly correct the
packet, but when it contains several entries, additional infor-
mation is required in order to identify the actual error pattern
among the candidates. The proposed approach is flexible, and
lists the whole set of possible error patterns with up to N
errors, where the parameter N can be set according to the
observed channel conditions, for instance. In this section, we
first introduce the basic theoretical concepts of the proposed
method for the single-error case. Then, we extend the method
to double-error patterns, followed by multiple-error patterns.

A. FUNDAMENTALS
For convenience, it is common to use a binary vector rep-
resentation of binary polynomials as described in [19] and
illustrated in Fig. 1. Using the vector representation, the
degree of a coefficient corresponds to the bit position of the
associated element in the vector. The length, in bits, of a
vector is equal to the degree of the polynomial increased by
1, due to the existence of degree 0 in the polynomial (i.e., a
polynomial of highest degree x15 will be represented as a 16-
bit vector). Vectors allow a better understanding of operators

2



Boussard et al.: Table-free multiple bit-error correction using the CRC syndrome

such as exclusive or (XOR) and binary left shifts. Throughout
this paper, specific notations will be used. The following is a
list of such notations based on [18] and their definitions:
• a : binary vector [ak, . . . , a0] of length k+1 asso-

ciated with the binary polynomial a(x) of degree k
• ai : ith bit (entry) of binary vector a, starting from

least significant bit (LSB)
• m : payload length in bits
• n : syndrome length in bits
• M : total packet length in bits (M = m+ n)
• N : number of errors searched
• P1 : error position obtained from the single-error

correction algorithm (Algorithm 1)
• F : sorted list (F1, . . . , Fk−1) of (k − 1) bit posi-

tions forced to 1, such that Fi < Fi+1,∀i
• len(F) : number of elements in the list F
• Ei : set of valid error patterns containing i errors or

less
• sum(a): number of non-zero elements in a binary vector

a; also denoted
∑

when the context is clear
• ⊕ : XOR operator between binary vectors
• + : XOR operator between polynomials
• � : left shift operator
• ← : affectation operator
• ti : ith step
We will frequently use the following binary vectors:
• 0 : null vector (the length depends on the context)
• g : generator polynomial vector of length n + 1 with
g0=1 and gn=1, given its definition [20]

• s : syndrome vector of length n
• e : error vector of length M = n+m

According to the definition of the CRC [1], we know that
the syndrome s(x) is computed at the receiver as the remain-
der of the division of the received packet by the generator
polynomial, which can be expressed as:

s(x) = pR(x) mod g(x) (2)

When no error occurs, the syndrome s(x) is equal to a
null polynomial. If we consider an error pattern e(x), the
syndrome of the received packet can be expressed as:

s(x) = (pT (x) + e(x)) mod g(x) (3)

where s(x) is a non-null syndrome. A given syndrome
value can be the result of several different error patterns e(x),
containing different numbers of errors. We denote EM (s(x))
the set of all valid error patterns leading to the syndrome

s(x). In order to lighten the notation, we will use EM since
we are interested in a single syndrome value throughout the
process. The error patterns in EM contain between 1 and M
errors (all bits of the packet are erroneous in the latter case).
We denote Ei the subset of EM comprising error patterns
with i errors or less (1 ≤ i ≤M ). We thus have:

Ei ∈ Ei+1 ∀ 1 ≤ i ≤M − 1 (4)

where the Ei are not disjoint sets. The number of elements
in EM and in each subset Ei depends on the syndrome, the
generator polynomial used and the packet length. We aim at
finding the actual error pattern eA(x) among the set of all
error patterns leading to the computed syndrome value s(x).
Given the definition of the modulo operator and Eq.(3), all
error patterns of EM are defined as:

EM = {e(x) ∈ GF(2M ) | e(x) = s(x) + q(x).g(x)

with q(x) ∈ GF(2m)}
(5)

where m is the payload length and GF(2m) is the Galois
Field of order 2m (i.e., the set of binary polynomials of length
m [19]). In other words, the error pattern corresponding to
the syndrome can be any binary polynomial of highest degree
m− 1 (that we denoted as q(x)) multiplied by the generator
polynomial, with s(x) added. The set EM is called the
equivalence class containing s(x). Each element is equivalent
under mod g(x) operation since adding any multiple of g(x)
to s(x) does not affect the result. Every possible value of
q(x) in this equation will produce a CRC-compliant error
pattern e(x) (i.e., an element of EM ). The degrees of the
non-zero coefficients in the resulting e(x) correspond to the
erroneous positions in the corrupted packet. Assuming that
packets are not too damaged, the straightforward approach to
identifying candidates having a maximum number of errors
would be to test every possible value of q(x) and to count
the number of non-zero coefficients in the resulting error
polynomial e(x). If this number, denoted sum(e), is greater
than a fixed threshold, the candidate is discarded. Otherwise,
it is appended to the list of valid candidates. This method
is computationally complex, and would require 2m tests to
consider all the possible values of q(x). Such a complex pro-
cess is therefore prohibitive to conduct in real-time scenarios,
such as videoconferencing, for instance.

It can be verified that most of the possible values of q(x)
produce error polynomials e(x) containing many errors (i.e.,
corresponding to highly corrupted packets cases, where e(x)
and its associated vector e contain a significant amount of
non-null values). Considering the whole set of possibilities
would only increase the complexity of the method. We
make the hypothesis that highly corrupted packets are too
damaged to be recovered. Thus, in the rest of this paper,
we focus on recovering slightly corrupted packets that are
worth extracting information from. Some indicators such as
the Receiver Signal Strength Indicator (RSSI), included in
the 802.11 standard [16], can be used to indicate the degree
of corruption of a received packet. In the remainder of this

FIGURE 1. Illustration of the binary vector representation: each polynomial 
g(x) with binary coefficients can be seen as a binary vector g. Multiplying 
g(x) by xn corresponds to a left shift of g by n positions.

3



Boussard et al.: Table-free multiple bit-error correction using the CRC syndrome

section, we first describe the single-error correction method
(the search for all elements in E1), and then we introduce
the double-error correction and extend it to any number N of
errors (i.e., we determine the elements of EN ).

B. SINGLE-ERROR CORRECTION
We exploit the knowledge on both the generator polynomial
and the way the syndrome is computed to reversely find the
position of the single error at the receiver side. With such
an approach, we are not testing possible values of q(x), but
rather, are gradually building a specific polynomial q(x), one
coefficient at a time. If a single candidate is identified at
the end of the process, the packet can be corrected. If not,
some additional processes must be used to determine the only
candidate to consider.

We now demonstrate that the proposed approach is guar-
anteed to identify single errors. Suppose that the error is at
position P1 (i.e., e(x) = xP1 ). We know from the definition
of Eq.(5) that:

xP1 = s(x) + q(x).g(x) for a q(x) ∈ GF(2m) (6)

It is clear that q(x) must be constructed such that s(x) +
q(x).g(x) has zero coefficients for all positions i 6= P1.
Having coefficients at positions i < P1 is ensured by
successively determining, from LSB to MSB, the coefficient
values of q(x) meeting this condition. For simplicity, in the
following derivations, we can consider s(x) of degree m− 1
with si = 0, i > n− 1. We have:

xP1 =

m−1∑
i=0

six
i +

(
m−1∑
i=0

qix
i

) n∑
j=0

gjx
j


=
m−1∑
i=0

six
i +

m−1∑
i=0

qi.
n∑
j=0

gjx
i+j

=
m−1∑
i=0

six
i +

m−1∑
i=0

qi.
i+n∑
r=i

gr−ix
r

=
m−1∑
i=0

six
i +

m−1∑
i=0

(
qi.g0x

i + qi.
i+n∑
r=i+1

gr−ix
r

)

=
m−1∑
i=0

(
(si + qi.g0)x

i + qi.
i+n∑
r=i+1

gr−ix
r

)

=
m−1∑
i=0

(
(si + qi)x

i + qi.
i+n∑
r=i+1

gr−ix
r

)
, since g0 = 1

(7)

From Eq.(7), it is clear that for every value of i in the
main summation, (si + qi.g0)x

i is of a lower degree than
qi.
∑i+n
r=i+1 gr−ix

r. Thus, for i = 0 and each successive
value of i, we can easily determine the qi value resulting
in the desired result, namely, zero coefficients for positions
i < P1. Of course, setting qi to 1 creates terms that must be
considered in subsequent positions. If s(x) was generated by
a single error, performing the process on increasing values of

i would eventually lead to a monomial (i.e., xP1 for a certain
value of P1). This must happen, otherwise, after position
i = P1, adding

∑i+n
r=i+1 gr−ix

r (i.e., qi 6= 0) would add a
coefficient at position i+n (the MSB) that cannot be canceled
without adding a coefficient of even higher degree.

Algorithm 1 SingleErrorCorrection(s,g,n,m)
Inputs:

s: the syndrome vector
g: the vector associated with the generator polynomial

used to compute the CRC
n: the length of the syndrome vector
m: the length of the payload vector

Output:
E1 the list of valid error patterns for a single bit error

1: E1 ← {}
2: Let e be a vector of length m+ n
3: e← 0⊕ s
4: if sum(e) = 1 then
5: Add e to E1

6: end if
7: for j = 0 to m− 1 do
8: if ej = 1 then
9: e← e⊕ (g� j)

10: if sum(e) = 1 then
11: Add e to E1

12: end if
13: end if
14: end for
15: Return E1

The search for single-error patterns is illustrated in Algo-
rithm 1 and the corresponding flowchart is given in Fig. 2.
Each step of the algorithm is identified in Fig. 2 using binary
notations. We provide further details in the following steps:
3: We first initialize the error e to a zero vector of length
M = m + n and replace the n LSB values with the
computed syndrome s, as shown in Fig. 3. We can note that
it corresponds in Eq.(5) to e(x) = q(x).g(x) + s(x), where
q(x) is equal to zero. Such initialization allows to comply
with Eq.(5) and maintains its equivalence relation as we are
adding shifted versions of g(x) to build q(x) in step 9.
4-5: At this point, we compute the sum of non-zero elements
in e = s, denoted sum(e), equivalent to the number of errors
in the computed syndrome. If it contains only one element to
1, then it is itself a suitable candidate as a single-error pattern.
7: We scan the m first payload positions from 0 to m−1. We
do not consider the last n positions since they correspond to
the range of the XOR operation to perform. Hence, it reaches
the end of the payload at position m − 1 and beyond this
position would be out of the payload range.
8-9: For each scanned position, we check the jth bit value of
the current error vector. If this value is 0, we simply jump to

4



Boussard et al.: Table-free multiple bit-error correction using the CRC syndrome

FIGURE 2. Flowchart of the proposed method’s algorithm to correct a single error in the packet. Numbers show the corresponding steps in Algorithm 1.

FIGURE 4. Illustration of the single-error search applied to CRC-4-ITU, where
g(x) = x4 + x+ 1 (yellow cells) with a syndrome s(x) = x2 + 1 (grey cells).
In this notation,

∑
represents sum(e). A single-error pattern is found at bit

position 8 at step t3. In this example: E1 = {8} (i.e., the red cell).

provide any candidate, it means the syndrome was caused by
multiple errors in the packet.

So, depending on the packet size and syndrome, there can
be zero, one or multiple candidates. This latter case occurs in
long enough packets due to the periodic aspect of generator
polynomials, as discussed in the introduction. The whole
single-error search process is illustrated in Fig. 4. In the

FIGURE 3. Structure of the initial error vector e = 0 ⊕ s

the next element. If it is 1, we cancel the non-zero value by 
performing an XOR operation with g at this position, as its 
LSB is 1 (i.e., g0 = 1). Note that for clarity, we simplified this 
step in the figures and flowcharts by directly incrementing 
the current position to the next element set to 1. Each time 
we perform an XOR operation at position j, a 1 is added at 
MSB position j + n since gn = 1. If the error pattern is 
a single error at position k, the proposed method will reveal 
this since the XOR operations will be able to cancel all bits at 
positions j < k, and all bits at positions j > k are already set 
to zero. The strategy is to cancel every LSB non-zero element 
until the end of the packet is reached, and thus not miss any 
single-error candidate.
10-11: After each cancelation, we check the number of non-
zero coefficients in the error vector e. If this number is 
equal to 1, a valid single-error candidate is identified and its 
position is appended to the list.
At the end of the whole process, if the algorithm does not

5



Boussard et al.: Table-free multiple bit-error correction using the CRC syndrome

present case, the payload consists of 10 data bits and the
CRC-4-ITU where a generator polynomial g(x) = x4+x+1
is applied. At the receiver, the computed syndrome is s(x) =
x2 + 1, represented in dark grey boxes at step t0.

At step t0, the error vector e is initialized to m zeros, m
being the length of the protected data, and the syndrome s
is appended. We first check the number of non-zero values
in the error vector to verify if the syndrome itself is a valid
candidate (i.e., if the syndrome is corrupted). Since the sum
of non-zero values in s is greater than 1, the syndrome does
not contain a valid single-error pattern, and is thus not a
candidate. At each step until we reach the end of the packet,
we successively perform an XOR operation with g at each
non-null position and check the resulting number of 1s in
the updated error vector e. If this sum is equal to 1, the
candidate is appended to the list. Such a candidate is found
at time t3, since there is only one bit set in the error vector.
A first single-error candidate is thus identified, containing an
error at position 8. Since there could be several candidates,
we continue the scanning of the packet until the end. At step
t5, the algorithm reaches the end of the packet and the list of
candidates contains a single entry. Flipping the bit at position
8 in the corrupted packet is the only valid correction if a
single error has occurred.

C. DOUBLE-ERROR CORRECTION
1) Problem with straightforward extension of Algorithm 1
The method described in the previous section produces as
output the exhaustive list of single-error patterns correspond-
ing to a non-null syndrome at the receiver, given the generator
polynomial used and the length of the protected data. To deal
with double-error patterns, a straightforward method would
be to run the exact same algorithm while appending all the
error vectors e with two coefficients set to 1 to the candidate
list. This approach would be able to output double-error
patterns, but cannot ensure that an exhaustive list of such
error patterns is provided. Actually, only one specific type of
double-error patterns will be output, namely, those in which
the double-error pattern covers n bits or less (i.e., are close
to each other). The single-error search aims at canceling non-
zero values from LSB to MSB. This cancelation is performed
thanks to an XOR operation between a shifted version of
the generator polynomial and the constantly updated error
vector. We can observe that there cannot be more than n bits
between the 1 located at the LSB position and the 1 at the
MSB position, as illustrated in Fig. 5, which represents the

FIGURE 5. Illustration of the error range applied to CRC-CCITT-8 (n = 8).
Canceling LSB non-zero values by performing an XOR operation with a
generator polynomial of width n+ 1 bits produces an error range of n bits.

error vector during the single-error search. The MSB zeros
correspond to the positions still in the original state of e,
initialized as a null vector, and the LSB zeros correspond
to the already canceled positions. Between these two null
subvectors we have the possible non-zero positions, with a
maximum width of n bits. We will refer to the maximum
distance between the first and last non-zero coefficients as
the error range of the method. At step t9 of Algorithm 1, the
update of the error vector e can be expressed as:

m+n−1∑
i=0

eix
i ←

m+n−1∑
i=0

eix
i +

j+n∑
i=j

g(i−j)x
i

=

j+n∑
i=j+1

(ei + g(i−j)).x
i

= x(j+n) +

j+n−1∑
i=j+1

(ei + g(i−j)).x
i

(8)

From Eq.(8), it is clear that the whole set of non-null values
in the error vector covers n positions at most. In fact, all the
values in e up to position j are already canceled and set to 0,
due to the design of the proposed algorithm, and all positions
above j + n are also set to 0 due to the initialization of the
error vector (i.e., e = 0 ⊕ s). As the highest degree term
of the generator polynomial is 1, we can see that position
xj+n is set. The other non-null positions are subject to the
values of the error vector at its current state and the other
terms of the generator polynomial. The range of non-null
values is denoted the error range, and is illustrated in Fig. 5.
In conclusion, a straightforward extension of Algorithm 1
would only yield error patterns in which errors are within
a range of n bits. A different approach is thus required.

2) Proposed double-error correction approach
To obtain the exhaustive list of error patterns, we aim at
expanding the error range to have it cover the entire length
of the protected data. The method we propose is to force a
bit to 1 during the process. Forcing a position consists in
setting it (or leaving it) to 1 during the single-error search.
In other words, it is equivalent to making the hypothesis that
a specific position is actually erroneous in the packet. Hence,
we force one bit to 1 at position F1 during the process and
run the single-error algorithm on the remaining length of
the packet. If the bit is already 1, we leave it untouched.
Otherwise, setting a bit to 1 is done by applying an XOR
operation with g(x) at position F1 in order to maintain
the equivalence relation. Throughout the cancelation process
with the forced bit set, if a single-error position (denoted
hereafter P1) is obtained from the single-error correction
algorithm, we determine a double-error pattern with errors
at positions F1 and P1.

As we want to get the whole list and we do not know
the actual position of the first error, we test each possible
forced position in order to output all the double-error patterns
associated with the computed syndrome. In the proposed

6



Boussard et al.: Table-free multiple bit-error correction using the CRC syndrome

g(x) = x4+x+1 protecting 6 data bits. In this figure, forced
positions are represented as black boxes through time. At step
t0, the error vector e is initialized as a null vector, to which
syndrome vector s(x) = x3 + x2 + 1 is appended. As we
start at position 0, and e0 is already set to 1, we simply jump
to the next element and start the single-error search from the
next non-zero position, checking at each step if the number of
non-zero coefficients in e equals 2. A first candidate appears
at t1, corresponding to errors at positions (F1 = 0, P1 = 6).
Canceling the next non-zero value would move the operation
out of the range of the packet, thus ending the search for a
single error for this forced position. At step t2 we recall the
initial state of the error vector from t0. The next forced bit
to test is at position 1. Hence, we cancel position 0 and let
position 1 be set to 1. From t3 to t6, we perform the single-
error algorithm on the remaining length. No new error pattern
is found. At time t7, we recall the previous state from t3 and
cancel the former forced bit at position 1. At t8, the next
forced position to test, position 2, is not yet set to 1. We thus
have to perform an XOR operation with g at this position to
set it. We identify such cases as dark grey boxes in Fig. 6, at
steps t8 and t15. We continue this process until reaching the
last forced bit position, corresponding to the mth position
starting from LSB. We can see at step t18 that we cannot
perform any XOR operation without going out of the range of
the packet. Hence, the algorithm is stopped at t18 and outputs
the list of error patterns containing two errors corresponding
to the received syndrome. The sums of errors in such cases
are shown in red font in Fig. 6. The output list contains the
following error patterns: (F1 =0, P1 =6) , (F1 =3, P1 =8)
and (F1 = 5, P1 = 7). The proposed approach for double-
error correction is exemplified in Fig. 6 and presented in
Algorithm 2 using N = 2.

D. N -ERROR CORRECTION
We can further extend the proposed method to deal with any
number N of errors in a packet. The strategy applied is the
extension of the double-error correction approach described
in the previous section.

Much as we forced one position and scanned the remaining
length of the packet using the single-error search, we can
manage the N -error search. In such cases, we set (N − 1)
forced bits in the error vector, corresponding to the first
(N − 1) errors in the packet, and scan the remaining length
using the single-error search to identify the position of the
last error in the packet, if it exists. The (N −1) forced binary
errors have to be tested in the packet. The proposed method
to generate the list of potential error patterns containing up to
N errors is illustrated in Algorithm 2.

We now present the key steps of the proposed algorithm ,
while the corresponding flowchart is given in Fig. 8:
3: The binary vector of length M representing the error
vector e is initialized to m zeros, followed by n values,
corresponding to the computed syndrome s.
5-6: We first check if the number of non-zero values in this
initial vector e is less than or equal to the targeted number of

FIGURE 6. Visual example of the proposed algorithm applied to double-error 
correction, performed over CRC-4-ITU (yellow cells) protecting 6 data bits with 
a syndrome s(x) = x3 + x2 + 1 (grey cells). Each forced bit position, 
represented as a black cell, is tested throughout the process to get the 
exhaustive list of double-error patterns. In this example there are three such 
cases at steps t1, t13 and t17, thus E2 = {(0, 6); (3, 8); (5, 7)}.

algorithm, we suggest forcing positions starting from LSB 
to MSB. Moreover, starting from LSB at each tested forced
position would lead to a cancelation of the same first posi-
tions several over and degrade the computational efficiency.
To avoid verifying the same possibilities repeatedly, we store
the value of e when a bit is forced and recall this state to start 
from it and save computations for the next forced position to 
test.

Fig. 6 illustrates the complete process for listing the 
double-error patterns corresponding to the syndrome s(x) = 
x3 +x2 +1 applied to a CRC-4-ITU of generator polynomial

7



Boussard et al.: Table-free multiple bit-error correction using the CRC syndrome

Algorithm 2 N -ErrorPatternsGeneration(s,g,n,m,N )
Inputs:

s: the syndrome
g: the vector associated with the generator polynomial

used to compute the CRC
n: the length of the syndrome vector
m: the length of the payload vector
N : the maximum number of bit errors considered

Output:
EN the list of valid error patterns up to N bit errors

1: EN ← {}
2: Let e be a vector of length m+ n
3: e← 0⊕ s
4: Let v be a vector of length m
5: if sum(e) ≤ N then
6: Add e to EN
7: end if
8: k ← N
9: while k ≥ 1 do

10: if k = 1 then
11: Add SingleErrorCorrectionMult(s,g,n,m,N ) toEN
12: else
13: Let F ← (0, . . . , k − 2)
14: v← PositionsToVector(F)
15: while F 6=(m− (k − 1), . . . ,m− 1) do
16: start← max(F1−1, 0)
17: for j = start to m− 1 do
18: if ej 6= vj then
19: e← e⊕ (g� j)
20: if sum(e) ≤ N then
21: Add e to EN
22: end if
23: end if
24: if j = F1 then
25: e′ ← e
26: end if
27: end for
28: F ← UpdateForcedPositions(F ,m)
29: v← PositionsToVector(F)
30: e← e′

31: end while
32: end if
33: e← 0⊕ s
34: k ← k − 1
35: end while
36: Remove duplicate elements in EN
37: Return EN

Algorithm 3 UpdateForcedPositions(F ,m)
Inputs:
F : sorted list (F1, . . . , Fk−1) of (k − 1) bit positions

forced to 1, such that Fi < Fi+1,∀i
m: the length of the payload vector

Note that k = len(F) + 1, with len(F) being the number of
elements in the list F

Output:
F ′: the updated sorted list of forced positions

1: if Fk−1 < (m− 1) then
2: Fk−1 ← Fk−1 + 1
3: Return F ′ ← (F1, . . . , Fk−1)
4: else
5: for i = k − 2 to 1 do
6: if Fi < Fi+1 − 1 then
7: Fi ← Fi + 1
8: j ← i
9: while j < k − 1 do

10: Fj+1 ← Fj + 1
11: j ← j + 1
12: end while
13: Return F ′ ← (F1, . . . , Fk−1)
14: end if
15: end for
16: end if

Algorithm 4 PositionsToVector(F)
Inputs:
F : sorted list (F1, . . . , Fk−1) of (k − 1) bit positions

forced to 1, such that Fi < Fi+1,∀i.

Note that k = len(F) + 1, with len(F) being the number of
elements in the list F

Output:
v: the corresponding vector of forced positions

1: v← 0
2: for i = 1 to k − 1 do
3: vFi

← 1
4: end for
5: Return v

8



Boussard et al.: Table-free multiple bit-error correction using the CRC syndrome

Algorithm 5 SingleErrorCorrectionMult(s,g,n,m,N )
Inputs:

s: the syndrome vector
g: the vector associated with the generator polynomial

used to compute the CRC
n: the length of the syndrome vector
m: the length of the payload vector
N : the maximum number of bit errors considered

Output:
ẼN the list of valid error patterns during the single bit
error correction process accepting up to N errors

1: ẼN ← {}
2: Let e be a vector of length m+ n
3: e← 0⊕ s
4: if sum(e) ≤ N then
5: Add e to ẼN
6: end if
7: for j = 0 to m− 1 do
8: if ej = 1 then
9: e← e⊕ (g� j)

10: if sum(e) ≤ N then
11: Add e to ẼN
12: end if
13: end if
14: end for
15: Return ẼN

errors N . If so, a first candidate is added to the list EN .
8-9: The local variable k represents the current number of
errors considered. k is initialized toN , then decreased at each
main loop of the algorithm to consider every number of errors
from N to 1.
10-11: In the last loop, the variable k equals 1. In this case,
no forced position must be set and a modified version of
the single-error correction algorithm, which accepts solutions
where e contains N errors or less, is performed (see Algo-
rithm 5). The solutions are appended to the global candidate
list EN .
13: The sorted list of forced positions F is initialized to the
(k − 1) LSB values at the first iteration. At this step, the set
of forced positions F = (F1 = 0, F2 = 1, . . . , Fk−1 =
(k−2)). The (k−1) forced positions in the setF are ordered
such that F1 < F2 < . . . < Fk−1.
14: The binary vector is set according to the forced positions
in F . In Algorithm 4, the bits in v corresponding to forced
positions in F are set to 1. The other bits in v are set to 0.
15: The forced positions will then be updated to cover the
entire set of possible fixed error positions (until the forced
positions are the (k − 1) MSB positions). For a packet
of M bits, there are

(
M−n) such positions, thanks to the

FIGURE 7. Illustrative example of the proposed algorithm performed over
CRC-8-CCITT (yellow cells) protecting 12 data bits, where N = 3 and
s(x) = x6 + x4 + x2 + x+ 1 (grey cells). Forced bit positions are
represented as black cells in the vector e. Three solutions are valid candidates
in this example, where

∑
, representing sum(e), equals 3 (shown in red font).

Here, E3 = {(0, 1, 18); (1, 6, 16); (2, 8, 18)}.

conducting the single-error algorithm on the remaining part
of the packet.
16: In order to save computations, we use as a starting point
the previously obtained vector e after cancelation of its LSB
positions up to F1, the LSB position we forced. With this
approach we will not have to cancel the same first positions
at each iteration as we increase F1.
17: We perform a scan on the remaining length of the error
vector e, from LSB to MSB (i.e., single-error search).
18-19: At each position j, we compare the values of ej and
vj to determine if the jth position corresponds to a forced
position. If vj and ej are both set to 0 or 1, it means that
position j either must not be forced (to 1) and is already
set to 0, or must be forced, but is already set to 1. In both
cases, the algorithm simply jumps to the next element since
what is required is already in place. However, when these
two elements are set to different values, it corresponds to the
cases where the position j has to be canceled and set to 1, or
where the position j has to be forced to 1, but is set to 0. In
both cases, an XOR operation with g must be performed to
maintain the equivalence relation and obtain what is required.
20-22: At each stage, the number of non-zero coefficients in
the newly accumulated e is observed, similarly to steps 5-6.
Whenever e contains N errors or less, a candidate is added
to the list EN .

k−1
range of the XOR operation performed. After setting these 
forced positions, we are aiming at finding the last error by

9



Boussard et al.: Table-free multiple bit-error correction using the CRC syndrome

Add SingleErrorCorrectionMult

FIGURE 8. Flowchart of the proposed method algorithm for correcting multiple errors in the packet. Numbers show the corresponding steps in Algorithm 2.

25: We store the state of e in a vector e′ to avoid re-canceling
the same first LSBs at the next iteration.

28: At the end of each scan, the vector of forced positions is
updated using the UpdateForcedPosition function illustrated

10



Boussard et al.: Table-free multiple bit-error correction using the CRC syndrome

in Algorithm 3. In this algorithm, the (k−1) forced positions
are successively updated to cover the entire message. At
step 1, we check if the MSB forced position has reached
its final position. If not, we increase its value by one. If it
has reached its final position, we successively check forced
positions from MSB to LSB at step 5. When a forced position
can be increased, we reversely update the other positions,
from LSB to MSB.
29: Each time the set of forced positions is updated, the
binary vector v is modified.
30: We recall the state e′ to start from it at the next iteration.
33: We recall the initial state (syndrome) when we update the
number of errors to consider.

Fig. 7 shows a visual example of the algorithm applied to
a CRC-8-CCITT, which has a generator polynomial g(x) =
x8 + x2 + x + 1. This example illustrates a triple-error
management, with v having two non-zero values, represented
as black boxes in Fig. 7. Four stages are represented here:
the initial stage, where the forced error positions are (F1 =
0;F2=1), two different stages that produce a valid candidate,
namely (F1 = 1;F2 = 6) and (F1 = 2;F2 = 8), and the final
step, with the last two forced positions (F1 = 10;F2 = 11).
By definition, these positions must remain set to 1 at the end
of the scan. The other non-null values in e must be canceled
from LSB to MSB, using the single-error search method. At
each step, we successively add left-shifted versions of g at
these positions and if the sum of non-null values in e is equal
to 3 (N = 3), then e is considered as a valid candidate.
We can observe that this example produces three valid error
patterns with error positions (F1=0;F2=1;P1=18), (F1=
1;F2 = 6;P1 = 16) and (F1 = 2;F2 = 8;P1 = 18), shown
in red font in Fig. 7. The design of Algorithm 2 yields a
total complexity, measured in number of XOR operations, of
O(mN ). Testing the entire error pattern to determine which
would match the received syndrome (i.e., brute force scheme)
would have a complexity of O(mN+1). We can note that the
complexity increases significantly with the number of errors
consideredN . We thus recommend using the algorithm when
N is low, depending on the processing time constraints of the
targeted application. It is important to note that correcting a
single error using algorithm 1 is not computationally more
complex than performing a classic CRC check at the receiver.

III. SIMULATION AND RESULTS
In this section, we present the theoretical and simulation
performance of the proposed method, as compared to the
lookup table approaches from the literature. Finally, we apply
our method to Bluetooth Low Energy used in the IoT and
compare its performance to state-of-the-art methods.

A. CORRECTION RATE

didate in the list. We will refer to such a percentage as
the Single Candidate Ratio (SCR). The SCR is a func-
tion of three parameters: the generator polynomial used,
the length of the protected data and the number of errors
considered. Given a generator polynomial g(x), we denote
the N -error patterns for a payload length m leading to
a single candidate as SinglePatterns(m,N) and the total
number of possible N -error patterns for the same length m
as TotalPatterns(m,N), and we can express the SCR as:

SCR(m,N) =
SinglePatterns(m,N)

TotalPatterns(m,N)
(9)

where SinglePatterns(m,N) was determined by run-
ning the algorithm over all the error cases and
TotalPatterns(m,N) =

(
m+n
N

)
. SCRs are thus not esti-

mated but computed over the entire set of possible error
patterns. We verify that when the length and the number
of errors considered increase, the SCR decreases rapidly.
Moreover, the length of the generator polynomial, as well
as the number of non-zero coefficients, modify the way the
SCR decreases as the length of the protected data increases.

In Figs. 9 and 10, we show the evolution of the SCR
for different generator polynomials and different numbers of
errors considered. We observe in Fig. 10 that when a long
generator polynomial is used and few errors are considered,
the SCR stays at 100% up to a significant length. On the
other hand, a short generator polynomial leads to a faster
decrease of the SCR as the packet’s length increases, as
illustrated in Fig. 9. When the SCR is 100% up to a certain
threshold length for N errors, it means that if N errors or
less occur during the transmission of the packet, these errors
can be identified with a certainty of 100% and without any
possible ambiguity when the packet’s length is lower than
this threshold. From this threshold, the SCR does not fall
to zero immediately. Depending on the generator polynomial
chosen, it can still be at a high percentage level up to a sig-
nificant packet size. If we take the example of CRC-24 used
in the Bluetooth Low Energy protocol [17] (of generator

FIGURE 9. Single Candidate Ratio (SCR) for a payload length from 0 to 500
bits protected by a CRC-16-CCITT [25] of generator polynomial
g(x) = x16 + x12 + x5 + 1, considering up to 4 errors.

In this section, we evaluate the performance of the pro-
posed error correction method. It is able to instantly correct 
the packet when there is only one candidate in the output 
candidate list. Hence, the performance can be expressed as 
the percentage of error cases that produce only one can-

11



Boussard et al.: Table-free multiple bit-error correction using the CRC syndrome

polynomial g(x) = x24+x10+x9+x6+x4+x3+x+1),
the SCR is still above 80% for a payload of up to 2000 bits
when considering that two errors occurred in the packet. For
three and four errors, this number decreases greatly, but is
still over 80% for up to 220 bits for three errors and up
to 85 bits when considering four errors. The applications
targeted by the CRC-24 used in the Bluetooth Low Energy
standard concern the Internet of Things (IoT) [23], [24]. In
IoT environments, the average packet payload is often just a
few bytes in size. Consequently, the proposed error correction
method will be able to instantly correct most error patterns
up to four errors, and even 100% of error patterns up to two
errors, given a packet of 450 bits or less.

However, if the packet is highly corrupted, it may con-
ceivably produce a syndrome the algorithm would recognize
as the result of a low number of errors. In such a case, we
would have a miscorrection. This corresponds, however, to
very disadvantageous cases for all error correction methods.
In fact, there is no error correction method that guarantees
the validity of the reconstructed sequence. However, what we
have is no more problematic than the case of highly corrupted
packet yielding a CRC syndrome of zero, letting the receiver
believe there is no error.

B. MEMORY REQUIREMENTS
The proposed method does not require storing any table.
In contrast, the main drawback of lookup approaches is
their memory requirements. The table must be stored in the
receiver’s memory, as shown in Fig. 11. On very small-
sized packet lengths as considered in [6] and [7], the lookup
table represents a viable solution. When dealing with large
packets, the required memory increases very rapidly. This
rapid increase is also seen as the number of errors considered
increases.

We evaluate the memory required when considering a
specific number of errors and for each common syndrome
length. Two different approaches are used to construct the
lookup table. In both cases, the number of entries in the

FIGURE 10. Single Candidate Ratio (SCR) for a payload length from 0 to
10 000 bits protected by a CRC-24-BLE [17] of generator polynomial
g(x) = x24 + x10 + x9 + x6 + x4 + x3 + x+ 1, considering up to 4 errors.

table corresponds to the number of possible error patterns.
From this definition, it becomes clear that a lookup table
that considers a packet length M and N errors would have(
M
N

)
rows. At each of these entries, the table must store

the non-null syndrome for every possible error pattern. The
syndrome is stored as a 1 to 4-byte number if we consider
codes from CRC-8 to CRC-32 (used in Ethernet [21], of
generator polynomial g(x) = x32+x26+x23+x22+x16+
x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1). To
retrieve error positions, two strategies are used:

• The first one is to explicitly store the error positions
associated with the syndrome in the table, as numbers
coded on 16 bits (2 bytes) for each entry. There are N
such numbers per row. Using this lookup table design,
the required memory, denoted Bexp, is expressed as:

Bexp =

(
M

N

)
× [length(s) + (2×N)] (10)

where M is the total length of the packet, N is the
number of errors considered, and length(s) is the size
in bytes of the syndrome associated with the CRC used.
The expression (2×N) is the representation ofN 2-byte
numbers per row, representing the positions of the N
errors considered. This implementation allows finding
directly the error patterns associated with the syndrome
but at a significant memory cost.

• The second strategy uses an implicit error position.
With this approach, the lookup table does not need
to store N 2-byte numbers per entry, which reduces
the total memory requirements by up to 9 times when
considering a CRC-8 and four errors, as compared to
the aforementioned strategy. The memory requirements,
denoted Bimp, can now be expressed as:

Bimp =

(
M

N

)
× length(s) (11)

However, such a strategy involves more calculations to
update the error pattern corresponding to the syndrome
as it navigates through the table.

FIGURE 11. Examples of the explicit design of a lookup table containing all
triple-error patterns for packet length up to 12000 bits.

12



Boussard et al.: Table-free multiple bit-error correction using the CRC syndrome

TABLE 1. Memory requirements for storing the lookup tables considering a payload of 1500 bytes for several CRC lengths and number of errors considered with
implicit and explicit error positions

Nb Errors N
CRC-8 CRC-16 CRC-24 CRC-32

Implicit Explicit Implicit Explicit Implicit Explicit Implicit Explicit

1 12 kB 36 kB 24 kB 48 kB 36 kB 60 kB 48 kB 72 kB

2 72 MB 360 MB 144 MB 432 MB 216 MB 504 MB 288 MB 576 MB

3 288 GB 2.02 TB 576 GB 2.30 TB 864 GB 2.60 TB 1.16 TB 2.88 TB

4 864 TB 7.77 PB 1.73 PB 8.64 PB 2.59 PB 9.50 PB 3.45 PB 10.4 PB

FIGURE 12. Evolution of the normalized time ratio to run the proposed
method compared to lookup table-based approaches (explicit and implicit) for
a single error in the packet depending on the length of the packet. The
normalized time ratio corresponds to 155µs in this case.

When used as part of a standalone error correction process,
the algorithm performs at its maximum in terms of both
correction rate and complexity for small packets or CRC-
protected headers. In such cases, the SCR is significantly high
or at a maximum for multiple-error correction.

Comparing the proposed algorithm to the lookup table
approaches in the literature, we can verify that it provides
improved capabilities in two main respects:

1) Flexibility. Our method is more flexible than fixed-length
lookup tables since it is not based on a specific packet
size, but rather, is dynamically applied to protected data,
and is thus adaptive to the data length. Consequently, the
method will provide full coverage for any packet length.
Furthermore, any generator polynomial, apart from the
input parameter can be used with the proposed algorithm
without modification. Lookup tables must be entirely
recomputed when the generator polynomial considers
changes. Alternatively, a table should be stored for each
generator polynomial of interest, which significantly in-
creases memory requirements.

2) Memory-free multiple-error correction. The proposed
method does not assume that only single errors are likely
to occur. Even if this scenario can still be supported by
setting the number of errors to 1 as the input parameter,
we can also assume that up to N > 1 errors are possible
and consider the whole set of possible candidates up to
this number. A lookup table approach is able to list such
error patterns but needs an intractable amount of memory

We note that depending on the constraints present, one 
can choose among the two proposed designs to either save 
memory storage or save computations at the receiver side. 
Table 1 illustrates the memory requirements for both explicit 
and implicit implementations when considering large packets 
of 1500 bytes. We can see a significant increase in the mem-
ory requirements when considering each additional error. For 
such a packet length, considering three or four errors using a 
lookup table approach would be intractable.

C. COMPUTATIONAL TIME COMPARISON

In terms of processing time, we ran the C implementation of 
the proposed algorithm for a single- and a double-error cor-
rection on a Raspberry Pi model 3B+ [22]. For comparison 
purpose, we also implemented a table approach capable of 
considering every single-error position for packets up to 1500 
bytes. We executed both algorithms for packets of different 
lengths, from a few bits to the maximum size available here, 
set to 1500 bytes. The Raspberry model 3B+ used to conduct 
the experiment is equipped with a System on a Chip (SoC) 
Broadcom BCM2837BO with an ARM Cortex-A53 quad-
core processor at 1.4 GHz and 1 GB SDRAM LPDDR2.

Figs. 12 and 13 show the relative time for the error 
correction method on single- and double-error patterns, re-
spectively. The proposed method’s complexity is compared 
to both lookup table approaches (i.e., explicit and implicit) 
for different packet sizes. Lookup table-based approaches 
have a constant complexity since they must always check 
every entry of the table prior to conducting error correction 
to ensure that all candidates are identified. When considering 
a single error, both table-based approaches are of equal 
complexity, and the conversion from explicit to implicit is 
straightforward. For two errors, however, the implicit method 
is 10 to 15% slower due to the computations required to 
convert the table index into error positions. We note that for a 
large payload, the methods are similar in terms of computa-
tional complexity. The lookup table approach is still faster 
when considering single errors in large packets. However, 
as the packet becomes smaller with respect to the maxi-
mum allowed packet size, the proposed method surpasses 
the lookup approach due to its adaptability to the received 
packet size. The method can be more than 10 times faster than 
lookup methods for very small packets, and the gain in speed 
is even greater when double-error correction is considered.

13



Boussard et al.: Table-free multiple bit-error correction using the CRC syndrome

FIGURE 13. Evolution of the normalized time ratio to run the proposed
method compared to lookup table-based approaches (explicit and implicit) for
two errors in the packet depending on the length of the packet. The normalized
time ratio corresponds to 1.4s in this case.

storage to consider the whole set of N -error cases in
large packets. In order to optimize the management of the
numberN , further work can be carried out to dynamically
choose it by extracting information about channel condi-
tions, such as the channel Signal-to-Noise Ratio (CSNR)
estimation at the physical layer or the Receiver Signal
Strength Indicator (RSSI). The received RSSI level can
be mapped to the crossover probability by measuring an
average BER for each RSSI level. If this BER estimation
is low enough in terms of the length of the packet, we can
set the parameter N to be 1.

D. APPLICATION TO IOT
Considering the high performance of our method on small
packets protected by strong generator polynomials, applying
the proposed algorithm to the IoT domain can be highly
desirable. A study of error distribution in a real environment
of CRC-protected packets applied to the Internet of Things
(IoT) [24] domain is proposed in [11]. The authors consider
both Bluetooth Low Energy (BLE) packets protected by a
CRC-24 and IEEE 802.15.4 [25] packets protected by CRC-
16-CCITT. Two packet sizes, 21 bytes and 39 bytes, are
considered. The results of the experiments are represented in
Table 2 which shows that over 50% of the erroneous packets
contain fewer than three errors in any selected scenario.
Moreover, more than 40% contain two errors or less, making
it an ideal context to evaluate our proposed method’s perfor-
mance. As noted the authors of [11], considering only slightly
damaged packets can thus still enable a significant recovery
rate. When soft information is unavailable, the authors of [11]
propose to use a received packet’s RSSI to determine the Bit
Error Rate (BER).

In [11], the authors present the average correction rate of
their methods when a specific number of errors occur in the
packet. The simulation results can be seen in Fig. 14, consid-
ering three payload sizes: 8 bytes, 21 bytes and 39 bytes. To
compare our algorithm with these approaches, we tested an
exhaustive set of error patterns for each size and each number
of errors to get the average correction rate over all possible

FIGURE 14. Error correction rate of the proposed method compared to two
methods recently proposed in [11] for different number of errors in the packet

error cases. We applied the algorithm for each error case
and checked the resulting list at the end of the process. The
correction is considered successful only if the actual error
pattern is the only candidate in the output list. If there are
no or several candidates in the list, the packet is considered
lost. For the Alternating Direction Method of Multipliers
(ADMM) and Belief Propagation (BP) [11], the simulation
results in Fig. 14 show a maximum correction rate for single-
error correction for all methods considered. For double-error
correction, only the proposed method is able to achieve a
100% error correction. ADMM can correct an average of
80% for 8-byte payloads, which falls to less than 25% for 39-
byte payloads. The results considering three errors are even
more significant. The proposed method offers a 100% error
correction rate for 8-byte payloads, whereas both ADMM
and BP achieve 25%. When the payload length increases, the
proposed method still can correct 86% and 47% for 21- and
39-byte payloads, respectively. Other methods can achieve a
maximum of 5% error correction for such payloads.

These results can be retrieved in Fig. 10, where the three
vertical bars correspond to the three payloads considered
here. We can see that the correction rate for more than
three errors is very low for all methods. In fact, it involves
considering every error pattern containing more than three
errors, which leads to a poor ratio since as the number of
errors considered increases, the SCR decreases, becoming
zero for large numbers of errors. However, we can note that

TABLE 2. Error distribution in real environment for BLE and IEEE 801.15.4
and two packet sizes

Number of bit errors
BLE IEEE 802.15.4

21B 39B 21B 39B

1 18% 16% 11% 10%

2 28% 27% 30% 27%

3 12% 11% 15% 16%

>3 42% 46% 44% 47%

14



Boussard et al.: Table-free multiple bit-error correction using the CRC syndrome

we can still operate on four errors for small packets, as
illustrated in Fig. 10 for 8-byte payloads, where the SCR is
still 78%.

In [11], the authors propose a configurable iterative decod-
ing process, which means that its performance will depend on
the number of iterations performed on the corrupted packet.
The results provided here consider 1000 iterations at the
decoder. The timing for this decoding applied to the fastest
method (ADMM) takes an average of 85 ms for 21-byte
packets on a desktop computer with an Intel i7 3.1 GHz CPU,
8 GB RAM and Microsoft Visual C++ 2010 Compiler. We
tested our method on a desktop computer with an Intel i7
3.4 GHz CPU, 8 GB RAM and GCC compiler, and we noted
that depending on the number of errors to consider, it takes an
average time ranging from 2 µs for single-error correction to
8 ms for three errors or less. Double-error correction takes an
average of 150 µs. Therefore, the proposed method not only
allows dramatically correcting more double- and triple-error
cases, but it is also significantly faster than the state-of-the-art
methods presented in [11].

E. FUTURE WORK
In this paper, we have considered our algorithm as a stan-
dalone process that can only correct a packet when its output
list contains a single element. In order to further increase the
proposed method’s error correction performance, it can be
jointly used with other methods providing a list of potential
error patterns as their output. For example, the work on
UDP checksum proposed in [9], [26], [27] can be combined
with our algorithm. Crosschecking both candidate lists would
generate a matching list with a reduced number of entries.
If our method is used in addition to the UDP checksum
method, greater protected data lengths or a higher number of
errors can be targeted for applications such as error correction
on Ethernet frames, where a CRC covers the entire packet.
Similarly, we could eliminate candidates leading to wrong
values of known protocol fields, such as constant and pre-
dictable fields in the protocol’s header (reserved and version
fields are constant values during a communication, and some
fields such as the sequence number in RTP are predictable
since they are increased by 1 at each new packet throughout
the communication). Some methods which consider a MAP
approach have already proposed to use a CRC lookup table
to validate their reconstruction, as described in [28] on Polar
codes [29].It could be beneficial to compute only the proba-
bility of valid candidates rather than considering the whole
set of possible sequences, determining their probability of
being sent, and finally checking their CRC compliance.

IV. CONCLUSION

small-sized packets, as used in the Bluetooth Low Energy
standard. In such an environment, the proposed method
achieves better error correction rates than the state-of-the-
art methods considering up to three errors in the packet. The
standalone error correction rate in BLE is at a maximum for
single-, double- and some triple-error cases presented.

When instant correction is not possible, the algorithm still
generates the list of all the possible error patterns that lead to
the computed syndrome, according to a maximum number of
errors considered. This list is usually small if we consider a
reasonable number of errors. Further work to improve this
method should use it in addition to existing methods that
output a list of candidates. Crosschecking the lists of different
methods would reduce the number of valid candidates, which
would lead to fewer sequences to test or even to a reduction of
the list size to a single candidate, allowing instant correction
of damaged packets.

REFERENCES
[1] J. Sobolewski, "Cyclic Redundancy Check," in Encyclopedia of Computer

Science, John Wiley and Sons Ltd, 2003.
[2] J. Postel, "Transmission Control Protocol," IETF, RFC 793, Sept. 1981.

[Online]. Available: https://www.rfc-editor.org/rfc/rfc793.txt.
[3] R. T. Braden, D. A. Borman, and C. Partridge, “Computing the in-

ternet checksum," IETF, RFC 1071, Sep. 1988. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc1071.txt.

[4] K. Niu, K. Chen, "CRC-Aided Decoding of Polar Codes," in IEEE
Communications Letters, vol. 16, no. 10, pp. 1668-1671, Oct. 2012.

[5] X. Liu, S. Wu, X. Xu, J. Jiao and Q. Zhang, "Improved Polar SCL
Decoding by Exploiting the Error Correction Capability of CRC," in IEEE
Access, vol. 7, pp. 7032–7040, Dec. 2018.

[6] S. Shukla, N. W. Bergmann, "Single Bit Error Correction Implementa-
tion in CRC-16 on FPGA," in IEEE International Conference on Field-
Programmable Technology, Brisbane, Australia, pp. 319-322, 6-8 Dec.
2004.

[7] S. Babaie, A. K. Zadeh, S. H. Es-Hagi and N. j. Navimpour, "Double Bits
Error Correction using CRC Method," in Fifth International Conference
on Semantics, Knowledge and Grid, pp. 254-257, 12-14 Oct. 2009.

[8] A. S. Aiswarya and G. Anu, "Fixed Latency Serial Transceiver with Single
Bit Error Correction on FPGA," 2017 International Conference on trends
in Electronics and Informatics (ICEI), 11-12 May 2017.

[9] F. Golaghazadeh, S. Coulombe, F.-X. Coudoux, P. Corlay, "Checksum Fil-
tered List Decoding Applied to H.264 and H.265 Video Error Correction,"
in IEEE Transactions on Circuits and Systems for Video Technology, vol.
28, no. 8, pp. 1993-2006, Aug. 2018.

[10] E. Tsimbalo, X. Fafoutis, and R. Piechocki, "Fix It, Don’t Bin It! CRC
Error correction in Bluetooth low energy," in Proceedings IEEE 2nd World
Forum of Internet Things, pp. 286–290, 14-16 Dec. 2015.

[11] E. Tsimbalo, X. Fafoutis, R. J. Piechocki, "CRC Error Correction in IoT
Applications," in IEEE Transactions on Industrial Informatics, vol. 13, no.
1, pp. 361-369, Feb. 2017.

[12] F. Caron, S. Coulombe, "Video Error Correction using Soft-Output and
Hard-Output Maximum Likelihood Decoding applied to H.264 Baseline
Profile," IEEE Transactions on Circuits and Systems for Video Technology,
vol. 25, no. 7, pp. 1161-1174, Jul. 2015.

[13] P. Duhamel and M. Kieffer, "Joint source-channel decoding: A cross-layer
perspective with applications in video broadcasting," Academic Press,
2009.

[14] G. Zhang, R. Heusdens, and W. B. Kleijn, “Large scale LP decoding
with low complexity," IEEE Communication Letters, vol. 17, no. 11, pp.
2152–2155, Nov. 2013.

[15] S. Sankaranarayanan and B. Vasic, “Iterative decoding of linear block
codes: A parity-check orthogonalization approach,” IEEE Transactions on
Information Theory, vol. 51, no. 9, pp. 3347–3353, Sep. 2005.

[16] IEEE 802.11: Part 11: "Wireless LAN medium access control (MAC) and
physical layer (PHY) specifications", Dec. 2016.

[17] Specification of the Bluetooth system. Core Version 4.1, Bluetooth SIG,
2013. [Online]. Available: http://www.bluetooth.com.

In this work, we have proposed a novel algorithm to correct 
transmission errors within data covered by a CRC, using the 
computed non-null syndrome at the receiver. This method is 
able to instantly correct single errors if the protected data 
length does not exceed the period of the generator polyno-
mial. This method is also able to correct multiple errors in

15



Boussard et al.: Table-free multiple bit-error correction using the CRC syndrome

[18] S. Boyd and L. Vandenberghe, "Introduction to Applied Linear Algebra –
Vectors, Matrices, and Least Squares", Cambridge University Press, 2018.

[19] J. Arndt, "Binary polynomials," In: Matters Computational. Springer,
Berlin, Heidelberg, pp. 822-863, 2011.

[20] N. Bhatnagar, "Mathematical Principles of the Internet, Volume 1: Engi-
neering", Chapman and Hall / CRC, Dec. 2018

[21] IEEE Standard Association, "IEEE 802.3-2018 - IEEE Standard for Ether-
net", 2018, [Online]. Available: https://standards.ieee.org/standard/802_3-
2018.html

[22] Raspberry PI 3 Model B+. [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/.

[23] A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, "Internet of
Things for Smart Cities," in IEEE Internet of Things Journal, vol. 1, no. 1,
pp. 22-32, Feb. 2014.

[24] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash,
"Internet of Things: A Survey on Enabling Technologies, Protocols, and
Applications," in IEEE Communication Surveys and Tutorials, vol. 17, no.
4, Jun. 2015.

[25] “IEEE Standard for Information Technology — Telecommunications and
Information Exchange Between Systems—Local and Metropolitan Area
Networks—Specific Requirements Part 15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate
Wireless Personal Area Networks (WPANs),” IEEE Std. 802.15.4-2006.

[26] F. Golaghazadeh, S. Coulombe, F-X. Coudoux and P. Corlay, "The Impact
of H.264 Non-Desynchronizing Bits on Visual Quality and its Application
to Robust Video Decoding," 2018 IEEE International Conference on
Signal Processing and Communication Systems (ISPCS 2018), 17-19 Dec.
2018.

[27] F. Golaghazadeh, S. Coulombe, F-X. Coudoux and P. Corlay, "Low Com-
plexity H.264 List Decoder for Enhanced Quality Real-Time Video over
IP," 30th annual IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE 2017), 30 Apr. - 3 May 2017.

[28] K. Niu, K. Chen, "CRC-Aided Decoding of Polar Codes," on IEEE
Communications Letters, vol. 16, no. 10, pp. 1668-1671, Oct. 2012.

[29] E. Arikan, "Channel Polarization: A Method for Constructing Capacity-
Achieving Codes for Symmetric Binary-Input Memoryless Channels," in
IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051-3073,
Jul. 2009.

16


	Coulombe-S-2020-20937-mod.pdf
	Binder1.pdf
	Erratum__1_.pdf
	Vivien_Boussard___Article_1_Correction_CRC-erratum-Edited.pdf




