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Crosstalk Suppression in Semi-Intrusive Load
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Abstract—Semi-intrusive load monitoring (SILM) is an ap-
pliance load monitoring approach using multiple meters, each
meter measuring power for a subgroup of appliances. As an
effective solution for demand response programs, SILM is used
to get granular power measurements at the level of individual
appliances in buildings. Hall effect sensors (HES) on each wire
attached to a circuit breaker in distribution panels are one
means of providing SILM. However, HES are greatly affected
by crosstalk noise generated by neighboring wires, up to 35%
of interfering signals. To remove crosstalk noise, this work
proposes a blind source separation (BSS) approach designed to
deal with sparse matrices, making SILM measurements accurate
for home energy management systems. Our approach leverages
two key elements: (i) a BSS algorithm based on non-correlation
for sparse mixing matrix; (ii) a sensor gain compensation that
leverages smart meter readings. The results demonstrate that
the total power estimation error is reduced from 15% to 2%
on the Tracebase dataset, and from 55% to 9% on our HES
dataset monitored in a family home. Furthermore, the proposed
approach outperforms standard BSS algorithms such as FastICA
and InfoMax. This work shows that HES can be used for load
monitoring in smart buildings.

Index Terms—Semi-intrusive load monitoring (SILM), Hall
effect sensor (HES), blind source separation (BSS), home energy
management system (HEMS)

I. INTRODUCTION

In October 2018, the Intergovernmental Panel on Climate
Change urged the reduction of 45% of greenhouse gas emis-
sions by 2030 [1]. Some of these emissions are due to energy
generation and consumption, with buildings being responsible
for 20% of the global energy consumption [2]. In this scenario,
smart energy management solutions are paramount to reach the
reduction goal [3].

A home energy management system (HEMS) is a demand
response tool helping demand side management within a
smart grid [4]. It influences and optimizes household energy
consumption by shifting or reducing demand load according to
different criteria such as electricity price, consumer comfort,
renewable energy production, or other external information
[5], [6]. Based mainly on real-time and time-of-use pricing
approaches, a HEMS could reduce the operational cost of
electricity by 23% or residential peak demand by 30%, [6].
Furthermore, the automation of HEMS is useful to analyze the
complexity of smart pricing, demand and energy production,
and to plan an appropriate response, avoiding customers’
intervention to manage their household devices. However, the
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efficiency of HEMS requires an appliance load monitoring
(ALM) system to detect states and measure the power con-
sumption of individual appliances in a home [3], [4]. From
intrusive to non-intrusive solutions, many ALM techniques can
be used to measure the consumption of individual household
appliances [7].

Non-intrusive load monitoring (NILM) is a technique to
monitor appliance load activities from a single sensor. This
sensor measures the building’s total consumption, and a dis-
aggregation algorithm extracts individual consumption of each
appliance. NILM is promoted as an effective ALM solution
for the future. However, the complexity of the disaggregation
task increases exponentially with the number of appliances
and states. This constraint limits the number of appliances
to approximately nine, and the performance decreases as the
number of appliances increases [8]. This scalability issue and
the obstacle of near real-time capabilities are only a few
examples of unsolved challenges preventing NILM use in a
practical context.

These challenges lead to another class of ALM, called semi-
intrusive load monitoring (SILM), in which multiple sensors
are used to monitor groups of appliances. Instead of perform-
ing the recognition task for all devices on one aggregated sig-
nal, SILM consists of several aggregated points with classifiers
to recover the energy consumption of individual appliances
[9]. Because of the lower number of appliances per aggregated
point, SILM classifiers require a lower sampling rate and fewer
features than NILM systems, which measure all appliances
using only one aggregated point. It was shown in [10] that
these reduced requirements lead to a lower hardware cost and
decrease the computational complexity of the disaggregation
task.

This paper introduces a SILM solution relying on low-
cost sensors to estimate crudely the current in circuits. The
proposed SILM uses Hall effect sensors (HES), which cal-
culate the root mean square (RMS) value of the electric
current flowing across a wire by measuring the magnetic
field generated around it [11]. Sensors are installed on wires
attached to circuit breakers in the distribution panel and
communicate their IRMS readings to a hub through the wired
RS-485 standard, as shown in Fig. 1. The hub used in the
proposed SILM system is a Raspberry Pi mounted with our
custom shield compatible with the RS-485 standard. Using
Wi-Fi connection, the hub communicates with a cloud server,
where a disaggregation algorithm extracts the consumption
of each appliance on circuits containing several appliances.
Further analysis on appliance activities can be achieved in the
cloud and shared with the HEMS to make informed decisions
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on energy conservation and load management. However, HES
are affected by any magnetic field in their vicinity. This
notwithstanding, two main impediments to the widespread use
of this SILM are (1) HES are affected by crosstalk noise
created by neighboring circuits in the distribution panel, and
(2) the sensors’ sensitivity varies depending on their physical
positions during the installation. As much as 35% of another
signal can be seen as crosstalk noise on sensor measurements.
Over time, this noise creates a shift between the measured and
real energy consumption, generating errors in the estimation.

Since noisy sensor measurements correspond to the sum of
multiple circuits’ power consumption, the crosstalk noise can
be formulated as a blind source separation (BSS) problem.
However, standard BSS algorithms fail this particular signal
separation task because of the sparsity of the mixing matrix.
Usually, only four or five of the closest circuits generate
crosstalk noise on sensor measurements in a system that
typically contain more than 15 circuits, causing a sparse
mixing matrix. The second issue encountered with HES is the
variability of the sensor gain created by the high sensitivity of
these sensors: the position of the sensor on the circuit breaker
wire can generate measurement variations of more than 20%
depending on the angle of the sensor during the installation.
Crosstalk gains and sensor gains stay constant as long as there
is no movement in the distribution panel.

The aim of this paper is to propose a low-cost SILM solution
based on HES. In order to obtain accurate measurements, the
crosstalk noise generated by neighboring circuits has to be
removed, and the HES sensor gain must be auto-calibrated.
The contributions of this research are as follows:

• A BSS approach based on a deterministic non-correlation
solution is proposed to remove crosstalk noise in sensor
measurements. Our approach handles classes of problems
which are challenging for BSS algorithms, i.e. problems
with either sparse mixing matrices, low mixing coeffi-
cients or imbalanced signal levels.

• A sensor gain compensation based on an adaptive filter
leveraging smart meter readings is proposed to adjust
HES measurement levels.

• A new power consumption dataset monitored with the
proposed HES-based SILM system in a family home
is used to compare our approach with standard BSS
algorithms. This dataset also introduces new empirical
data to help benchmark future SILM and NILM systems
and is available publicly.1

The rest of this paper is organized as follows. Section II
gives a brief overview of ALM and BSS techniques, followed
by the formulation of the HES crosstalk noise problem in
Section III. The proposed solution for the sparse mixing matrix
BSS approach is presented in Section IV. Section V describes
experiments done on simulated and real environments, fol-
lowed by results and discussions for each of them. Finally,
the paper concludes and projects future research in Section
VI.

1https://github.com/ETSSmartRes/HES-Dataset
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Fig. 1. The proposed SILM system using HES installed in a distribution
panel

II. RELATED WORK

This section reviews ALM techniques for intrusive and
non-intrusive systems. Furthermore, a brief literature review
describes the SOS and HOS techniques used as benchmark
algorithms in Section V.

A. ALM Techniques
Throughout the literature, many ALM techniques have been

proposed. A straightforward method to monitor individual
household appliances is intrusive load monitoring, which is
obtained by deploying a power meter on each appliance in a
building. These sensors are broadly current transformers (CT)
or, more recently, smart plugs. Although highly accurate, this
approach has high installation and operation costs [12], and
recessed appliances cannot be monitored [13]. Moreover, there
are privacy concerns around this technique, which prevent
large-scale acceptance of this technology [14]. These draw-
backs have led to the introduction of NILM techniques.

NILM approaches, first proposed by Hart [15], utilize one
sensor that monitors the whole house’s electric consumption,
and a disaggregation algorithm identifies and extracts the
power of individual appliances [13]. NILM methods are gen-
erally categorized into two groups: state-based methods and
event-based methods. State-based methods focus on detecting
the active states of each appliance. These approaches use
steady-state features such as edge measurements when an
appliance turns ON/OFF or changes its running states. Mon-
itored signals include active power, reactive power, current
and voltage waveforms. These signals are typically obtained
at a low sampling rate, less than 1 Hz, reducing the hardware
cost and allowing the use of smart meter measurements. State-
based algorithms are usually based on a hidden Markov model
and its variants [16], [17]. He et al. [18] also propose a graph
signal processing algorithm for energy disaggregation. These
state-based methods generally achieve better performance, es-
pecially with ON/OFF and finite state appliances, but struggle
to monitor variable and continuous appliances [19]. More
recently, [20], [21] have proposed approaches for NILM based
on deep neural networks, such as Long-Short Term Memory
and denoising autoencoders. However, these models need
supervised training, which is time-consuming and requires
sub-metering during the training process. Furthermore, the
deployment performance is sensitive to the training dataset,
making unseen buildings harder to monitor [19].
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On the other hand, event-based approaches characterize
signal edges when a state change occurs. These approaches
use transient features that require a higher sampling rate, in
the kHz range or more, demanding more expensive hardware.
By characterizing the transition signals, these methods can
classify the signal edges and associate the power to a specific
appliance, which is starting or changing state. This category of
methods is based on features such as shape, size, duration, and
harmonics of current or power waveforms [19]. Methods used
to classify transient features are primarily machine learning
classifiers such as support vector machine and neural networks
[22], [23]. A voltage-current trajectory is also used in [12] for
feature extraction.

Most NILM performances are highly affected by the in-
creasing number of appliances in the aggregate signal [9],
[10], [17]. This problem contributed to the development of
SILM, which minimizes the number of sensors, thus balancing
installation cost and performance.

B. BSS Techniques

BSS is a known problem in the telecommunications,
biomedical, audio, and other fields [24], where the objective
is to recover source signals using only mixture observations.
Static or instantaneous mixing is the most typical model seen
in the BSS domain and is characterized by matrix multipli-
cation. The problem described in this paper is considered a
determined mixture with an equal number of observations
M and sources N . Second-order statistics (SOS) and higher-
order statistics (HOS) are the two main categories of meth-
ods to solve determined BSS problems. Algorithms based
on SOS, such as principal component analysis (PCA) [25],
AMUSE [26], SOBI [27], and WASOBI [28] work well when
sources are Gaussian and assumed to be stationary. Thus,
for non-Gaussian distribution signals, HOS are more suitable
to remove the crosstalk noise on HES. To validate this, we
performed experiments on several SOS algorithms. The PCA
algorithm provided the best results and was thus chosen as the
SOS comparative algorithm in Section V.

Independent component analysis (ICA) [29]–[33], the most
popular group of HOS algorithms is mainly used to do BSS,
but also for feature reduction in machine learning, localiza-
tion of sources, compression, and more. ICA’s objective is
to find independent components from mixture signals using
different methods. Mutual information minimization, maxi-
mum likelihood estimation, non-Gaussianity maximization, or
a combination of these are some techniques used to maximize
independence between signals. Two assumptions are made to
use ICA algorithms. First, the number of observations M is
equal to the number of sources N and, secondly, at most, only
one signal can be Gaussian.

FastICA [30] with non-Gaussianity optimization searches
for the optimal unmixing matrix that maximize the Gaussian
distance between signals. This is achieved by minimizing
nonlinear functions, such as kurtosis. The FastICA algorithm
converges fast and is an efficient separation algorithm. Other
variations of non-Gaussianity approaches have been developed
using non-parametric score functions, such as RADICAL [32]
and NPICA [33]. These two methods get accurate separation
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Fig. 2. Schematic description of the magnetic field generated by wire B
creating crosstalk noise on the sensor SA

results, but they are computationally complex. Furthermore,
they have difficulty in separating more than ten signals in
practice, which is a drawback for HES networks, where the
number of signals is typically larger than 15 in standard houses
[34].

InfoMax [31] is another popular ICA algorithm that mini-
mizes mutual information between the outputs, but the non-
linear function used is a logistic sigmoid more adapted for
real-world signals having a super-Gaussian probability density
function.

Nonnegative matrix factorization (NMF) [35] is a BSS
algorithm based on non-negativity constraint which achieves
meaningful representation in many domains. However, NMF
is well suited for problems with a number of sources superior
to the number of observations, making this algorithm useful in
the context of undetermined problems, such as hyperspectral
data processing, image analysis, sparse coding, etc. For the
crosstalk noise suppression task in HES measurements, the
NMF algorithm did not achieve good results.

Generalized Morphological Component Analysis (GMCA)
[36] and Adaptive Morphological Component Analysis
(AMCA) [37] are more recent BSS algorithms, which are
especially suitable for images source separation problems.
Even though these algorithms can be adapted to time series,
they did not work with many observations over long time
series. Furthermore, the execution time was typically ∼200
times longer than ICA algorithms.

In this work, we opted for the PCA, FastICA and InfoMax
approaches to be used as comparative algorithms for the
proposed solution described in Section IV.

III. PROBLEM FORMULATION

The proposed SILM uses HES to estimate the RMS current
by measuring the magnetic field generated around wires. As
these sensors are also affected by magnetic fields generated
by other circuits in the distribution panel, the measurement
accuracy is thus reduced because of crosstalk noise.

As shown in Fig. 2, various parameters affect the level
of crosstalk noise generated on sensors. In this example, the
distance d separating the two wires and the angle α influence
the noise level generated by wire B on sensor SA. Another
issue is the variability of sensor sensitivity, referred to as
sensor gain in this paper. A slight variation of the sensor
position during the installation affects its sensor gain. The
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crosstalk noise can be observed on single and multiple phases
electrical distribution.

The HES monitoring issue is defined as a BSS problem,
since the noisy sensor measurements correspond to the sum of
multiple circuits. This BSS problem can be characterized as a
linear mixture and a determined system in which the number of
circuits (sources) M and the number of sensors (observations)
N are equal. Using the conventional BSS notation [38], the
HES monitoring problem is described as

x(t) = As(t), (1)
where x(t) is the sensor measurements vector of dimension
N in time domain t ∈ {0, . . . , T} comprising instantaneous
mixtures, i.e., measurements plus crosstalk noise from other
circuits; A is the mixing matrix of dimension N×N describing
the physical phenomenon of crosstalk noise; and s(t) is the
vector of dimension N in time domain t corresponding to the
real current flowing in circuits.

The classical BSS example is the cocktail party problem:
multiple conversations occurring simultaneously in a room. A
series of microphones record sounds, x(t), in that room, but
the recordings contain a mixture of every conversation. Thus,
the objective is to estimate Â in order to restore the original
conversations, y(t), as given by,

y(t) = Â
−1

x(t). (2)
If Â is correctly estimated, the vector y(t) is equal to s(t).

Translated into the current problem, the mixing matrix A
reflects the exact issues of the HES-based SILM. The diagonal
of matrix A corresponds to the sensor gains, whereas other
coefficients correspond to the proportion of crosstalk noise
generated by other circuits. The objective of the proposed
solution is to remove the crosstalk noise and to adjust sensor
gains by estimating matrix Â so that y(t) corresponds to the
real circuit currents.

IV. PROPOSED SOLUTION

The overall process to estimate the sparse mixing matrix Â
is described in Fig. 3. The main steps of the proposed solution
are as follows:

1) Identification of high-activity segments (HAS) based on
a thresholding method to detect high power variations on
HES measurements and to reduce dimensionality;

2) Creation of a pairing matrix based on correlation between
HES measurements to identify sensors affected by
crosstalk noise;

3) Crosstalk noise suppression using non-correlation
evaluation on noisy sensors identified by the pairing
matrix;

4) Sensor gain compensation leveraging smart meter
readings based on the least mean square (LMS) algorithm
[39].

A. HAS Detection Process (Step 1)

As the first step of the crosstalk gain estimation, the
HAS detection process is developed as a tool used by the
creation of the pairing matrix (step 2), and the crosstalk noise
suppression (step 3), both based on the correlation between
the measurements of all of the sensors. Thus, the objective of

HES
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Fig. 3. Overall flow of the proposed solution to estimate crosstalk and sensor
gains

this first step is to identify a maximum of segments in which
high electrical activities occur on signal measurements over
period T .

In general, power consumption by appliances has a marked
variation when appliances are changing state. Therefore, as in
the NILM algorithm in [18], which uses variations in power
measurements to detect appliances’ changing states, we opted
for a threshold strategy to identify high electrical variations.
Using the first derivative of sensor measurement, we identify
all times τ where the derivative is higher than δ. The optimal
threshold value, δ, found through a grid search technique on
a validation dataset during training, corresponds to 0.3A. For
each τ , the algorithm verifies if a higher variation occurs on
another sensor to ensure that the variation detected corresponds
to the monitored circuit.

For an HAS detected at time t = τ , we collect the samples
of all sensors for that segment in:

h =
[
x(τ − d), . . . , x(τ), . . . , x(τ + d)

]
, (3)

where, the HAS length is M = 2d+ 1, and x(t) is the
measurement vector of all sensors at time t. This algorithm
is executed on the entire length of the dataset, leading to
many detections of HAS. These segments are grouped in the
ensemble Hi for each sensor i:

Hi =
{

h1, . . . ,hk, . . . ,hKi
}
, (4)

where Ki is the number of segments detected. This HAS
detection process is then executed for each sensor.

B. Pairing Matrix Creation (Step 2)

As a second step for the crosstalk noise suppression, the
correlation value between sensors’ measurements is calcu-
lated to obtain the pairing matrix, P. Crosstalk noise affects
mostly neighboring circuits, creating a sparse mixing matrix.
Therefore, the pairing matrix aims to reduce the number of
coefficients, â, to estimate, considering that the total number
equals N2. Using the pairing matrix, crosstalk gains âi,j are
only calculated (step 3) when the pairing value, pi,j , is higher
than threshold θ.

In order to obtain P, we use all HAS from the previous step
to calculate the correlation value between sensors i and j:

r̂ =
σ̂hihj

σ̂hi
σ̂hj

, (5)

where σ̂hihj is the covariance; and σ̂hi and σ̂hj are the standard
deviation for sensors i and j respectively.
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The correlation value is calculated between sensor i and
the other sensors using all segments h ∈ Hi. The averaged
correlation over all HAS is then calculated and inserted in
matrix P at row j and column i. The same steps are repeated
for each sensor to complete the pairing matrix.

C. Crosstalk Noise Suppression (Step 3)

All circuits are assumed to be independent in such a way
that the non-correlation evaluation can be done individually
between each sensor for which the pairing matrix, P, detected
crosstalk noise, pi,j > θ. According to the training on a
validation dataset using a grid search technique, crosstalk
noise is detected optimally when pi,j is higher than threshold
θ = 0.2.

First, let us define:

wi = xi − âi,j · xj when i 6= j and pi,j > θ, (6)

where wi is the cleaned signal measurement of sensor i when
the crosstalk generated by the circuit j is subtracted. Here, xi
is the sensor measurement of circuit i affected by crosstalk
noise generated by circuit j; xj is the sensor measurements of
the circuit causing noise; and âi,j corresponds to the estimated
proportion of xj appearing in xi.

Using (5), the correlation value between xj and wi is zero
when the estimated coefficient âi,j = ai,j and the crosstalk
noise from xj is completely subtracted of xi. The objective
is to find âi,j so that the correlation between xj and yi is
null. Using Hj from the HAS detection process (step 1),
the estimated proportion âi,j for one HAS is given by the
following equation:

âi,j =
(Mhj − hjJ)(hiJ−Mhi)T

(Mhj − hjJ)(hjJ−Mhj)T , (7)

where,
hi and hj are segments of sensors measurements i and j
respectively;
J is an all-ones column vector of dimension M × 1;
(·)T denotes the transpose operation.

Equation (7) is used to estimate ai,j , taking the average over
all h ∈ Hj corresponding to all the HAS of the sensor causing
noise.

The estimation of each averaged ai,j is done sequentially
and is calculated following a descending order from the sensor
with the highest power measurement to the sensor with the
lowest power measurement. In this way, sensors with more
noise than real power will be cleaned of their noise first so
that a better estimated real power can be used when identifying
HAS in further steps. Furthermore, outliers, âi,j , outside the
range [0, 1] are removed from averaged calculations. Algo-
rithm 1 summarizes the steps to estimate coefficients of mixing
matrix Â.

D. Sensor Gain Compensation (Step 4)

After completion of step 3, the estimated mixing matrix
Â has been optimized for all i 6= j. However, sensor gains,
diagonal values of Â, are still at the initial value of one. A

Algorithm 1 Crosstalk Gains Estimation Based on Non-
correlation Evaluation

1: Set Â = I
2: for all sensors do
3: ŷ(t) = Â

−1
x(t)

4: Select the sensor with the highest power consumption
5: j = argmaxj ŷ(t)
6: Hj ⇐ Extracted HAS for sensor j
7: P⇐ Creating the pairing matrix
8: for all sensors i 6= j so that pi,j > θ do
9: for all h in Hj do

10: xj = hj
11: wi = hi − âi,j · hj
12: Non-correlation evaluation (7)
13: âi,j ∈

σ̂xjwi

σ̂xj σ̂wi
= 0 s.t. 0 < âi,j < 1

14: end for
15: ai,j = mean(âi,j)
16: Update Â
17: Âi,j ← ai,j
18: end for
19: end for

reliable reference is needed to estimate sensor gains. We opted
for smart meter readings as a reference value for the adaptive
filter in the last step of the proposed solution.

The LMS adaptive filter used in [40] is an iterative algo-
rithm requiring only instantaneous values. The LMS recursive
iteration is given by,

βn = βn−1 + µ · y(n) ·
[
d(n)− yT(n) · βn−1

]
, (8)

where βn is the sensor gain column vector estimated at the
nth iteration; µ is a positive step-size; and y(n) and d(n) are
denoised sensors measurement and smart meter measurement.

All elements of β0 are initialized to one, and we iterate (8)
over all data x(t) available until convergence of each sensor
gain. Then the column vector β is transformed into a diagonal
matrix, and the cross product is performed with Â from step
3, to find the final mixing matrix Â.

Finally, the corrected signal y(t) can be calculated with the
estimated Â and the mixed signals x(t) using (2).

V. CASE STUDY

Two case studies were performed to evaluate the pro-
posed crosstalk noise suppression algorithm, and the sensor
gain compensation of the proposed HES-based SILM system.
The first case study uses the Tracebase dataset to compare
performances of our approach with two BSS algorithms on
three specific configurations. The second case study tests the
proposed approach on our HES dataset created from a family
home containing more sensors.

A. Performance Metrics

Most household electrical appliances have imbalanced
classes, with many more OFF states, preventing the use of the
accuracy metric. In order to evaluate case study performance,
the following metrics from NILM research are used [8]:
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1) F-Measure (Fm): For each sensor in the system, a class
is assigned for all points in time t = 1 to T . To perform the
class assignment, each power measurement is compared to a
threshold; if the power exceeds this threshold, the appliance is
assigned to the class ON, otherwise, the appliance is assigned
to the class OFF. The metric used to evaluate state assignment
performance is given by,

Fm =
2 · PR ·RE
(PR+RE)

, (9)

where PR and RE are precision and recall respectively.
2) Estimation Error (η): To evaluate individual sensor

performance, the estimation error based on the ratio of the
estimated power on the real power is defined as follows:

η =

∣∣∣∣∑T
t=1 ŷi(t)− yi(t)∑T

t=1 yi(t)

∣∣∣∣ · 100%, (10)

where ŷi(t) and yi(t) are the estimated and the real mea-
surement of sensor i at time t, respectively. The estimation
error gives an understanding of the monitoring accuracy per
appliance and is an indicator of individual crosstalk noise
suppression performance.

3) Total Power Estimation Error (ηtot): To assess the total
power estimation error of the whole SILM system, this metric
calculates the total error for all sensors divided by the real
aggregate power. The total power estimation error is given by

ηtot =

∑T
t=1

∑N
i=1

∣∣ŷi(t)− yi(t)∣∣∑T
t=1

∑N
i=1 yi(t)

· 100%. (11)

B. Post-Processing for Comparative BSS Algorithms

One issue in using ICA algorithms to remove crosstalk
noise in HES measurements is that the resulting outputs
of these algorithms return the estimated sources, but scale,
sign, and order are not preserved; but the latter are critically
important for this application. In order to be able to compare
the proposed algorithm with PCA, FastICA and InfoMax, a
post-processing algorithm was used to adjust the estimated
mixing matrix Â.

C. Case Study 1

The first case study was performed to evaluate the pro-
posed crosstalk noise suppression approach and to compare
it with three standard BSS algorithms. Three configurations
were tested with different levels of crosstalk noise using real
appliances’ power consumption signals from the Tracebase
[41] dataset.

1) Procedure: With more than 40 appliances, the public
dataset Tracebase was used to create custom sets of appliance
consumption. Ten typical household appliances were chosen.
In order to evaluate the crosstalk suppression algorithm,
crosstalk noise needed to be generated on each sensor’s
measurements. It was simulated by adding the consumption
measurements of two other appliances. The mixing matrix
was generated randomly, and x(t) was calculated using (1).
Previous experiments have shown that crosstalk gains and

Config. Sensor Gain Range Crosstalk Gain Range
1
2
3

 ai,i ∼ N (1, 0.05)

ai,j ∼ Exp (40)
ai,j ∼ Exp (15)

ai,j ∼ Exp (8)

TABLE I
COEFFICIENT RANGES FOR EACH CONFIGURATION

sensor gains follow an exponential distribution and a nor-
mal distribution, respectively. To reduce bias, one hundred
independent experiments with a random mixing matrix were
performed for each configuration.

Table I shows coefficient ranges for both sensor and
crosstalk gains for three configurations. Configuration 2 cor-
responds to the most realistic scenario as per our previous
experiments performed with HES sensors in our laboratory,
with sensor gains varying ± 15% and crosstalk noise up to
39%.

For each experiment, the four steps of the proposed ap-
proach described in Section IV were performed to estimate
the mixing matrix Â. The aggregate consumption used by
the LMS algorithm was simulated by summing all appliance
measurements and downsampled to 30 minutes. In order to
compare the proposed solution with standard BSS algorithms,
PCA, FastICA and InfoMax were used to estimate the mixing
matrix and remove the crosstalk noise. The same LMS algo-
rithm described in IV-D was used to adjust sensor gains for
these comparative algorithms.

The procedure for each configuration was divided into three
steps, as described below:

1) Generate data for the experiment
a) Randomly select appliances to generate crosstalk noise

to other sensors
b) Randomly generate the mixing matrix A for a specific

configuration
c) Generate mixed data x(t) using (1)

2) Mixing matrix coefficients estimation
a) Estimate crosstalk gains âi,j ∀ i 6= j
b) Estimate sensor gains âi,j ∀ i = j
c) Calculate y(t) with the estimated mixing matrix Â

using (2)
3) Iterate steps 1 and 2 to generate 100 independent

experiments

2) Results and Discussion: Table II shows the averaged
results (Fm, η) for each appliance in the 100 experiments.
The mean and the standard deviation results for the whole
system are in the last two columns. For each metric, the
table shows the noisy signal score, i.e., measurements with the
crosstalk noise, as well as, measurements with the crosstalk
noise removed by the comparative algorithms (PCA; FastICA;
InfoMax) and the proposed solution. The results in Table II
correspond to configuration 2, whereas the results in Fig.
4 correspond to the total power estimation errors for each
configuration.

As shown in Table II, the proposed BSS approach designed
for the sparse mixing matrix was able to reduce the mean
estimation error from 15% to 2% on simulated experiments.
Individually, most of the appliances tested obtained better
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Appliances 1 2 3 4 5 6 7 8 9 10 Mean Std
Noisy 95.3 87.0 94.1 94.6 93.5 88.2 96.3 91.2 91.8 91.4 92.3 3.2
PCA 92.1 88.3 84.2 78.9 82.9 75.1 81.6 78.0 83.4 94.8 83.9 5.2

FastICA 95.9 96.1 97.6 89.4 86.5 95.2 93.2 96.7 91.6 41.7 88.4 3.8
InfoMax 99.0 97.1 98.1 94.0 98.8 98.3 91.1 98.4 97.8 45.5 91.8 2.7
Proposed 99.9 98.3 99.1 99.0 99.6 98.6 98.9 98.6 98.8 98.3 98.9 0.5

Noisy 8.7 30.7 11.8 10.8 12.3 27.2 7.1 18.6 17.4 19.0 16.4 8.2
PCA 10.5 20.8 29.6 29.3 37.9 50.9 29.7 35.0 36.3 6.3 28.6 11.3

FastICA 4.9 7.4 2.5 13.4 25.2 7.9 14.7 3.3 12.8 73.2 16.5 7.2
InfoMax 1.4 5.9 1.9 10.1 1.6 3.4 19.6 3.2 1.8 70.6 11.9 6.0
Proposed 0.2 3.4 1.7 2.0 0.7 2.7 2.3 2.8 2.1 3.3 2.1 1.0

M
et

ri
cs

Fm (%)

η (%)

TABLE II
RESULTS OF THE 100 EXPERIMENTS AVERAGE SCORE FOR 10 APPLIANCES FROM THE Tracebase DATASET OF CONFIGURATION 2.

Fm : HIGHER IS BETTER AND η, ηtot : LOWER IS BETTER
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Fig. 4. Crosstalk noise suppression results for each configuration of Table I
on the Tracebase dataset

noise reduction with the proposed BSS approach than all
comparative algorithms. The crosstalk noise suppression by
FastICA and InfoMax was less efficient for appliances con-
suming less power, e.g., appliance 10. This issue increased
the individual estimation error by four times, on average,
over 100 experiments. Indeed, the diversity of appliances in
buildings is such that power measurements between signals
are imbalanced, and the crosstalk noise is higher than the
real consumption for appliance consuming low power, which
makes it difficult to distinguish noise from the real consump-
tion. The proposed approach avoids this imbalance problem by
removing noise iteratively in descending order. Moreover, all
BSS algorithms had problems with sparse mixing matrices.
In essence, many false positive coefficients appear in the
mixing matrix where there is no crosstalk noise between
signals, generating additional noise in measurements. In the
proposed approach, the pairing matrix step helps in that matter
by identifying crosstalk noise sources before proceeding with
crosstalk gain evaluation. The LMS algorithm converged on
average during the first two weeks of data for a smart meter
sampling period of 30 minutes. However, power activities had
to be present for each sensor to adjust sensor gains adequately.
In some cases, sensors with fewer electrical activities took
longer to converge, but the effect was negligible over the whole
house consumption.

As shown in Fig. 4, the proposed algorithm is only slightly
affected by the level of crosstalk noise. The total power
estimation error is almost constant between all ranges of
crosstalk noise. Since each crosstalk coefficient is analyzed
and optimized separately, the proposed solution is more accu-

rate regardless of the level of crosstalk generated on signals,
while FastICA and InfoMax optimize all coefficients of the
unmixing matrix at the same time. On the other hand, the
residual error of the PCA algorithm is proportional to the
level of crosstalk noise and exhibited the poorest overall
performance.

One issue affecting the accuracy of the estimated crosstalk
gains for our approach occurs when the original signal varies
at the same time as crosstalk noise is present in an HAS.
However, this problem was minimized by using the average
coefficient over all HAS and by reducing the segment length,
M . Furthermore, in selecting a low threshold, θ, the pairing
matrix was maximizing recall, thus detecting all pairs of sen-
sors containing crosstalk noise. Finally, selecting a threshold
δ around 0.3A avoids detection of variations that are too
small, but allows HAS detections of appliances consuming
less power.

D. Case Study 2

The second case study was performed to validate the
proposed approach on our dataset created with our developed
HES installed in the distribution panel of a family house.

1) Procedure: Our proposed HES-based SILM system was
installed in the distribution panel of a family house to measure
the current of each circuit. A total of 39 sensors were deployed
to monitor the consumption of the entire house. A family of
four people was living in this detached home in the region of
Montreal, Canada, during the monitoring period. The period
covered was May to September 2018, with a sampling rate of
1 Hz. Original measurements contain crosstalk noise from the
nearest wires in the distribution panel. Since crosstalk noise
generated by magnetic fields decreases proportionally with
the distance between circuit wires and sensors, the number
of circuits creating crosstalk noise corresponds on average
to five in the HES dataset, which creates a sparse mixing
matrix. The highest crosstalk gain in these measurements
corresponds to 35%; the car charger circuit generating noise
on the dishwasher sensor. A cleaned version of the dataset is
also available in which crosstalk noise was removed manually
to evaluate the performance of the proposed approach. For
this empirical benchmark, sensor gains were calculated during
preliminary tests and during the installation. The aggregate
measurements for sensor gain compensation were then simu-
lated using these preliminary gain values. In order to compare
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ηtot (%)η (%)Fm (%)Model

Noisy 62.6 345.3 55.8
PCA 61.8 102.3 39.3

FastICA 71.8 76.5 68.5
InfoMax 71.3 88.5 70.9
Proposed 87.8 23.2 9.5

TABLE III
CROSSTALK NOISE SUPPRESSION RESULTS ON THE REAL HOME DATASET

the proposed solution, all standard BSS algorithms, PCA,
FastICA and InfoMax, were used to remove crosstalk noise.

2) Results and Discussion: Table III summarizes this
case study’s results of crosstalk suppression on the HES
dataset. The proposed solution shows a significant improve-
ment whereby the F-Measure increased by more than 25%,
and the total power estimation error was reduced from 55%
to 9%. The PCA algorithm performed comparatively better
using the HES dataset than the previous case study, due in
part to more imbalanced appliances. FastICA and InfoMax
improve over PCA, but the performance of the total power
estimation was worse for the cleaned signals than noisy
signals. As in case study 1, the mixing matrices found by
standard BSS algorithms were not sparse and some low power
circuits had a higher estimation error. Our proposed solution
avoids these false positive errors through the pairing matrix
constraint. Some false positive errors were likewise present in
the estimated mixing matrix of the proposed algorithm, but the
gains associated with them were in the range of 0.005, which
represents a negligible impact on performance.

VI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

The HES-based SILM presented in this work is an alter-
native to NILM solutions when the number of appliances in
a system increases. We propose a BSS approach to remove
crosstalk noise in HES measurements, mainly caused by the
high density of wires in the distribution panel. Moreover, a
pairing algorithm is proposed to identify sources of noise
between sensors; it reduces considerably the number of mixing
coefficients to be estimated in the sparse mixing matrix.
Although sensor gains have a much lower influence on cir-
cuit consumption estimation errors, we propose a method to
estimate them by using an LMS algorithm that leverages smart
meter readings with a sampling period of 30 minutes.

The BSS approach proposed in this work could be general-
ized for other domains where there is crosstalk noise, such
as surface electroencephalogram signals in the biomedical
domain and especially when the mixing matrix is sparse. In
future research involving a HES-based SILM system, we plan
to reduce the number of sensors required. By leveraging the
crosstalk noise present in sensor measurements, the power
consumption of neighboring circuits can be monitored. This
BSS problem will be more challenging to solve because the
number of sensors N will be lower than the number of
observations M . However, we will investigate this problem
using underdetermined mixture solutions.
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