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Abstract 

Double-hit hot compression tests were carried on medium-carbon low-alloy steels using Gleeble 

3800® thermomechanical simulator. The experiments were performed at strain rates of 0.25 and 

0.5 s-1 and temperatures of 1150 and 1200 °C with interpass times of 5, 15, and 25s. The onset of 

critical stresses for dynamic transformation (DT) for both first and second hit were detected using 

the double‐differentiation method. It was found that the critical stress for DT increased with a 

decrease in temperature and an increase in strain rate. The presence of dynamically transformed 

ferrite was observed and quantified using electron-backscatter diffraction (EBSD), Kernal Average 

Misorientation (KAM), and grain boundary maps. Then, a thermodynamic analysis was carried 

out using JmatPro software. A method of determining the change in Gibbs energy during DT 

phenomenon is proposed for double hit deformation.  
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1. Introduction 
 

Components made of high strength steels used for critical applications such as turbine shafts and 

gears are manufactured by forging. The manufacturing process starts with an as-cast ingot, which 

is heated in the temperature range well above the Ac3 of the steel. The cast ingot, characterized by 

microstructural and chemical inhomogeneities, is then open die forged through multiple passes to 

give the as-cast ingot a final shape. The ultimate property of the forged ingot is reliant on the 

chronicle of the deformation parameters such as temperature, strain rate, interpass time, stress etc. 

Understanding the evolution of the phases during the high-temperature deformation process is 

essential. During this deformation process, various dynamic and static softening processes occur, 

such as dynamic transformation (DT), dynamic recrystallization (DRX) and static recrystallization 

(during interpass time) [1]. The occurrence of DT was first studied by Yada et al.[2, 3] in the 

1980s. They explored the progress of DT under both laboratory testing conditions and pilot rolling 

mill trials. Later, they were able to follow the phenomenon in real-time when they deformed steel 

samples via torsion testing in an X‐ray diffraction apparatus. Since then, several researches have 

been made on the transformation of DT, both using in-situ and ex-situ techniques [4-8].  

The peak in the flow curve is usually a good indication that a softening process occurred. However, 

it does not provide any evidence about the exact initiations of DT or DRX. The initiation of DT 

and DRX usually occur at specific stress known as the critical stress (σc), and their related strains 

are known as critical strain (εc) [9]. To calculate the critical stress and critical strains, the double 

differentiation method [1] could be applied on the stress-strain curve obtained after deformation. 

This method has been proven to provide data about the initiation of various dynamic metallurgical 

softening phenomena such as twinning, recrystallization, and recovery [10]. Lately, this method 

has been used to identify the onset of dynamic transformation (DT) of austenite to ferrite during 

hot compression and rolling [7, 11-16].  Several researchers have shown that austenite can 

transform into ferrite by deformation at high temperature [1, 15, 16]. In the procedure of double 

differentiation, the stress-strain curve is primarily fitted with a polynomial function, then the strain 

hardening rate (θ) is determined using the relation: 
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where, the stress (σ) and strain (ε) are obtained at a fixed strain rate (ε.). 

The minima were then calculated by taking the derivative of θ, [9, 17]:  
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The minima of the -δθ/δσ versus the applied stress correspond to the onset of the softening 

mechanisms. In an earlier work [11], two softening mechanisms have been recognized during 

deformation of medium carbon low alloy steels at temperatures above the Ae3 (the equilibrium 

transformation temperature between the two-phase austenite and ferrite, and the single-phase 

austenite), which were associated with the occurrence of both dynamic transformation and 

dynamic recrystallization (DRX).  It has also been reported that kinetics of DT is much faster than 

DRX through microstructural analysis [16].  

Most of the previous works have been focused on extensive analysis of critical strains and stresses 

during single hit hot deformation [15, 16, 18-21]. Similar studies on double hit deformation, which 

closely resembles an actual manufacturing setting, are scarce. During double hit hot deformation, 

the first hit induces a pre-strain on the specimen [22]. The pre-strain causes formation of DT ferrite 

together with other metallurgical phenomena such as dynamic recovery and dynamic 

recrystallization. During the interval between passes, the DT ferrite may or may not re-transform 

to austenite due to the possibility of static softening processes. The static softening processes may 

lead to different microstructure as compared to the initial ones. The final microstructure after the 

second hit depends on factors such as deformation, strain rate, pre-strain, and interpass time. Thus, 

it is envisaged that double hit deformation would significantly influence the critical stresses for 

the onset of DT during the second hit and thus would directly impact the final microstructure as 

well. The present study focuses on the detailed explanation of the mechanisms occurring during 

interpass time and its impact on the final microstructure. In addition to that, calculation of the 

Gibbs energy change required for DT during the second hit deformation is complemented with 

microstructural analysis.  



2. Materials and Methods 
 

The experiments involve as-cast medium carbon low alloy steel provided by Finkl Steel-Sorel, 

Quebec, Canada. The composition of the alloy steel is shown in Table 1, along with its equilibrium 

Ae3 temperature. This temperature was calculated using the JMatPro thermodynamic software 

employing General Steel module [23]. The central region of the as-cast ingot with dendritic 

microstructure was selected for the present study, and from there, the cylindrical specimens were 

machined with diameters and heights of 10 mm and 15 mm, respectively. Double hit hot 

compression tests were performed using a Gleeble 3800® thermomechanical simulator following 

the procedures described in ASTM E209. The schematic diagram for double-hit compression tests 

is shown in Fig. 1. Two temperatures (1200 °C, 1150 °C), two strain rates (0.25 s-1 and 0.5 s-1), 

and three interpass times (5, 15 & 25 s) were employed in the experiments.  

 

 

Table 1: Composition of as-cast medium-carbon low-alloy steel (wt. %) 

C Mn Si Mo Cr Other 

Ae3 

Orthoequilibrium 

temperature 

Ae3 

Paraequilibrium 

temperature 

0.35 0.84 0.41 0.44 1.90 Microalloying 769.65 ºC 748 ºC 

 

 

The thermomechanical procedure consisted of heating the sample to 1260 °C at a heating rate of 

2 °C/s and soaking for 5 minutes (300 s) to homogenize the temperature and the microstructure. 

The samples were then cooled to the deformation temperature at a rate of 1 °C/s before being 

compressed to a total true strain of 0.8. The first deformation was applied at a true strain of 0.5 

followed by 5, 15, and 25 s interpass time. The second pass was then applied at a true strain of 0.3 

followed by water quenching. The samples were mechanically polished using conventional 

metallographic preparation techniques and final polished using a Vibromet® polisher. The EBSD 

analysis was performed using a Hitachi SU-70 field emission gun scanning electron microscope 

equipped with a Schottky emitter. Post-processing was done using the HKL Channel 5TM software 

and TSL OIMTM.  



3. Results and Discussions 

3.1 Analysis of stress-strain curves 

Figs. 2a and 2b show the flow curves obtained from the double-hit deformation at temperatures 

of 1200 °C and 1150 °C, strain rates of 0.25 s-1 and 0.5 s-1 and interpass times of 5, 15 and 25s. 

The deformation temperatures are 358-408 °C above the equilibrium Ae3 temperature of the 

present alloy. As expected, the results show that the stress levels increase with an increase in strain 

rate; however, these stresses decrease with increasing deformation temperature. After the first 

deformation, both flow curves show a steady increase in stress and then gradually decrease after a 

peak stress of: i) 57.4 MPa ( 0.25 s-1, 1200 °C), ii) 62.5MPa ( 0.5 s-1, 1200 °C), iii) 73.6 MPa (0.25 

s-1, 1150 °C), and iv) 81.6 MPa (0.5 s-1, 1150 °C).  

During the second deformation, a peak stress drop of approximately 15% (compared to the first 

deformation) can be observed for both deformation conditions. Peak stresses of 53.2 MPa and 57.4 

MPa were detected for strain rates of 0.25 s-1 and 0.5 s-1, respectively, at 1200 °C. On the other 

hand, for tests at 1150 °C, peak stresses of 68.8 MPa and 74.5 MPa were measured for strain rates 

of 0.25 s-1 and 0.5 s-1, respectively. 

It can be observed that the yield stress of the second deformation generally decreases with 

increasing interpass time under a similar deformation temperature and strain rate. During the 

interpass time, various dynamic and static metallurgical phenomena may occur and lead to an 

increase in work hardening in the second deformation [10]. In the present material, dynamic phase 

transformation and recrystallization may occur during strain hardening [24]. Since DRX leads to 

finer grains, the grain boundary area per unit volume increases and accelerates the nucleation rate 

for dynamic softening. Thus, this leads to a reduction in peak stress and strain during the second 

deformation. 

A dedicated MATLAB® script was utilized to assess the occurrence of DRX and DT for the studied 

alloy at all deformation conditions. As mentioned above, this technique has been used by many 

researchers for the analysis of single hit deformation [7, 9, 17, 25, 26], but not for double hit 

conditions.  

Figs. 3a and 3b show the double differentiation curves for the first hit of the deformation schedule 

for two strain rates, i.e., 0.25 s-1 (Fig 3a) and 0.5s-1 (Fig 3b).  The curves display first and second 

minima, which represent the critical stresses at which DT (1st minimum) and DRX (2nd minimum) 



were initiated during deformation, respectively [1, 9]. It can be observed from the double 

differential curves of the first hit deformation that critical stresses required for initiation of DT at 

1200 °C are lower than that of the critical stresses at 1150 °C for both strain rates. These results 

are in accordance to previous research by the present authors that with the increase in the 

temperature, the diffusivity increases, which causes the carbon atoms to go out of austenite much 

faster and in turn transform to ferrite [18]. Moreover, the free energy difference between austenite 

and ferrite increases above the Ae3; however, around midway between the Ae3 and the delta ferrite 

formation temperature, this energy difference gradually decreases [15].  

Since the focus of the present research is to investigate the occurrence of DT during the second 

hit, the DT critical stresses associated with the second hit deformation were calculated. Figs. 4a 

and 4b show the double differentiation curves for deformation temperatures of 1200 °C and 1150 

°C, and interpass times of 5s, 15s, and 25s. Fig. 4a is associated with strain rate of 0.25 s-1 while 

Fig. 4b is related to strain rate of 0.5s-1. It can be observed that as the interpass time increases, the 

critical stresses for the initiation of DT decreases for all temperatures and strain rates. The probable 

reasons for the decrease in the critical stresses, as well as the peak stresses, would be discussed in 

detail in section 3.2. 

The critical stresses during double hit deformation are summarized in Fig. 5. Generally, the critical 

stresses in the second hit are lower than those of the first hit, which are shown in Figs. 5a-d. The 

difference can be associated with the presence of retained stress after the first hit, which provides 

part of the driving force needed to re-initiate DT. Interestingly, the lowest interpass time generates 

the lowest DT critical stress for all the deformation conditions. It can also be observed that for the 

same strain rate (i.e., Fig. 5a and 5c), the critical stresses are lower at a lower temperature. 

Moreover, for the same temperature (i.e., Fig. 5a and 5b), the highest strain rate requires a higher 

amount of stress for DT. Since double differentiation technique involves purely mathematical 

findings, a microstructural analysis was performed to validate the presence of dynamically 

transformed ferrite, as presented below. 

3.2 Microstructural features 
3.2.1 Grain Boundary Maps 
 

Fig. 6 shows the grain boundary distribution map of the specimen after double hit deformation at 

1200 °C and 1150 °C with strain rates of 0.25 s-1 (Fig. 6 (a) & (c)) and 0.5 s-1 (Fig. 6 (b) & (d)), 



respectively for 5s interpass time and Fig. 7 (a-d) for 25 s interpass time for both deformation 

temperatures and strain rates. The employed interpass time is specified in the image. A close 

observation of the microstructures reveals a morphology composed of laths/plates (WF, shown 

with yellow arrows) and few quasi-polygonal grains (QPG, shown with black arrows) in all the 

microstructures.  

The plates observed in the microstructure appear to have Widmanstätten type morphology in the 

plane containing the compression direction, which originates from the interior of the grains. This 

observation is consistent with the results of numerous researchers who have reported the presence 

of Widmanstätten type plates in the microstructure [1, 20, 27]. Based on these studies, they 

attributed the phase transformation to the applied stress, which induces the displacive 

transformation of austenite to Widmanstätten ferrite. More specifically, Ghosh et al. [28] 

performed an atom probe tomography study to confirm such morphology. This morphology might 

be different from the plane normal to the compression direction, which is probably due to variant 

selection in the texture, as a consequence of the applied stress.  

However, the presence of these plates and QPG vary with applied deformation conditions. During 

the deformation at 1200 °C and interpass time of 5 s (Figs. 6 (a) & (b)), the appearance of these 

Widmanstätten-type plates is different for the two strain rates. At a strain rate of 0.25 s-1 (Fig. 6 a), 

it can be seen that the Widmanstätten-type plates nucleate from prior austenite grain boundaries 

and are 45 degrees with reference to the compression direction, whereas, for strain rate of 0.5 s-1 

(Fig. 6 b), the ferrite plates seem to be disintegrated with smaller sizes. This structure may occur 

due to the increase in strain rate, which may lead to the disintegration of plates into grains, as 

reported in the literature [15].  

At a lower temperature, i.e. 1150 °C (Figs. 6 (c) & (d)), the presence of both plates and QPG can 

be seen in the microstructure. Surprisingly, at a strain rate of 0.5 s-1 (Fig. 6 d), the plates are 

observed clearly and not disintegrated, whereas at 0.25 s-1 (Fig. 6 c), there is a dominance of QPG 

with the presence of disintegrated plates. 

With the increase in the interpass time i.e., 25 s (Fig. 7 (a-d)), the microstructure is different from 

the ones with the 5s interpass time at respective deformation temperatures (Figs. 6 (a-d)). At 

deformation temperature of 1200 °C (Fig. 7 (a) & (b)), the microstructure composes of mostly 

QPG with the presence of disintegrated plates while at deformation temperature of 1150 °C (Figs. 

7 (c) & (d)), it is composed of a mixture of disintegrated QPG as well as plates. Increasing the 



interpass time has a significant effect on the microstructure and will be discussed in detail in later 

sections.  EBSD grain boundary distribution maps, reported in Fig. 6 & Fig. 7 show that for all 

deformation conditions, significant low-angle grain boundaries (34.5 to 55.8%) were present in 

the microstructure. This means that the region with LAGBs appears to be not fully recovered after 

the second hit or dislocations were generated during quenching. However, a significant number of 

ferrite grains with no presence of low angle grain boundaries (LAGBs) were observed in the laths 

and plates. This may be due to the fact that these grains were formed from austenite after DT 

initiation.  

3.2.2 Kernal Average Misorientation Method 
 

Grain boundary maps cannot confirm the presence of ferrite only by observation. Other techniques 

like XRD, optical microscopy, or secondary electron imaging are also inefficient to differentiate 

martensite (formed during water quenching) and DT ferrite as they have very little difference in 

the crystal structure (body-centered tetragonal, BCT for martensite) from the ferrite (body-

centered cubic, BCC.  In order to overcome this shortcoming, the present study employed the 

Kernel Average Misorientation (KAM) method. In this approach, internal misorientation between 

grains is used to distinguish the BCT martensite from the BCC by means of EBSD images. Up to 

the third nearest neighbor was considered for calculating KAM values, and a threshold angle of 5° 

was employed.  Using the above criteria, the dynamic recovery process of the two phases was 

studied, and differentiation was successfully made between ferrite and austenite. Since ferrite has 

a higher stacking fault energy (SFE) than austenite, which would make dynamic recovery easier 

when it is further deformed to the final strain level (ε=0.8). On the other hand, martensite laths 

(from prior austenite), which are formed due to shape deformation (displacive transformation), 

generate a higher amount of LAGBs, resulting in higher misorientations within the laths [27]. 

Thus, the area fractions with less than 2° misorientation (i.e., KAM ≤ 2°; green and blue regions) 

were considered as ferrite grains with minimal misorientations in the grains, and more than 2° 

misorientation (i.e., KAM ≥ 2°; yellow and red regions) were considered as martensite laths with 

high misorientations.   

Figs. 8 (a-d) and Fig. 9 (a-d) show the KAM map for the specimen deformed at 5 s and 25 s 

interpass times, respectively. The blue and green regions represent grains with lower 

misorientation (˂2°) and hence are ferrite grains, whereas, yellow and red regions have higher 



misorientations (3°-5°) and are martensite grains. Upon observation and comparing with the grain 

boundary maps, the Widmanstätten type plates, and QPG are all blue or green colored, which 

confirms that these are dynamically transformed ferrite. Using the KAM method, the fraction of 

ferrite i.e., blue and green areas, was determined for all parameters.  

The detailed fraction of ferrite grains can be found in Fig 10. It can be observed that as the strain 

rate is increased from 0.25 to 0.5 s-1, the fraction of ferrite grains decreases at all deformation 

temperature and interpass time. With higher interpass time, the fraction of ferrite grains reduces 

significantly. As expected, the amount of ferrite increases as the strain rate decreases due to larger 

diffusion distances of the alloying elements [12].  

 

3.2.3 Microstructure-Process interactions 
 

The microstructure analysis presented in section 3.2.1 and 3.2.2 has proved the presence of 

dynamically transformed ferrite formation from austenite during the double hit hot compression 

testing. However, it was found that the structure of DT ferrite was different for different testing 

parameters. In some cases, the Widmanstatten ferrite plates were seen, and in others, QPG was 

dominant as also reported by the authors in a previous study after single hit compression [12]. 

However, critical stress for initiation of DT, the ferrite fraction, and disintegration of plates, as 

well as QPG, are differentiators between the two deformation modes, or in other words, it appears 

that the interpass time between the two hits plays an important role in the operating mechanisms. 

  

a. Role of interpass times 

The interpass time plays a critical role in microstructure evolution. During the interpass time, 

various softening mechanisms activate, such as static recrystallization (SRX) [29, 30], 

metadynamic recrystallization (MDRX) [31] and retransformation of DT ferrite to austenite (RT). 

Retransformation back to austenite from DT ferrite has been reported by few researchers [1, 26, 

28, 32]. They have reported that as the interpass time increases, the retransformation increases; 

however, the kinetics of retransformation is slower than forward transformation. For example, in 

one of the researches in X70 steel [33], it was found that after 5s of interpass time, the amount of 

ferrite was reduced by 34.6% to 28%, and after 40s it further reduced to 6.5%. In the present case, 



the maximum interpass time is 25s and it is envisaged that this would initiate the reverse 

transformation from ferrite formed during the first deformation to austenite. 

The effect of carbon diffusion on the reverse transformation must therefore be analyzed. Since 

there is no stress applied during the interpass times, the dominant diffusion mechanism would be 

lattice diffusion. Lattice diffusion coefficient (DL) and diffusion distance (x µm) is calculated using 

the following equation 

                                                          𝐷𝐷𝐿𝐿 = 𝐷𝐷0𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒 �−
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Where, t is time in seconds 

 

Table 2: Material data for carbon in medium carbon low alloy steel. 

Pre-exponential of lattice diffusion for Carbon 𝐷𝐷0𝐿𝐿  �𝑚𝑚
2

𝑠𝑠
� [34] 7.9 × 10−7 

Activation energy of lattice diffusion for Carbon, 𝑄𝑄𝐿𝐿 � 𝐾𝐾𝐾𝐾
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

� [34] 148 

Upon calculating, it was found that the diffusion distance increased with increasing the interpass 

time. It must be noted that, the diffusivity of the carbon atoms remains the same for respective 

deformation temperatures and only diffusion distance changes. The carbon atom diffuses into the 

ferrite grains to form austenite, which hold a higher fraction of carbon due to its crystal structure 

[35]. As the diffusion distance increases with the interpass times, more and more carbon atoms 

diffuse, which results to retransformation of DT ferrite to austenite. In order to validate this lattice 

diffusion analysis, ferrite fraction after the interpass time were calculated and the results are 

presented in Fig.11.  

EBSD KAM maps of the samples were examined for different interpass times and are named as 

break interpass tests. Fig. 12 shows the KAM map of samples deformed at a temperature of 1200 

°C and 1150 °C, strain rate of 0.25 s-1 and 0.5 s-1 till strain of 0.5 and then held at similar 

temperature for 5s, 15s and 25s. The samples were water quenched immediately after the 

respective holding times to preserve the final microstructure and the ferrite fractions were 

calculated for each testing condition. The results reported in Fig. 13 shows that as the interpass 

time increases, the ferrite fraction reduces significantly. The DT ferrite during interpass times must 



have transformed back to austenite, and upon quenching, the austenite transforms to martensite. 

The interpass time also leads to a finer microstructure as observed at 25s. This may be due to static 

or metadynamic recrystallization, where the grains recover and start to grow.  

 

b. Role of second deformation 

 

In addition to the interpass time which plays a significant role in the microstructure and ferrite 

fraction at the final stage, other factors, such as critical stress and strains, also play a significant 

role in the microstructure evolution, as discussed below,  

It was found in the above sections that for all deformation conditions, the critical stresses for 

initiation of DT as well as the peak stresses decreased with increasing interpass times. 

Furthermore, it was found that the ferrite fraction was decreasing with the increase in the interpass 

times. In order to identify the possible operating mechanism, the critical strains corresponding to 

the critical stresses were calculated and the results are shown in Fig. 14. 

The obtained results show clearly that as the interpass time increases, the critical strains for the 

initiation of DT increases significantly as well. For example, in the case of the test at 1200 °C and 

0.25 s-1, the critical strains shows an increase from around 400% when the interpass time increases 

from 5s to 25 s.  

In the case of the lowest interpass time, i.e., 5s, the critical strain is just 0.016 (or total strain of 

0.5016 after the second hit), which gives enough strain energy for the transformation of ferrite 

from austenite. Whereas, in the case of 25s, since the critical strain is 0.109 (or total strain of 0.609 

after the second hit), the transformation to ferrite would occur for the rest of the strain 

(dynamically), which allows less time for transformation as compared to 5s. Moreover, the critical 

strains for DRX is higher in case of 25s (0.23), which causes the delay in the formation of new 

ferrite grains due to nucleation. It is evident from the microstructures of 25s interpass times that 

the new grain nucleation have been observed through a grain boundary bulging mechanism (red 

arrows). 

This adds to the interpass effect where, as the time increases, the retransformation to austenite 

increases. Since the austenite fraction is higher and the critical strain is higher as well, the forward 

transformation would be less since there will not be enough strain energy.   

 



3.3 Thermodynamic analysis 
 

The deformation is known to provide an additional driving force to transform austenite into ferrite 

above the Ae3 temperature [32]. This added energy increases the austenite free energy, which leads 

to less stable austenite. Thus, it is essential to understand the equilibrium behavior of the material. 

The dependence of equilibrium phase fractions on temperature is displayed in Fig. 15a. The 

presence of each phases in the equilibrium condition is highly dependent on temperature. In the 

present study, the main region of interest is between 700 °C to 800 °C, as shown in Fig. 15b. 

Above 792 °C, the phase is completely austenite. On the other hand, below 792 °C, ferrite starts 

to form. It is widely known that the driving force to transform an austenite phase into ferrite under 

static conditions is the Gibbs energy difference (ΔGα-γ) between the phases. This approach will 

also give an idea regarding the phase fraction at a specific temperature, which is employed to 

develop equilibrium phase diagrams.   

The phase fraction of DT ferrite after double-hit tests, shown in Fig. 10, was employed to 

determine the free energy difference between ferrite and austenite (ΔGα-γ). For example, the 

presence of 70% DT ferrite (1200 °C, strain rate of 0.25 s-1 and interpass time of 5s), assuming 

that this fraction was entirely formed at deformation temperature, means that the free energy state 

is equivalent to that of the equilibrium state at 750 °C (see Fig. 15b). Thus, in this example, the 

difference between the free energy of austenite at deformation temperature and at 750 °C is the 

driving force applied to austenite to initiate the phase transformation. The illustration of this 

approach is presented in Fig. 16. Here the values above the zero line mean that ferrite is not stable. 

The difference in ΔGα-γ between the stable and unstable regions of ferrite can provide a quantitative 

amount of the energy supplied to transform a fraction of austenite into ferrite. Note that this method 

assumes a diffusional transformation mechanism. Assuming that the mechanism of DT is 

diffusional, Table 3 provides values of ΔG added to the austenite during deformation, referred 

here as the driving force. In all the experiments, the driving force ranges from 260 to 300 J/mol. 

Higher strain rates provide a lower fraction of ferrite, which can be an indication that diffusion 

plays a role in DT. Note that higher strain rates offer less time to allow for phase transformation 

during deformation. The proposed method permits the estimation of the free energy of austenite 

by the end of thermomechanical processing.    

 



Table 3. Free energy added to the austenite phase based on the volume fraction of ferrite.  

Deformation 

Temperature 

Strain 

Rate 

Interpass 

Time 

ΔGα-γ at 

Def. 

Temp 

Percentage of 

DT ferrite 

ΔGα-γ 

based on 

% ferrite 

ΔG added 

to 

austenite 

1200 °C 0.25 s-1 5s 225.5 J/mol 70% -77.2 J/mol 302.7 J/mol 

1200 °C 0.25 s-1 15s 225.5 J/mol 34% -28.7 J/mol 254.2 J/mol 

1200 °C 0.25 s-1 25s 225.5 J/mol 21% -24.2 J/mol 249.7 J/mol 

1200 °C 0.50 s-1 5s 225.5 J/mol 44% -40.1 J/mol 265.6 J/mol 

1200 °C 0.50 s-1 15s 225.5 J/mol 39% -33.9 J/mol 259.4 J/mol 

1200 °C 0.50 s-1 25s 225.5 J/mol 34% -28.7 J/mol 254.2 J/mol 

1150°C 0.25 s-1 5s 235.4 J/mol 62% -64.3 J/mol 299.7 J/mol 

1150°C 0.25 s-1 15s 235.4 J/mol 31% -26.4 J/mol 261.8 J/mol 

1150°C 0.25 s-1 25s 235.4 J/mol 27% -22.01 J/mol 257.4 J/mol 

1150°C 0.50 s-1 5s 235.4 J/mol 42% -37.8 J/mol 273.2 J/mol 

1150°C 0.50 s-1 15s 235.4 J/mol 37% -30.9 J/mol 266.3 J/mol 

1150°C 0.50 s-1 25s 235.4 J/mol 31% -26.4 J/mol 261.8 J/mol 

  

Conclusions 

The occurrence of dynamic transformation of austenite to ferrite during double hit hot deformation 
tests in a medium-carbon low-alloy steel and the influence of interpass time on the occurrence of 
DT were investigated. Based on the analysis of the flow curves by means of double differentiation 
method and microstructural analysis using electron microscopy, it was proved that DT takes place 
after the 2nd hit. Fraction of ferrite was higher at higher temperature, lower strain rate, and with 
least interpass time.  

Using KAM technique, it was determined that with the increase in interpass time, the fraction of 
ferrite was significantly reduced. It was observed that low strain rates resulted in the dominance 
of DT ferrite with Widmanstätten morphology, while at a higher strain rate, quasi-polygonal 
morphology was found. 

Analysis of carbon diffusion using lattice diffusion showed higher diffusion distances at higher 
interpass times. On this basis, correlations between the ferrite fraction, the diffusion distance of 
carbon atoms was established. With the increase in carbon diffusion, the ferrite retransformed back 
to austenite, which resulted in delayed initiation of DT during the second hit thus, resulting in 
lower ferrite fraction at the final stage.  



A better understanding of the thermodynamics of DT ferrite formation was done by using the 
measured volume fraction of DT ferrite formed to measure the change of free energy of austenite.  
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Figure 1. Schematic diagram of thermomechanical schedule for double hit hot compression 

tests of as-cast medium-carbon low-alloy steel. 
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Figure 2. Stress-strain curves of as-cast medium-carbon low-alloy steel during double hit hot 

isothermal compression at strain rates of at deformation temperatures of 1200 °C and 1150 °C 

at strain rates of (a) 0.25 s-1 and (b) 0.5 s-1. 
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(a) (b) 

Figure 3. Critical stresses and strains for DT and DRX for the first hit. The experiment was 

carried out at 1200 °C and 1150 °C and strain rate of (a) 0.25 s-1 and (b) 0.5 s-1. 

 

  
(a) (b) 

Figure 4. Critical stresses and strains for DT and DRX for the second hit with interpass times 

of 5, 15 and 25s. The experiment was carried out at 1200 °C and 1150 °C and strain rate of (a) 

0.25 s-1 and (b) 0.5 s-1. 
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(c) (d) 

Figure 5. Critical stresses for initiation of dynamic transformation (DT) for first and second hit 
hot deformation tests determined over the temperature of 1150 °C to 1200 °C and strain rates 

of 0.25 s-1 and 0.5 s-1. 
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(c) (d) 

Figure 6. EBSD grain boundary map of medium-carbon low-alloy steel deformed by double 
hit deformation at (a) 1200°C-0.25s-1-5s, (b) 1200°C-0.5s-1-5s , 

(c) 1150 °C -0.25 s-1-5s and (d) 1150 °C -0.5 s-1-5s . Black lines denote HAGB and red lines 
denote LAGB. 
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Figure 7. EBSD grain boundary map of medium-carbon low-alloy steel deformed by double 

hit deformation at (a) 1200°C-0.25s-1-25s, (b) 1200°C-0.5s-1-25s , 

(c) 1150 °C -0.25 s-1-25s and (d) 1150 °C -0.5 s-1-25s . Black lines denote HAGB and red lines 

denote LAGB. 
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Figure 8. EBSD Kernal Average Map (KAM) of medium-carbon low-alloy steel deformed by 

double hit hot deformation at (a)  1200 °C-0.25s-1-5s , (b) 1200 °C-0.5 s-1-5s, (c)  1150 °C-

0.25 s-1-5s and (d) 1150 °C-0.5 s-1-5s. Black lines denote HAGB. 
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Figure 9. EBSD Kernal Average Map (KAM) of medium-carbon low-alloy steel deformed by 

double hit hot deformation at (a)  1200 °C-0.25s-1-25s , (b) 1200 °C-0.5 s-1-25s, (c)  1150 °C-

0.25 s-1-25s and (d) 1150 °C-0.5 s-1-25s. Black lines denote HAGB. 
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Figure 10. Graph of variation of ferrite fraction (KAM ˂2º) vs. interpass time. The graph 

reveals the effect of interpass time on ferrite fraction. 

 

 
Figure 11. The variation of diffusion distance, x (µm) due to lattice diffusion coefficient vs. 

interpass time. 

 

 



  
 

(a)  (b)  

Figure 12. EBSD Kernal Average Map (KAM) of medium-carbon low-alloy steel deformed by 

double hit hot deformation after break interpass time of (a) 5s and (b) 25s. Black lines denote 

HAGB. 

 

 

 

 
Figure 13.  Graph of variation of ferrite fraction (KAM ˂2º) vs. break interpass time. 

The graph reveals the effect of interpass time on ferrite fraction at strain rate of 0.25s-1. 
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Figure 14. Variation of critical strain vs. pass number i.e. first hit (1st pass) and second hit  

( 2nd pass). 
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Figure 15. (a) Dependence of equilibrium phase fraction w.r.t temperature and (b) region of 

start of austenite and ferrite phase 

 

 
Figure 16. The difference between the free energy of austenite at deformation temperature and 

at 750 °C is the driving force applied to austenite to initiate the phase transformation. 
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