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Sliding Mode Control with Model-Based Switching
Functions applied on a 7-DOF Exoskeleton Arm
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Abstract—This paper features a novel sliding mode controller
for robotic arms using nonlinear model-based switching func-
tions. The new controller is experimentally validated on a 7-DOF
exoskeleton arm used for upper-limb rehabilitation applications.
The proposed approach features a novel concept using model-
based switching functions in the sliding mode controller, which
leads to considerable simplifications on the torque control inputs.
Compared to conventional linear switching functions, model-
based switching functions show substantial control performance
improvements on the torque inputs, such as transient constraints
reduction and enhanced robustness, while maintaining a very
good tracking performance. Moreover, model-based switching
functions design ensures a complete decoupling of chattering
effect between joint axes. Furthermore, this approach can be
combined with existing chattering reduction techniques to ensure
proper control of chattering levels on the torque inputs. These
advantages make the practical implementation of the model-
based switching functions approach particularly desirable for
wearable robotics, where smooth movements and high accuracy
are important requirements for patients’ comfort and security.

Index Terms—Sliding Mode Control, Exoskeleton, upper-limb,
Robot, Model-Based Switching Functions, Chattering, Robust
Control.

I. INTRODUCTION

HE last decade has known a tremendous growth and di-

versification in robotics systems, which has been mainly
supported by recent advances, accessibility and affordability
of robotics technology. CPU computing power is increasing,
sensors are getting smaller and cheaper, and robotic applica-
tions programming is becoming easier and more accessible.
By the end of 2025, the global robotics market is expected
to reach 87 billion US dollars [1]. The commercial robotics
market, including services and healthcare applications, will be
valued by then at approximately 23 billion dollars, in which
biomedical robotics will take an important part.

Within the biomedical robotics segment, the wearable
robotics market, and more specifically exoskeleton devices
market, is expected to undergo a steady growth during the next
decade. In 2019, the global exoskeleton market was valued
at 626.3 million US dollars, in which healthcare exoskeletons
took the largest share [2]. This valuation had almost quintupled
from 2017 [3]. This is therefore triggering extensive research
for exoskeleton design optimization and control.

Upper-limb exoskeletons are a very popular type of ex-
oskeletons that are widely studied in literature. They are
mainly used for upper-limb sports injuries or to treat patients
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that have undergone stroke incidents resulting in upper-limb
impairments. Scientific literature presents various upper-limb
exoskeleton structures, control strategies and technologies in-
tegration. The authors in [4] have designed a cable-actuated
exoskeleton arm. In [5], pneumatic actuators are used for the
upper-limb exoskeleton structure to emulate the mechanical
and dynamic structure of human upper-limb muscles. Recent
advances in virtual reality (VR) and augmented reality (AR)
also allow for an effective integration of these technologies for
human-in-the-loop exoskeleton controllers [6]. Haptic feed-
back and dynamic admittance control [7] are also control
strategies that give patients realistic interactions and contact
sensations and need to follow specific mechanical structures
requirements [8]. Biological signals such as measured Elec-
tromyogram (EMG) signals can be used as well to control
actuator movements of the exoskeleton arm [9].

Although simple linear control strategies such as PIDs
can be used for upper limb exoskeleton control [10], they
lack overall robustness in practical implementations [11]. This
paper proposes a robust nonlinear control strategy study on an
experimental upper-limb 7-DOF exoskeleton prototype named
Motion Assistive Robotic-Exoskeleton for Superior Extremity
(ETS-MARSE) [12]-[15]. ETS-MARSE has been designed to
provide effective rehabilitation therapy for patients that have
suffered upper-limb impairment and is currently being used
for this purpose. ETS-MARSE comprises a shoulder motion
support part, an elbow and forearm motion support part, and
a wrist motion support part. All these parts are directly driven
by electrical actuators and rigid gearing systems.

The nonlinear control strategy of ETS-MARSE presented
in this paper is based on the sliding mode control approach,
which has been widely used for controlling nonlinear systems.
The inherent robustness properties of sliding mode control
remove the need of adding adaptive algorithms to the control
loop [16]. Sliding mode control can be applied to a wide range
of dynamic SISO or MIMO systems and has been recently
applied on numerous robotic and mechatronic systems [17]-
[19]. Sliding mode control can also be combined with other
nonlinear control techniques for robotic arms control [11].

The main downside of conventional sliding mode control
is the chattering phenomenon existing on the control input
signals. This chattering effect is due to a discontinuous term
used in the construction of the control law input. Numerous
approaches have been proposed to address this problem. The
boundary layer approach [16] smoothens the discontinuous
term by replacing the signum function with a saturation func-
tion. [20], [21] and more recently [22] have explored nonlinear
reaching laws that reduce the discontinuous gain when the
system approaches the sliding surface. The authors in [23]
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have used higher-order sliding mode (HOSM) to eliminate
chattering. This approach requires however the implementation
of higher order observers in its traditional implementation.
Several authors [24]-[26] have explored a particular case of
HOSM, namely second-order sliding mode. [27] proposed a
third order sliding mode control. More recently, a variant
of HOSM, the super-twisting algorithm, has been proposed
by [28] and studied further by [29] and [30].

Conventional sliding mode control forces the system’s
closed loop dynamics to vary on a linear switching surface that
guarantees the convergence of the tracking error to 0. Some
developments can be found in literature in which nonlinear
switching functions such as Terminal Sliding Mode (TSM)
control [31] are used mainly to improve the dynamic perfor-
mance of the tracking error. This paper introduces therefore
a novel concept in sliding mode control applied to robotic
systems, whereby traditional linear switching functions are re-
placed by nonlinear model-based switching functions. Model-
based switching functions substantially simplify the expression
of the torque control inputs, while ensuring trajectory tracking
asymptotic convergence on the switching surface. This leads
to transient constraints reduction on the control input, as well
as a complete chattering decoupling on all joint axes. This
improvement prevents against premature failures of actuating
components in the system, and avoids unaccounted for fast
dynamics behaviour in the closed-loop system. Experimental
results on ETS-MARSE show that the proposed approach
leads to an improved tracking performance with lower torque
control inputs variance compared to conventional sliding mode
approach. The proposed approach can furthermore be com-
bined with known chattering reduction techniques and optimal
control strategies such as Model Predictive Control (MPC) for
practical implementation [32] and [11].

To the best knowledge of the authors, the original contribu-
tions of this paper are summarized into the following points:

1) A novel approach for designing nonlinear switching
functions based on any robotic structure model and
focuses on the design of trajectory tracking switching
functions. This ensures considerable simplifications on
the torques control law, while providing asymptotic
stability of the state error. These simplifications lead to
a linear relationship of the torque inputs with regards to
the joints errors and error rates. This approach reduces
control inputs activity while keeping excellent tracking
performance and robustness, as shown in the experimen-
tal results. Moreover, the proposed approach ensures a
complete decoupling of the chattering on all joint axes,
which represents an important advantage compared to
typical sliding mode control.

2) A novel general expression of a relationship on the
gravity term of the robot’s dynamic model ( (12), (33)).
This relationship leads to the formulation of a stability
criterion on the controller’s parameters. This relationship
is also useful into extending the validation of the robot’s
dynamic model to the gravity term.

The paper is structured as follows: In section II the ETS-
MARSE Exoskeleton structure, kinematic and inertial param-
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Fig. 1. ETS-MARSE Structure and Reference Frames Assignation

eters are presented. In section III, conventional sliding mode
control is applied on robotic systems and the problem state-
ment is formulated. Section IV details model-based switching
functions design for both the set point and the trajectory
tracking problems and highlights the contributions of the
proposed approach. Section V describes the experimental setup
of ETS-MARSE and presents real-time results of the proposed
approach. Section VI concludes the paper.

II. ETS-MARSE 7-DOF EXOSKELETON
CHARACTERIZATION

ETS-MARSE is a redundant 7-DOF robot prototype de-
signed to ease upper-limb movement of physically disabled
individuals with impaired upper-limb function. ETS-MARSE
could be used for rehabilitation therapies of patients who have
experienced sports injuries or stroke incidents that left their
upper-limbs impaired. Fig. 1 shows the 7 actuation joints with
the joint axes assignation following the modified Denavit-
Hartenberg (DH) convention [33]. The correspondent modified
DH parameters can be derived as shown in Table I below. The
design of ETS-MARSE emulates the anatomy of the human’s
upper-limb with the known 7 degrees of movement, with the
objective of providing the user a representative and ergonomic
experience during therapy sessions.

As depicted in Fig. 1, the shoulder motion consists of three
joints, the elbow motion comprises one joint, and finally the
wrist motion consists of three joints.

TABLE I
MoDIFIED DH PARAMETERS OF ETS-MARSE

Joint (i) «a;—1 (rad) a;j—1 (m) d; (M) 0; (rad)
1 0 0 ds 01
2 -m/2 0 0 02
3 /2 0 de 03
4 -m/2 0 0 04
5 w/2 0 dw (5
6 -m/2 0 0 0 — /2
7 -m/2 0 0 07
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TABLE 11
PHYSICAL WORKSPACE LIMITS OF ETS-MARSE

Joint (7) Motion Workspace
1 Shoulder joint horizontal flexion/extension 0°/140°
2 Shoulder joint vertical flexion/extension 140°/0°
3 Shoulder joint internal/external rotation —85°/75°
4 Elbow joint flexion/extension 120°/0°
5 Forearm joint pronation/supination —85°/85°
6 Wrist joint ulnar/radial deviation —30°/20°
7 Wrist joint flexion/extension —50°/60°

TABLE III
INERTIAL PARAMETERS OF ETS-MARSE

Joint (i) Mass (kg) Center of mass (m) Link length (m)
1 3.475 0.0984 0.145
2 3.737 0.1959 0
3 0 0 0.25
4 2.066 0.163 0
5 0 0 0.267
6 0.779 0.121 0
7 0.496 0.0622 0

Table II characterizes the total workspace of ETS-MARSE
by detailing the motion intervals of each joint. ETS-MARSE
has a relatively small footprint structure and a remarkably
high-power density with regards to weight, which considerably
eases its installation, handling and operation. The measured
weight and inertial parameters of ETS-MARSE are displayed
in Table III. ETS-MARSE can operate in passive motion
mode (supports entirely the subject’s upper-limb motion) and
in active motion mode (uses force sensors [13], [15], or
EMG [14] feedback signals to accompany and assist the
subject’s upper-limb motion).

III. NONLINEAR CONTROL DESIGN FOR ETS-MARSE

The control design for ETS-MARSE is based on the sliding
mode control approach which forces the dynamics of the
closed-loop system to remain or “slide” on a linear surface
S = 0. Fig. 2 depicts the process in the phase plane for the
case of a two-dimensional state vector system. The sliding
mode control process includes two phases. The first phase, also
referred to as the reaching phase, is ensured by a discontinuous
control term (ug;s.) that allows the state error to reach the
sliding surface. The second phase, or sliding phase, is ensured
by a continuous equivalent term (u.,) and keeps the error
dynamics on the sliding surface and ultimately leads the error
vector towards to the zero-equilibrium point [22].

A. Conventional Sliding Mode Control Applied to Robotic
Systems

The general free dynamics of a multi-joint friction less robot
without external constraints follows the nonlinear second-order
differential equation in the joint angle space of the robot [33]:

7= M(0)0 + Vi (0,0)0 + G(9) (1)

S E;

(E:(0), E:(0))
e

Udisc

Si=NE;+E =0

Fig. 2. Asymptotic Convergence on a linear sliding surface depicted in the
phase plane

where 7 € R" is the torque control input vector, § € R" is the
robot joint angles and/or displacements vector, M (0) € R™*"
is the inertia matrix, and is positive definite, V,, (6, 9) € Rxn
is the centrifugal and Coriolis matrix and G(0) € R" is the
gravity term vector.

With conventional sliding mode control associated with
second-order MIMO systems, a typical first order linear
switching function vector is chosen in terms of the tracking
error and its time derivative:

S =AE+E, A=diag(\i), \i >0 2)

where ¥ = 6 — 0p is the state tracking error vector
defined as the difference between the measured joint an-
gles/displacements and reference joint angles/displacements
vector. The torque control law is then designed to force the
tracking error vector E' to reach and stay on the surface S = 0.
As per (2), this leads the error vector to reach the zero-
equilibrium point following first order convergence dynamics.
The convergence rate of each differential equation is controlled
by the values of \;. To ensure S = 0 is reached, the control
law is designed to practically force the following relationship,
often referred to as reaching law:

S = —Ksign(S), K = diag(k;), k; > 0 3)

where sign(S) = [sign(S1),- -, sign(S,)]" with sign(S;)

for i =1,---,n is defined as follows:
1, if S;>0
sign(S;) =< -1, if S; <0 )
0, if S;=0

Equation (3) allows the error state vector to reach the surface
S =0 in a finite time that is dependent upon the values of k;.
Substituting (1) and the time derivative of (2) in (3) gives the
following torque vector control law:

7 =Vn(0,0)0 + G(0) — M(O)(AE — 05) — M(0)K sign(S)

Ueq Udisc
&)
Control law (5) is composed of the two terms .y and ugisc
depicted in Fig. 2.

B. Problem Statement

From (5), the expression of u., and ugisc is complex
and highly nonlinear. This complexity leads to transient and
steady-state constraints on the torque control inputs. 1., con-
tains the robot’s dynamic matrices for model compensation.
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Fig. 3. Asymptotic convergence with model-based switching functions in the
phase plane

For fast trajectory tracking applications, this implies higher
dynamic constraints on the global torque control law. Analog
or digital noise from sensing systems are also amplified
through these nonlinear matrices. On the other hand, the
discontinuous term ug;s. includes the robot’s inertia matrix
that multiplies the signum term sign(S). In the general case,
M(6) is a non-constant and non-diagonal positive definite
matrix that leads to a coupling effect between torque input
signals when a chattering condition exists on one or more axes.
Moreover, the inertia matrix has a direct modulating impact on
the chattering amplitudes on the torque input signals. Control
law (5) can be simplified by transferring model-based terms
from the equivalent torque model-compensation term ., into
the switching functions inside the discontinuous term wg;sc-
The resultant switching functions become nonlinear, model-
dependent and coupled differential functions. Fig. 3 depicts
such nonlinear switching functions in the phase plane.

IV. MODEL-BASED SWITCHING FUNCTIONS DESIGN
APPLIED TO ROBOTIC MANIPULATORS

This section details the design of model-based switching
functions for any robot arm, and can be generalized to any
second order mechanical system which dynamic differential
equations can be formalized into relationship (1). The cor-
responding sliding surfaces are proved to be asymptotically
stable, and the torque control law is shown to have a much
simpler structure compared to (5). This approach is first
introduced for a setpoint convergence problem, and its main
results are summarily covered in sub-section A below. This
sets the framework basis for the generalized tracking error
convergence problem covered in sub-section B.

A. Model-Based Switching Functions Design for the Zero
Setpoint Convergence Problem

For zero setpoint convergence using sliding mode control,
consider the following switching function [34]:

S(0,0) =M (0)0 +T0 + = /t Odt + /t (G(0) — G(0)) dt

t
—/ (a(a,é) +Vm(9,é)) ddt
t
o (6)
where o(6,0) is a skew-symmetric matrix binding matrix
M(6) and V,,,(0,0) into the following well-known relation-
ship [35]:

o(6,6) = M(6) — 2V,,(6,6) (7)

I" and = are symmetrical positive definite constant matrices
chosen to achieve the required dynamics performance when
the system reaches the sliding surface S = 0. Note from (6)
that S(6,6) has integral terms that can directly place the
system on the sliding surface with adequate choice of initial
conditions of the integrators. The time derivative of S(6,6)
can be deduced from (6):

S(0,0) =M (0)0 + M(0)6 + T8 + =6 + G(9) — G(0)
- (U(a, 6) + Vi (0, 9’)) 6 ®)
Using (7) in (8) gives the following:
S(0,0) = M(0)0+V,(0,0)0 +T6 +260 + G(0) — G(0) (9)
Using (1) in (9):
5(0,6) = +T60+ =60 — G(0) (10)

Therefore from (10) the torque control law that ensures the
reaching law (3) is:

7= -0 — 20+ G(0) — Ksign(S(6,0)) (11)

Ueq Udisc

Remark 1: Compared to the torque control law (5) given by
conventional sliding mode control, (11) shows a much simpler
torque control input structure with simplified expressions ueq
and ug;s.. Control law (11) shows moreover the torque inputs
are linear in terms of joint angles and rates with a decoupling
of the chattering effect on the axes, provided that K is chosen
to be a diagonal matrix.

The next step is to prove that the sliding surface S(6,0) = 0
ensures asymptotic convergence of the joint angles towards the
zero-equilibrium point. This is shown in proposition 1 below
and uses the following lemma [34].

Lemma 1: The difference G(0) — G(0) can be written as:

G(6) — G(0) = —T(6)0 (12)
where U () is a symmetric matrix defined as follows:
1
V() = —/ Ja(h.0)dh (13)
0

where J is the square Jacobian of GG defined as follows:
0G;
09,
Proof: Using the mean value theorem applied to differen-
tiable vector functions, the following holds [36]:

G(0) — G(0) = ( /O 1 JG(h.a)dh> 0

where Jg is the square Jacobian of G defined by (14).
Using the fact that G is derived from a potential energy U,
namely:

Ja = [ (14)

5)

oU
G, = — 16
a9, (16)
Then the Jacobian matrix can be written as:
o 0
Jag=|=— U 17
“ [aej 90; ] {17
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Under the assumption that the second partial derivatives of U
are continuous, then Schwarz’ theorem yields the following:

g 9 _ . 0 0
00; 00, 00, 00,
Therefore Jg is symmetric.

Noting U (0) = — fol Ja(h.0)dh, U (0) is also symmetric
as it is the integral of a symmetric matrix, which completes
the proof of Lemmal. Note that since ¥ () is symmetric, it
is diagonalizable, and all its eigenvalues are real.

Proposition 1: [34], the sliding surface S(6, 0) = 0, where
5(0,6) is given by (6), ensures the asymptotic stability of
0 to O provided that the eigenvalues of matrix = verify the
following constraint:

U (18)

Mlnl(E’ngE) > Maa:i(Eigi\Ilg(G)) (19)

Proof: Relationship (19) implies that the difference =
U (0) is positive definite. When the sliding surface S(6,0) =
0 is reached, (11) becomes:

T =—I0—260+ G(0)

(20)

Consider now the following Lyapunov candidate function:

L(6,6) = %éTM(é))é + P(0) — P(0) 21)
with P a scalar function defined as [37]:
1
P)=U(®H) + ieTaa - 67G(0) (22)

is the potential energy term from which is derived

U
G(0). Differentiating P(6) with respect to 6 and noting that
ou (6)

= G(6) [35], then using Lemma 1, the following
relation can be obtained:

OP(6
% =G0)+Z20-G0)=(E—-Ts(9))46 (23)
Since = — U(0) is positive definite, then 9P(®) = 0 only

for # = 0, and therefore P(¢) is absolute minimum for
6 = 0 [37], which implies P(f) — P(0) > 0 for § # 0.
Thus, from (21) it can be deduced that L (0, 9) is a Lyapunov
function. Differentiating L(6,6) with respect to time gives:

L(6,6) = éTM(9)9'+%QTM(Q)M@TG(@)+9'T39—9TG(0)

The above equation can also be written as: e
L(6,6) = 677 + 6720 — 67 G(0) (25)

Using relationship (20), (25) simplifies into:
L(6,6) = —0"T0 (26)

Therefore L(F),é) is negative semi-definite. Applying Bar-
balat’s lemma [16], @ converges to 0. Using (1) and (20) it
comes that:

20+ (G(6) — G(0) = (- UG(0) 0 >0 @7)

Since & — () is positive definite, this implies that 6
converges to 0, which completes the proof of Proposition 1.

Remark 2: Note that one can choose to compensate the
gravity term in the torque control law rather than in the switch-
ing functions. In this case, constraint (19) is not necessary
anymore, and the switching function (6) becomes:

S(0,0) = M(0)0 +T6 += /t odt — /t (0(9, 0) + Vm(e,é)) fdt

(28)
However, the torque control law becomes:

r=-T6—20+ G(0) — Ksign(S(0, 9)) 29)

B. Switching Functions Design for the Trajectory Tracking
Problem

Trajectory tracking development in the robot’s joint space is
a generalization of the above set point development whereby
model-based switching functions are designed such that the
error £ = 6 — 0 asymptotically converges to 0. Consider
the following model-based sliding function for the trajectory
tracking problem:

Y =5(0,0) — S(0r,0r)

Where S is defined by (6).

Remark 3: Note that the design of switching function X
defined by (30) is not equivalent to replacing ¢ with the
tracking error £ in (6) and forming S(E,E), since S is a
nonlinear function. This specific choice of ¥ ensures similar
levels of simplifications of the torques control inputs as for the
set-point tracking problem, and therefore is completely novel
and remains different from the set-point convergence problem
in [34].

It can be shown that the torque control law that allows the
system to reach > = 0 is given by:

(30)

T =1r — TE — ZE — Ksign(%) (31)
_— ——
Ueq Udisc
where
TR :M(HR)éR+Vm(9R,éR)éR—‘rG(@R) (32)

Note that 75 is exclusively composed of constructed reference
signals and doesn’t include any measured or estimated signal.
Fig. 4 below shows the block diagram of the proposed gen-
eral control algorithm with model-based switching functions
design. This block diagram shows that the control strategy
simplifies essentially to a proportional and derivative controller
for the feedback loop, with a feedforward term 7y solely
dependent upon the reference, and the robust switching signum
term that ensures the reaching condition on the model-based
switching surfaces.

Remark 4: The torque control law (31) shows again that the
torque inputs become linear in terms of the error vector and its
time derivative when using model-based switching functions.
Note again from (31) the discontinuity decoupling between
joint axes. It remains to prove that ¥ = 0 ensures asymptotic
convergence of the error vector E towards 0. Similarly to the
set point approach, consider the following lemma.

Lemma 2: The difference G(6) — G(6r) can be written as:

G(0) — G(Or) = —¥c(0,0r)(0 — Or) (33)
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Where U(0,0r) is a symmetric matrix defined as follows:

1
Ve (0,05) = / Jo(0r + 10— 0p))dh  (34)
0

where Jg is the same square Jacobian of G defined by (14).
The proof of Lemma 2 is closely based on that of Lemma 1.

Proposition 2: The sliding surface > = 0 where X is
given by (30), ensures the asymptotic convergence of 6 to Op
provided that the eigenvalues of matrix = verify the following

constraint:
Mini(EigiE) > Maxi(Eigi\Ilg(ﬁ, 93)) 35)

Proof: Relationship (35) implies that the difference = —
Ue(0,0R) is positive definite. When X = 0, (31) leads to the
following:

r=1r—TE—-ZE (36)

Consider now the following Lyapunov-like candidate function:
1. . 1. .
L = Z6TM(6)0 + P(6) - 5¢9,;,,TJ\4((9R)9R —P(Or) (7)

Where similarly to Proposition 1, P is a scalar function defined
as follows:

1 o . T
P(6) =U(0) + 56720 —/ (TR —Dhg + EGR) 9 (38)
0

Note that (22) becomes a particular case of (38) for 6z = 0.
Differentiating P(6) in terms of 6 gives:

oP(0) B - —
Fr=M(0r)0r + Vin(0r,0r)0r — TR
Therefore
OP(0 _
% = (E—-Vg(0,0r))E — Fr (40)

Since E — ¥(0,60R) is positive definite, it can be shown
that P has an absolute minimum P(6,,;,r), function of the

OP(0
reference trajectory and given by 7()

0 = 0. 0,,,;nr verifies

the following:
Omink = Or + (2= ¥G(0,0r)) ' Fr (41)

Therefore P(0) > P(Ominr) V0. Thus from (37), the
Lyapunov-like function L has a lower bound (not necessarily
positive) given by:

1. T .
L > P(Omingr) — 5QRM(GR)GR — P(0R) (42)
Feedforward
—————{ M8+ V.0 (00, 00)6 + 60—
I,Prqp,o,r:ionna,I,and,de:iy,atjve,‘
Reference
0
/]

Fig. 4. Block Diagram of sliding mode control algorithm with model-based
switching functions

Differentiating L with respect to time gives the following:

T
L =67 —0%rr+0T260— 05260, — (TR —Tég + 59R> B
(43)
Using equation (36) in (43) when the sliding surface is
reached:

L =07 (rn — TE — ZE) — 6k + 0720 — 03=0n

. T (44)
— (TR —T'or + EQR> E
Simplifying (44) gives finally:
L=-E'TE (45)

L is therefore negative semi-definite. Since L has a lower
bound, then as per [16], applying Barbalat’s lemma implies
that L converges to 0, which then implies that E converges to
0. Since Z—U (6, Or) is positive definite, it can be proved that
E converges to 0, which completes the proof of Proposition 2.
Note that constraint (35) is dependent on the reference
trajectory 0. It is however possible to formulate a constraint
with an absolute lower bound for Min;(FEig;=) that is inde-
pendent of the trajectory as per Proposition 3 below:
Proposition 3: The following holds:

Max;(Eig(¥g(0,0R))) < Max;(Eig(—Jc(0)))  (46)

Proof: Note Ayoe = Maz;(Eig(—Jg(0))). In other
words, Aprqr 1S @ constant absolute maximum of all varying
eigenvalues of —Jg(6). The following then holds:

)\Maacln - \Ilg(e, QR) :AMaxIn
1
_ (7/ Jo(Or + h(0 — eR))dh)
0

1
= | AutaT = (<6 (0n -+ h(E)) dh

’ 1)
By construction, Apraeln — (—Jg(0r + h(E))) is positive
definite. Therefore [, Anrazln — (—Jc(0r + h(E)))dh is
positive definite, then (47) implies Apjarln — U (0,0R) is

positive definite, and thus (46) is straightforward.
From Proposition 3, a sufficient condition to meet con-
straint (35) can therefore be formulated as follows:
Min;(EigE) > Max;(Eig(—Ja(9))) (48)
Remark 5: Note that the new constraint (48) represents a
sufficient absolute condition on eigenvalues of = for any trajec-
tory tracking within the robot’s working space. The advantage
of constraint (48) is that it is independent of the reference
trajectory and holds for any trajectory within the robot’s work-
space. The disadvantage however is that the choice of the
eigenvalues of matrix = might be overdimensioned to ensure
constraint (48) is met. Also, as per Remark 2, one can choose
as well in this case to compensate the gravity term in the torque
control law rather than in the switching functions, which then

removes the need of constraint (35).
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C. Robustness Against Uncertainties

In this section, model uncertainties are introduced with the

model-based switching functions design approach. It is shown
that the proposed approach compensates for uncertainties with
the discontinuous gain in a similar way conventional sliding
mode control does. The additional advantage of using model-
based switching functions is that only matched uncertainties
are required to be compensated. Consider uncertainties on all
the matrix terms of the robot model given by (1), and consider
the following notations:
M), M(0z) (noted M and Mp) are estimates of M (6)
and M (0R); Vm(e,é), Vm(GR,éR) (noted V,,, and V) are
estimates of V;,(6,6), Vi (0r,0r) ); G(0), G(6r) (noted G
and Gp) are estimates of G(0) and G(0R).

The switching function X defined in (30) is then constructed
by using the estimate matrices above as follows:

t t
zzMé—MRéR+rE+E/ Edt+/ (G—GR)dt
to to

_/tt <<&+Vm>é— (&R+VmR) 93) dt

0

(49)
The time derivative of X gives:
Y = MO+V,0+G—Mpbr—Viprfr—Gr+TE+ZE (50)
Introducing the torque input in ) gives:
N=7+Mb+Vub0+G—ir+TE+EE (51

with 7 = MgpOg + VingOr + Gr. M = M — M(0), V;, =
Vin = Vin(0,0) and G = G — G(6). Similarly to (31), choose
the following control law:

T =4 —TE — ZE — Ksign(X) (52)
This leads to the following reaching law:
S = M6+ V0 + G — Ksign(X) (53)

From (53), note that the term M é+‘7m9+é exists because of
the introduced uncertainties. Assuming this term is bounded,
it is then possible to choose matrix K elements larger than
the upper bound of that term in order to ensure reaching the
sliding surface. This uncertainty compensation is also a known
procedure in conventional sliding mode control [16].

V. EXPERIMENTAL APPLICATION ON ETS-MARSE

This section describes the experimental setup of ETS-
MARSE exoskeleton prototype shown in the Fig. 7 (adapted
from [14]). The real-time controller using the model-based
switching functions algorithm was implemented on a National
Instrument (NI) processing platform as detailed in Fig. 5. The
NI processing platform comprises a NI-PXI 8081 dual-core
controller card and a NI-PXI 7813-R FPGA card. Both cards
are enclosed in a PXI-1031 chassis. As shown in Fig. 6, the
NI-PXT 8081 controller executes at a time step of 5 ms the
top-level sliding mode control algorithm with the model-based
switching functions along with the inverse kinematics logic.
The NI PXI-7813R FPGA card executes, on the other hand,
the low-level current PI control loop at the faster sample time

of 50 us. The NI PXI-7813R processes as well the joints
position feedback via Hall-effect sensors. Finally, user-defined
commands are sent to the robot through a host HMI PC
using a LabView interface in which it is possible to select the
controller type and perform online controller gain adjustments.
The joints of ETS-MARSE are actuated by brushless DC
motors Maxon EC-45 and EC-90 using harmonic drives to
ensure high gear ratios while maintaining very good accuracy
positioning [gear ratio for motor 1, 2 and 4: 120:1; gear ratio
for motor 3, 5, 6 and 7: 100:1].

A. Experimental Real-Time Results

The experimental test cases that were executed on ETS-
MARSE are divided into two sets. The first set was exe-
cuted without load and compares the model-based switch-
ing functions approach to conventional sliding mode control.
The second set was performed by subject 1 (weight:83 kg,
height: 1.83 m) using the model-based switching functions
approach, in order to test its robustness under normal loading
conditions. The reference trajectory of ETS-MARSE tool tip
in the Cartesian space for both sets was chosen to have
a rectangle-like shape, which is representative of an actual
arm mobility exercise performed by patients. The reference
trajectory is depicted in dashed black in Fig. 8. The corre-
spondent reference joint angles for the 7 axes in the joint
space are shown in dashed black in Fig. 9. Numerical values
of the sliding mode controller gains using conventional and
model-based switching functions are shown in Table IV. For
linear switching functions design, K was tuned to ensure
an acceptable level of robustness against disturbances. The
relatively high values of K were obtained as a result of
low numerical values of M, which orders of magnitude are
bounded to 10~3. For the model-based switching functions
approach, since M is eliminated in the discontinuous term of
the torque control inputs, the values of K are expected to be
three orders of magnitude lower to ensure a similar level of
robustness. For simplification purposes, the diagonal values of
K were therefore set at 0.25. From the joint space reference
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CPU (PXI 8108)

HMI Console

Motor
Currents|

* High-Level Control (5 ms) * Motors currents Pl

* Robot OS
* Inverse Kinematics

loops (50 us)
* Position feedback
measurements

Convert Torque |

i 0.4+

| Reference

1|_Trajectory -

{ to Current

|
1 |

PXI 8180

Current Monitor Output |

itering i
Filtering Hall Effect Sensors )

PXI 7813R

Fig. 6. Block Diagram of Control Algorithm Loops for ETS-MARSE
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Fig. 7. ETS-MARSE Exoskeleton Prototype

TABLE IV
EXPERIMENTAL CONTROL PARAMETERS OF ETS-MARSE

Parameter Matrix Numerical Value
Model-Based = Diag7(25)
switching functions r Diag7(12.2)
(proposed) K Diag7(0.25)
Linear switching A Diag7(15)
functions K 10%diag(36, 30, 80, 55, 22, 30, 37)

trajectories, U (0,0r) was symbolically derived for ETS-
MARSE and its upper eigenvalue limit numerically computed
offline for the duration of the reference trajectory and showed
to be inferior to 10 throughout this duration. Therefore by
choosing all the eigenvalues of matrix = to be higher than 10
will guarantee as per (35) asymptotic stability of the tracking
error to O for this particular trajectory. However, as Table IV
shows, the diagonal elements numerical values of = were
chosen to be 25, which gives a good margin compared to the
maximum eigenvalue limit of —J () (numerically computed
to be 21.32). The purpose of this choice is to ensure asymptotic
convergence within the global work-space of ETS-MARSE
regardless of the programmed reference trajectory, and to
account as well for parameter uncertainties on the gravity
matrix. Finally, the diagonal elements of matrix I" were set
to 12.5, which places a dominant pole in closed-loop varying
between -2 and -2.5, given the values of = and the numerical
variation of M along the trajectory.

Figures 10 and 11 display the results for the first set, and
show the overlay of real-time performance of both model-
based and linear switching functions approaches on joint error
tracking performance and joint torque inputs. From Figure 10
it can be seen that the proposed model-based switching func-
tions approach features a better overall tracking accuracy on
the joint angles. Table V gives a quantitative overview of the
Peak and RMS tracking errors in the joint space. The model-
based switching functions yield an overall improvement of
peak and RMS error compared to linear switching functions.
The RMS improvement is particularly important for joints 2
and 4 (resp. 63.6% and 87.44%), which is visually supported

-0.2

-0.3

Z (m)

0.4

-0.5 . -0.1
0.45 04 ga ) 05 3
X (m) 0.3 -025 0

Fig. 8. Cartesian space reference trajectory (dashed black), no-load tracking
performance for proposed method (blue), no-load conventional SM (red),
loaded tracking performance for proposed method (green)

by the tracking superiority of the model-based switching
functions approach over the conventional linear functions in
the Cartesian space displayed in Fig. 8 . Table VI shows the
measured total variation computed as per [38] on all torque
control inputs. The total torque inputs variation is reduced
by 20% up to 80% for axes 1 to 6 with the model-based
switching functions approach, while staying comparable for
wrist joint 7. The torque inputs variation reduction is an
important requirement for control design. Indeed, the practical
implementation of a controller requires constraints reduction
on the control inputs to help against premature failures of
actuating components in the system, as well as avoiding non-
modeled fast dynamics behaviour in the closed-loop setup.
Additionally, for the exoskeleton application, having reduced
transient activity on the torques control inputs, reduces the vi-
bration cues felt by the patient, and therefore ensures improved
comfort and ergonomic requirements.

/gzoﬂ_ /ggg
< o= =%
0 6 12 16 0 6 12 16
%‘0 @100
<. < 50
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—~ 4 —~ 5 .
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T 0= .
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Fig. 9. Joint space reference trajectory (dashed black) and no-load tracking
performance for proposed method (blue) and no-load conventional SM (red)

Figure 12 shows a zoomed-in time section of control torque
input for axis 1. Although the primary objective of the model-
based switching functions approach is not to address the
chattering problem, the zoomed-in square of Figure 12 shows
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Fig. 10. No-load joint tracking errors for proposed method (blue) and no-load
conventional SM (red)

at least 30% chattering level reduction on the torque control
inputs due mainly to the inertia matrix compensation by the
switching function, which leads to chattering decoupling on
the control inputs. Transient dynamics with a 6 to 9 Hz
frequency pattern also appears on the torque control input
with conventional sliding mode control. These frequencies
are caused by non-compensated model-based terms in the
equivalent control input for the conventional approach.

Figures 13, 14 and 15 present the experimental results
performed by subject-1 and feature the tracking performance
and the torque inputs for the model-based switching func-
tions approach under normal loading conditions. The tracking
performance in this case is very good and remains within
the boundaries of the no-load results, which demonstrates
the robustness of the proposed approach under uncertain/non-
modeled loading conditions. The torques inputs variations are
also comparable to the no-load results, with levels slightly
higher especially for joints 1 to 4, reflecting the addition of
the arm weight of subject-1.

VI. CONCLUSION

In this paper, a novel sliding mode approach with model-
based switching functions design was developed and exper-
imentally tested on a 7-DOF exoskeleton robotic arm for
trajectory tracking control. The main advantages of the model-
based switching functions design were highlighted. These
advantages include a complete decoupling of chattering and
transient constraints reduction on the torque control inputs, as
well as increased robustness compared to conventional linear
sliding functions, while ensuring better tracking performance.
Future work will combine the use of model-based switching
functions with existing chattering reduction techniques.
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