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Abstract—Deep learning (DL) models have been successfully applied in video-based affective computing, allowing, for instance, to

recognize emotions and mood, or to estimate the intensity of pain or stress of individuals based on their facial expressions. Despite the

recent advances with state-of-the-art DL models for spatio-temporal recognition of facial expressions associated with depressive

behaviour, some key challenges remain in the cost-effective application of 3D-CNNs: (1) 3D convolutions usually employ structures with

fixed temporal depth that decreases the potential to extract discriminative representations due to the usually small difference of spatio-

temporal variations along different depression levels; and (2) the computational complexity of these models with consequent

susceptibility to overfitting. To address these challenges, we propose a novel DL architecture called the Maximization and

Differentiation Network (MDN) in order to effectively represent facial expression variations that are relevant for depression assessment.

The MDN, operating without 3D convolutions, explores multiscale temporal information using a maximization block that captures

smooth facial variations and a difference block that encodes sudden facial variations. Extensive experiments using our proposed MDN

with models with 100 and 152 layers result in improved performance while reducing the number of parameters by more than 3� when

compared with 3D ResNet models. Our model also outperforms other 3D models and achieves state-of-the-art results for depression

detection. Code available at: https://github.com/wheidima/MDN.

Index Terms—Affective computing, deep learning, convolutional neural networks, face analysis, depression detection
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1 INTRODUCTION

HEALTH care has attracted an increasing amount of inter-
est from the computer vision and machine learning

communities due to its large number of applications. It is
anticipated that automatic diagnosis systems may provide
effective decision support for clinicians in an explainable,
unobtrusive, and objective manner regardless of the iden-
tity, gender, age, and ethnicity of the subject. Recently,
much progress has been made towards this goal, specially
for systems based on facial analysis [1]. Such systems lever-
age the fact that the facial modality acts as a mirror of the
health condition which may expose symptomatic signs of
particular diseases, including mental health conditions. For
instance, Giannakakis et al. [2] explored facial cues obtained
from eye activity, mouth activity and head movements for
the recognition and analysis of stress and anxiety states.

An emerging field for automatic health care diagnosis
methods is depression detection. Major Depressive Disor-
der, also known as depression, is a common mental disor-
der with an immense economic burden. Such mental
disorder is associated with a negative state of mind which
persists for a long time. It may cause alterations in appe-
tite [3], sleep disturbances [4], limited ability to concen-
trate [3], headache [5], backache [5], stomach ache [6],
anxiety [7], loss of pleasure and/or interest in persons or
things [3]. In severe cases, depression leads to suicidal
behavior and substance abuse [8]. Furthermore, depression
may amplify the chances of developing and sometimes con-
tribute to the progress of serious clinical states, such as dia-
betes, cardiovascular disease, and cancer [9].

Despite the gravity of depression, there are effective
treatments for this disorder. Typical treatments include
antidepressants, mood stabilizers, and psychotherapeutic
approaches. Consequently, an accurate diagnosis of depres-
sion and its severity is crucial for immediate treatment and
reduction of negative consequences. Normally, clinical
practice is based on Diagnostic and Statistical Manual of
Mental Disorders (DSM-5) specifications [10] that are ana-
lyzed under structured interviews. The severity of depres-
sion is determined by employing self-report inventories,
e.g., Beck Depression Inventory (BDI), or an inventory such
as Hamilton Depression Rating (HAM-D), usually managed
by a clinician with experience in treating psychiatric
patients. However, some studies have shown that clini-
cians have difficulties to recognize depression [11], [12].
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Inefficient depression detection has resulted in an alarming
number of false-positives that posed serious consequences
including the death of patients [12]. Moreover, the clinical
interventions are normally labor-intensive, expensive and
require considerable expertise in managing depressive
states.

From this perspective, decision support diagnosis sys-
tems based on machine learning can provide an accurate
and objective prediction of depression levels, contributing
to the evaluation and monitoring of patients. Such methods
may focus on visual-based nonverbal cues for depression
detection. Indeed, studies have shown a set of visual cues
which are correlated with depression [3], [13], [14]. These
cues basically comprise specific facial expressions and
dynamics, and limited levels of positive social behaviors
(e.g., absence of smiles [3]). In this context, a commonly
accepted approach is to automatically predict depression
levels by exploring the facial information of subjects in
videos.

Although several deep learning (DL) models have been
proposed for depression detection from video-based facial
analysis [15], [16], [17], [18], [19], [20], [21], these architec-
tures may not consistently achieve a high level of perfor-
mance. There are at least two reasons for this issue. The first
one is that DL models are failing to encode the spatio-tem-
poral information from facial expressions along depression
levels. Two video sequences with distinct labels can exhibit
small differences in the variations of facial expression. In
this case, the use of models that explore fixed-range tempo-
ral information decreases the ability to produce discrimina-
tive representations. The second reason is the limited
amount of annotated training data that is available to design
the predictive architectures. When applied to depression
detection, effective DL models for video representation
based on 3D Convolutional Neural Networks (3D-CNNs)
require optimizing a large number of parameters. Therefore,
the risk of overfitting is high because of the relatively small
size of training datasets.

In other applications domains, e.g., action recogni-
tion [22], [23], diverse 3D architectures have been proposed
to capture spatio-temporal features [23], [24], [25], [26].
However, their high level of performance is typically
achieved at the expense of high computational complexity.
Hence, training these architectures requires large amounts
of training data and computational resources. Some authors
have proposed to reduce the computational cost of 3D mod-
els by using different forms of spatio-temporal convolu-
tions [22], [27], [28], [29], but such approaches explore fixed-
temporal information. We argue that this decreases the
potential for generating discriminative feature representa-
tions for depression detection.

In this paper, an effective architecture, named Maximiza-
tion and Differentiation Network (MDN), is proposed to
explore facial expression variations at different temporal
scales. This DL model is composed of a maximization block
and a difference block. Given an input, the maximization
block is employed to capture smooth transitions of facial
structures, while the difference block encodes sudden spa-
tio-temporal variations. These blocks do not rely on 3D fil-
ters, and their generated features are combined in a way
that leads to a robust feature representation for depression

detection. We design our MDN module by using residual-
like structure since such skip connections have shown their
effectiveness for training CNNs. For experimental valida-
tion, our MDN module is integrated into a 3D ResNet-like
architecture, although it can be incorporated into other
CNN architectures.

The main contributions of this paper are:

� The definition of maximization and difference blocks
that encode the complementary smooth and sudden
facial expression variations, respectively.

� The combination of the maximization and difference
blocks into an efficient MDN module such that a
wide range of spatio-temporal facial variations can
be explored without employing complex 3D filters.

� An extensive experimental study indicating that our
proposed MDN provides a cost-effective solution,
outperforming different 3D-CNNs and state-of-the-
art models on two publicly available benchmarking
datasets: AVEC2013 and AVEC2014. Experiments
also show that, for deeper networks, our MDN
reduces the number of parameters by around 3:3� ,
and improves the performance over 3D ResNet.

The rest of this paper is organized as follows. Section 2
provides some background on models for depression detec-
tion, as well as for spatio-temporal recognition. Our pro-
posed MDN is presented in Section 3. Finally, Sections 4
and 5 describe the experimental methodology (datasets,
protocols and performance metrics), and results for valida-
tion while Section 6 draws the conclusions of the present
work.

2 RELATED WORK

2.1 Automatic Depression Estimation

People affected by depression have been demonstrated to
exhibit higher chances of facial expression disturbances due
to mood variations [3]. For example, the authors in [13]
report the restriction of facial expressiveness (or emotional
variability) associated with depressive states. In this con-
text, sad facial expressions are shown to be more predomi-
nant [30], while depressed patients show to have limited
eye contact [3] and less intense smiles [31]. The number of
head movements and their intensity is also statistically
lower when compared with healthy subjects [14]. All these
visual cues have the potential to be automatically explored
to support in the detection, diagnosis, and assessment of
depression by using videos containing human faces and
machine learning approaches. In the literature, conventional
machine learning approaches have been proposed, often by
applying hand-engineered feature representations, e.g.,
Local Binary Patterns (LBP), followed by regression analy-
sis, such as Support Vector Regression (SVR). In contrast,
DL approaches perform end-to-end learning, typically
using a 2D-CNN followed by a recurrent network, or using
a 3D-CNN, where a regression layer generates the output.

2.2 Hand-Engineered Methods

Recently, events like the Audio-Visual Emotion Challenge
and Workshop, AVEC 2013 [32] and 2014 [33], have
increased the interest and number of contributions in
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automated depression analysis. The baseline facial descrip-
tor in AVEC2013 [32] was the Local Phase Quantization
(LPQ), and SVR was employed for prediction of depression
levels. The following researches on AVEC2013 dataset are
relied on LPQ [34], LBP [35], Pyramid of Histogram of Gra-
dients (PHOG) [36], Local Phase Quantization from Three
Orthogonal Planes (LPQ-TOP) [37], and Canonical Correla-
tion Analysis (CCA) [38]. The baseline facial descriptor in
AVEC 2014 [33] was the Local Gabor Binary Patterns from
Three Orthogonal Planes (LGBP-TOP). Following work
from Jan et al. [39] extract three different texture representa-
tions employing LBP, LPQ, and Edge Orientation Histo-
grams (EOH), while temporally mapping their variations
using Motion History Histogram (MHH). Kaya et al. [40]
compute LGBP-TOP and LPQ features, and further analyze
them by using CCA whereas Dhall et al. [41] and Jain et al.
[42] employ Fisher Vectors (FV) to derive the depression
levels.

2.3 Deep Learning Methods

More recently, some deep neural networks have been pro-
posed to address depression detection, and other applica-
tions in affective computing. In particular, Zhu et al. [15]
proposed a DL architecture which is comprised of two
streams using facial images and optical flow as inputs.
In [43], the authors presented a Deep Transformation Learn-
ing (DTL) scheme to project facial features into a new fea-
ture subspace with the purpose to capture the non-linearity
of the data. Jazaery et al. [18] used two Convolutional 3D
(C3D) networks [25] to capture spatio-temporal features at
two different scales. Extending on this idea, Melo et al. [19]
employed two C3D to extract spatial and temporal features
from two different facial areas. Jan et al. [21] employed a
2D-CNN to explore appearance information, while the var-
iations of the features are encoded using Feature Dynamic
History Histograms (FDHH).

Following recent trends, Residual Networks [44] have
also been explored in depression detection. For example,
the depression level was predicted by using a 50-layer resid-
ual network (ResNet-50), and deep distribution learn-
ing [20], whereas a ResNet-50 was used in [17] with an
attention mechanism to combine facial features. In [16], four
ResNet-50 were employed to estimate depression levels
while providing the facial regions that provide most infor-
mation about depression. Finally, Song et al. [45] presented
an approach to explore behavior primitives (facial action
units, head pose, and gaze directions) by transforming one-
dimensional signals into their spectral representations.
These representations are then fed to a DL network that per-
forms the final regression of the depression levels. The
majority of these methods exploit spatial and temporal
information separately by using 2D-CNNs and some
approach to explore the facial features. However, such an
approach may deteriorate the intrinsic spatio-temporal
relationships.

2.4 Modelling Spatio-Temporal Information

To directly encode the facial appearance and dynamics for
depression detection in videos, it is essential to produce effi-
cient representations. Several DLmodels have been proposed

to model spatio-temporal information. Tran et al. [25] pro-
posed the architecture called C3D which was one of the first
methods to capture spatial and temporal information using
3D-CNN. Carreira et al. [24] proposed Inflated 3D-ConvNet
(I3D) which is a transformation of 2D Inception model into
3D-CNN by inflating all the filters and pooling kernels.
In [26], authors explored the effectiveness of diverse 3D-CNN
architectures based on residual networks (3D ResNet). Feich-
tenhofer et al. [23] presented SlowFast network that is com-
posed of a slow path to explore spatial semantics and a fast
path to exploremotion at fine temporal resolution.

In general, all these architectures have structures with
fixed temporal depth. In this case, it is difficult to generate
effective features representations for depression detection
since the difference of spatio-temporal variations between
the depression levels is often small. Moreover, the number
of model parameters to optimize is typically very large,
which increases the chances of overfitting due to the limited
amount of annotated training data that is available for
depression detection. Some authors have proposed different
techniques of spatio-temporal convolutions. In particular,
Tran et al. [27] factorized 3D convolution into two cascaded
operations, a 2D convolution (spatial) and a 1D convolution
(temporal). Xie et al. [28] investigated various forms of 3D-
CNNs where Top-Heavy I3D, which employs 2D structures
in the lower layers, and 3D structures in the upper layers,
presents better performance. In [29], the authors proposed a
Pseudo-3D Residual Network (P3D ResNet) by using a spa-
tio-temporal decomposition on a residual learning module.
Finally, Jiang et al. [22] proposed to encode spatio-temporal
and motion features jointly using 2D and 1D CNNs. The
proposed MDN module also decomposes the 3D convolu-
tion operation, but our approach does not employ 1D con-
volutions. Instead, we use 2D convolutions and two
functions without trainable parameters to capture features
at multiple ranges.

3 THE PROPOSED MAXIMIZATION AND

DIFFERENTIATION NETWORK

The face of a person suffering from depression exhibits spe-
cific spatio-temporal patterns of variation. The goal of auto-
matic depression detection from videos is to encode the
facial expression variations that carry the most relevant dis-
criminative information. In this context, our proposed
approach captures the spatial and temporal information
without using 3D filters, allowing to limit model complex-
ity. We propose a maximization block to summarize spatio-
temporal information, and a difference block to encode the
details of the spatio-temporal variations. These blocks are
combined into the MDNmodule.

3.1 Maximization Block

The idea of the maximization block is to model global spa-
tial and temporal variations. Using a function that summa-
rizes such variations in a cascade with 2D convolutional
layers allows the module to extract relevant spatio-temporal
features, which can improve the performance of a depres-
sion detection model. As the block is based on the max
function, it has the potential to capture smooth facial
variations. Given that for an input feature map the semantic
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information is redundant along the temporal depth, we
claim that such information can be summarized employing
a simple operation without the using of trainable parame-
ters. Let X 2 RN�T�H�W�C represents an input feature map,
where N;T;H;W and C are the batch size, temporal depth,
height, width, and the number of channels, respectively.
We formally define the operation as

Vt;h;w ¼ maxfXt:tþl;h;wg; (1)

where V is the spatio-temporal representation, l is the
length of the sliding window used to perform max pool
along depth axis, and t; h; w denote the depth and the spa-
tial dimensions, respectively. Note that this representation
employs the same dimensions of the input feature map.

Instead of exploring spatio-temporal variations with
structures that employ fixed temporal depths, our proposed
block uses different ranges of dynamics, contributing to
capture supplementary information for depression repre-
sentation. As shown in Fig. 1, the maximization block is
composed of N branches, each one can operating in a dis-
tinct range, i.e., l1; l2; . . . ; lN . It is important to note that a
higher number of branches increases the number of parame-
ters, which in turn increases the model training times. On
the other hand, a small number of branches may decrease
the capabilities of the model. Let xi denote the output of
branch i, then the block’s output can be expressed by

z ¼ H
[ N

n¼1
xn

n o
; (2)

where z represents the final feature map, Hfg is a fusion
function carried out by a 1� 1� 1 convolutional layer,

S

is the operation that concatenates the output of each branch,
and N refers to the number of branches.

This procedure encodes a set of spatio-temporal informa-
tion in a single map, which can convey in its texture infor-
mation about movement, favoring the exploitation of the

dynamics by a set of 2D filters. Moreover, as our approach
is based on structures with variable temporal depth, the use
of 2D filters rather than 3D filters, avoids an exponential
increase in the number of parameters and decreases the risk
of overfitting.

3.2 Difference Block

To generate a robust representation of facial variations, it is
important to encode sudden transitions of facial structures.
These transitions can, for example, assist the model to ana-
lyze segments of a video with similar facial expression var-
iations. Motivated by this, we propose a structure called
difference block that explores the velocity of facial expres-
sion variations.

Let X 2 RN�T�H�W�C define the input feature maps, the
first step of the difference block is to compute the absolute
value of the difference between the feature maps. This oper-
ation is defined by

Ht ¼ Xt �Xt�ij j; (3)

where Ht is the output of the operation, t is the temporal
depth, and i represents ith order difference. Similar to maxi-
mization block, the difference block is formed by N
branches which obtain velocity of the spatio-temporal varia-
tions by performing difference of order i1; i2; . . . ; iN . In our
implementation, we keep the depth size of the output equal
to the input feature map adding zeros to the input features
when carrying out the operation.

As the difference block is designed to explore short varia-
tions, lower order differences should be employed, such as
1, 2 and 3. The difference block with high order is useful to
explore long-term variations. As we can see in Fig. 1, 2D fil-
ters explore the spatial dependencies in the feature maps
generated in this process. Finally, the block’s output is gen-
erated using the following equation:

Fig. 1. Architecture of the MDN module. It is composed of maximization blocks which capture smooth facial expression variations, and difference
blocks which explore sudden spatial temporal transitions. A linear combination is performed at the last stage of the module.
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u ¼ H
[ N

n¼1
hn

n o
; (4)

where hn is the output of the nth branch, N is the number of
branches,

S
is the concatenation operator, and H is the

fusion function. We perform the concatenation along the
channels’ axis in both difference and maximization blocks.

3.3 MDN Module

The combination of the maximization with difference blocks
generates the MDN module. Observe that the maximization
block and difference block can explore distinct spatio-tem-
poral information and can also operate in different temporal
ranges. With that, our MDN module has the potential to
encode spatial and temporal information from smooth and
sudden facial variations. Such ability can significantly boost
the performance of a model for automatic depression
detection.

As shown in Fig. 1, the outputs of the maximization and
difference blocks are merged using a linear combination,
which fuses the features of the two blocks by addition. For
that, it is necessary to make sure that the dimensions of the
output feature maps of the blocks are the same. We use the
fusion function H in the blocks to adjust the feature maps.
The advantage of this approach is to reinforce the comple-
mentary behavior of the blocks. Then, an additional 1� 1�
1 convolutional layer is employed to adjust the number of
channels to match the input feature maps, since we employ
our MDN module inside structures with residual-like con-
nections which additionally fuse the features, as illustrated
in Fig. 2. Given this later convolutional layer, we consider
our MDNmodule with two layers.

4 EXPERIMENTAL METHODOLOGY

4.1 Datasets

To evaluate the performance of our proposed MDN, we con-
duct extensive experiments on two publicly available bench-
mark datasets, namely the Audio-Visual Emotion Challenge
2013 and 2014 (AVEC2013 [32] and AVEC2014 [33]) depres-
sion sub-challenge datasets. These datasets were employed in
the AVEC sub-challenge, where the goal was to estimate the
score of individuals on the Beck Depression Inventory (BDI-
II). According to the BDI-II score, the severity of depression
can be classified in four levels: minimal (0� 13), mild
(14� 19), moderate (20� 28), and severe (29� 63).

Although it is possible to find other publicly available
datasets for depression assessment, such as AVEC
2016 [46], these datasets only provide feature sets of the
individuals. Our proposed architecture is designed to
explore spatio-temporal dependencies directly from facial
videos. To the best of our knowledge, AVEC2013 and
AVEC2014 datasets are the only ones that currently provide
with raw facial video data. For this reason, and following
the state-of-the-art, we benchmark our experiments in these
two datasets.

The AVEC2013 dataset is derived from a subset of the
audio-visual depressive language corpus (AViD-Corpus).
The subjects were recorded during an interaction with a
computer performing diverse tasks, such as counting from
1 to 10. In total, the dataset contains 150 video clips allocated
into three different partitions: training, development and
test sets. Each set consists of 50 videos which have a label
related to depression score of subjects. The videos have
duration ranging between 20 and 50 minutes with an aver-
age video length of 25 minutes.

The AVEC2014 dataset is also a subset of AViD-Corpus.
For this dataset, two tasks named Freeform and Northwind
are performed while the subjects of the videos are recorded.
In the Freeform task, the subjects answer questions such as
discuss a sad childhood memory. In the Northwind task,
subjects read audibly an excerpt from a fable. In both tasks,
the videos are allocated into three partitions: training, devel-
opment, and test sets. Each set contains 50 videos with a
ground truth numerical label for every video. The dataset is
formed of 300 videos that range between 6 and 248 seconds.
For both datasets, the frame rate of the videos is 30 frames
per second (fps).

4.2 Experimental Setup

Since our MDN module is designed to be embedded in
structures with identity shortcut connections, the proposed
architecture is based on 3D residual networks [26], although
the MDN module could be also employed in other different
3D networks (e.g., I3D or C3D [24], [25]). In this subsection,
we describe the resulting deep network architecture.

The MDN architecture is a convolutional network which
explores spatio-temporal variations using maximization
and difference structures. Employing our MDN module,
five networks are built with sizes of 18, 34, 50, 100 and 152
layers. The details of the networks are presented in Table 1.
All the networks have the first layer (conv1) with one block

Fig. 2. Overall architecture of the MDN. The first stage is responsible for cropping and alignment of the faces. The feature extractor is based on
ResNet architectures where we replace the residual blocks with MDN module, with the exception of the first layer.
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and the others with different number of blocks. Only conv1
uses typical 3D convolution because it employs a different
temporal kernel depth. Moreover, we employ a different
temporal depth for each channel of the maximization block,
considering the input size, to benefit the exploitation of the
features. However, when the temporal information of the
input is equal to 1, we set the depth to 1. Observe that the
networks employ MDN module with a maximization block
composed by 3 branches whereas difference block have 2.
In the next section, we analyze the effect of changing the
number of branches and the temporal range that is explored
by the blocks.

After the sequence of convolutions, the average pooling
layer with kernel size 4� 4� 1 produces a 256-dimensional
feature vector which is fed to the last layer. As the depres-
sion detection from facial videos can be considered as a
regression problem, our last layer is composed by one fully
connected layer and a linear regression function that we
implemented using an additional fully connected layer with
one neuron.

Training. Due to the fact that there is a limited amount of
training data in the AVEC2013 and AVEC2014 datasets to
train a deep architecture from scratch, the proposed MDN
networks are initially trained on face recognition. The net-
works are pre-trained on the VGGFace2 dataset that
includes 3.31 million images of 9,131 identities [47]. In this
process, an image is selected from the dataset and replicated
16 times in order to make a clip that is fed into the model.
We employ Stochastic Gradient Descent (SGD) with
momentum of 0.9, weight decay 0.0001, and an initial learn-
ing rate of 0.01. The learning rate is multiplied by 0.1 after
every 10 epochs. At this stage, the input values are per chan-
nel subtracted by the average value of VGGFace2. In this
face recognition pre-training, the last layer of the models is
a classification layer that is removed in the next stage.

For the fine-tuning stage, the ADAM optimization algo-
rithm is adopted with an initial learning rate of 0.001, and a
weight decay of 0.00001, and this rate is multiplied by 0.1
after each epoch where the limit is set to 0.00001. To build
one training sample, a frame inside the video is randomly
chosen and the subsequent frames are collected, where the
frame sampling is empirically set to 7.5 fps. We pre-process
the input by using the Multi-task Cascaded Convolutional

Network (MTCNN) [48] for face detection and alignment in
each frame of the video that are subsequently resized. This
results in samples of 112 pixels �112 pixels �16 frames. For
data augmentation, each sample is horizontally flipped
with 25 percent probability, randomly rotated to 10 degrees
with 25 percent probability, and turned upside down with
25 percent probability. The training samples created in this
process are labelled using the same depression score as their
original videos.

Testing. In the testing, we analyze the facial video by
dividing it using a sliding window, with non-overlapping
clips of 16 frames each. The final estimated depression score
for an individual in a sample (input video) is obtained by
simply averaging the predicted depression scores of all clips
that compose the test video.

Evaluation Measures. For performance evaluation of the
proposed architecture and a fair comparison with the state-
of-the-art methods, two metrics are employed: Mean Abso-
lute Error (MAE) and Root Mean Square Error (RMSE).

5 RESULTS AND DISCUSSION

In this section, we show the efficiency of the proposed
approach in exploring spatial temporal dependencies from
facial dynamics. First, we present the pre-training strategy
and an analysis of different configurations of the MDN
module. In the sequence, we provide different networks
using our proposed module and compare them with stan-
dard 3D ResNet, other 3D schemes, and the state-of-the-art
methods. Next, we perform cross database and error analy-
sis and visualize the features generated by our architecture
and the activation maps. Finally, we evaluate our method
for pain estimation.

5.1 Pre-Training of MDNs

Properly initialized weights for fine-tuning towards depres-
sion detection can significantly improve the performance of
deep networks. Table 2 reports results of MDN-50 pre-
trained on ImageNet [52], and VGGFace2, as well as with-
out pre-training. The results clearly indicate that MDN-50
achieves significantly better performance when pre-trained
on large datasets. The model achieves its best performance
when pretrained on VGGFace2, although the results are

TABLE 1
The Proposed Networks

F represents the number of feature channels. Depth is the length of spatio-temporal variation that is explored by the maximization block while Order indicates the
difference used. The res3_1, res4_1 and res5_1 layers, perform spatial temporal downsampling with stride 2.
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very competitive on AVEC2014. This is expected since
VGGFace2, AVEC2013, and AVEC2014 are face datasets.
Therefore, once the MDN is pre-trained on VGGFace2, the
MDN develops the ability to explore facial structures which
can be considered as basis to encode the spatio-temporal
variations in faces.

5.2 MDN Module Branch Number Analysis

Table 1 shows the definitions of the networks that consider
an MDN module with 5 branches, using 3 branches to
explore smooth information and 2 branches to capture the
sudden temporal variations. However, the MDN module
can be configured with a different number of branches and
orders in both maximization and difference blocks. In this
section, we study the effect of changing the number of
branches in the maximization and difference blocks as well
as the value of the temporal range that is analyzed. We con-
duct the study considering several configurations of the
MDN module for MDN-50, i.e., MDN model with 50 layers.
Since both datasets, AVEC2014 and AVEC2013, contain
similar face videos and the analysis requires the training of
several models and a long training process, we performed
this analysis solely on the AVEC2014 dataset.

Table 3 reports the performance of the MDN-50 employ-
ing various configurations for MDN module. Specifically,
we analyze the models for depth in range of 1 � l � 4where
the temporal depth of input features is considered to define
the values of depth in each layer of the model. Regarding
order values, we define in ¼ n where n is the nth branch.
The first model employs MDN module without difference

block whereas the second one uses the module without
maximization block. Results in Table 3 indicate that the
models achieve similar results. Observe that the third
model, which employs both blocks with the same configura-
tion, achieves better results than both models, indicating the
importance of exploring smooth and sudden information.
Moreover, the networks with MDN module using an order
equal to one, and one branch for exploring smooth informa-
tion, achieve a better performance by using the sequence of
4, 3, 2 and 1 as depth values. Applying this sequence in the
maximization block normally contributes to improve the
performance of the model. In general, increasing the num-
ber of branches also improves the results of the model.
However, the value of depth and order should be carefully
chosen. For instance, the model using MDN module which
captures temporal variations with values of depth equal to
1 and 2, and the sequence of 4, 3, 2 and 1 as depth values,
outperformed all the models with just two branches, one for
maximization block and other for difference block. How-
ever, this is not true for the other models using 2 branches
for difference block and 1 for maximization block. Compar-
ing the results when the MDN module is formed by using
two maximization blocks and one difference block with this
one composed by one maximization block and two differ-
ence blocks, we can see that the performance is competitive.
Similar findings can be observed when we employ three
branches for the maximization (or difference) block, and
two for the difference (or maximization) block.

As can be seen from Table 3, the performance of the mod-
els using the MDN module with two branches for the maxi-
mization/difference block and three branches for the
difference/maximization block is very similar when com-
pared with the ones using four branches, two for each block.
Moreover, the model with MDN module employing order
equal to 1 and 2 combined with a maximization block that
uses three branches achieves the best result in terms of
RMSE. Based on these results, in the subsequent experi-
ments, we decided to specify our MDN module using two
branches in the difference block (Order = [1,2]) and three
branches in the maximization block (see the last entry of
Table 3).

TABLE 2
Analysis of Performance Using Different

Datasets to Pre-Train the MDN

Pre-training AVEC2013 AVEC2014

RMSE MAE RMSE MAE

None 9.40 7.56 9.09 7.39
ImageNet 8.62 6.72 8.26 6.45
VGGFace2 8.13 6.39 8.16 6.45

TABLE 3
Evaluation of the MDN-50 With Different Configurations for the MDN Module

Depth is related to maximization block, and Order refers to the order of the difference block. Values of Depth and Order are detailed for each layer of the MDN-50.
The number of values in Depth or Order indicates the number of branches. For example, an Order = [1,2] means that there are two branches in the difference block.
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5.3 Comparison With 3D Models

In order to show the efficiency of our approach, we present
results of the proposed architecture and other 3D models.
We begin by comparing our method with 3D ResNet in
terms of RMSE, MAE and computational complexity. In
addition, we also compare our architecture with Inflated 3D
ConvNet (I3D) and Temporal 3D ConvNet (T3D) models.
All 3D ResNet, I3D, and T3D models are trained following
the same procedure as our proposed method – we first pre-
trained the model on VGGFace2 dataset, and then finetune
it on either AVEC2014 or AVEC2013 datasets.

5.3.1 Analyses on AVEC2013

Table 4 reports the results for several MDN configurations
and 3D ResNets on AVEC2013. As can be seen, the perfor-
mance of the MDN improves with the increase of the net-
work depth, except for MDN-152 in terms of MAE, where
MDN-100 achieves better results. As the difference of per-
formance between MDN-152 and MDN-100 is low, we
understand that the MDN-152 could already be starting to
overfit. It is also possible to observe that MDN-100 and
MDN-152 achieve a considerable improvement of perfor-
mance when compared with the smaller MDN-18.

Table 4 also shows that the MDN outperforms 3D ResNet
for depression detection in terms of RMSE. Considering
MAE, the results achieved by 3D ResNet-18 are slightly bet-
ter than MDN-18, while 3D ResNet-34 and MDN-34 obtain
the same results. However, for the deeper models, the
MDN consistently outperforms the 3D ResNet approaches
by a large margin both in terms of RMSE and MAE. For
instance, the MDN-100 significantly reduces the MAE by
0.63 compared to 3D ResNet-101. From these results, we
argue that MDN models are a better option for depression
detection than their 3D ResNet architecture counterparts.

5.3.2 Analyses on AVEC2014

In Table 4, we show the results for MDN networks and 3D
ResNet on AVEC2014. As it can be seen, the results of the
MDN models improve again with the increase of the net-
work depth, excluding the MDN-18 and MDN-34, that, in
terms of MAE, achieve the same results. For this dataset, the
MDN-152 achieve the best results, reducing the RMSE by

1.43 compared to MDN-18. Therefore, we might conclude
that MDN-152 does not seem to overfit for this dataset.

We also show in Table 4 that the MDN outperforms 3D
ResNet in terms of RMSE. Analyzing MAE, the results
achieved by 3D ResNet-34 are better than MDN-34, but for
the other models, the MDN outperforms the 3D ResNet
approaches in terms of RMSE and MAE. For example, the
MDN-152 significantly reduces the RMSE by 0.30 compared
to 3D ResNet-152. The results in Table 4 indicate that the
MDN architecture could be overcoming problems such as
ambiguity and overfitting more accurately than 3D ResNet,
especially for models with larger network size.

5.3.3 Computational Complexity

Table 4 presents the computational complexity comparison
between the proposed MDN and 3D ResNet architectures.
The number of parameters of MDN models is considerably
less than 3D ResNet. The MDN-18 and MDN-34 have
almost 5 times less parameters than 3D ResNet-18 and 3D
ResNet-34 whereas the deeper MDN models (with 100 and
152 layers) have almost 3.3 times less parameters than the
deeper 3D ResNet models. We also show the number of
Floating Point Operations (FLOP) of the architectures as a
measure of computational cost. MDNmodels present a con-
siderable smaller number of FLOPs than 3D ResNet models.
E.g., in the case of models with 34 layers, the FLOP value of
MDN decreases approximately 2 times when compared
with 3D ResNet.

5.3.4 Comparison With Other 3D Methods

We compare our method with other well-known 3D mod-
els, I3D and T3D. The I3D model [24] is composed of a basic
structure called inception module, which is obtained by
inflating 2D filters and pooling kernels of a 2D version of
the module. The T3D model [49] contains structures called
temporal transition layers which are responsible for captur-
ing temporal information in different ranges. These two
architectures have been successfully employed in action rec-
ognition, and the comparison with such models is impor-
tant to measure the capabilities of the proposed MDN
architecture.

Table 5 shows a direct comparison between the perfor-
mance of I3D [24], T3D [49], and our three best models
(MDN-50, MDN-100, and MDN-152). When compared with
T3D, the I3D has competitive results with a smaller number
of parameters. On the other hand, our proposed networks
outperform the I3D model on both datasets (except for

TABLE 4
Error Rates of the Proposed MDN and 3D ResNet for
Depression Detection, and Analysis of Their Time and

Memory Complexity

Network AVEC2013 AVEC2014 P. F.

RMSE MAE RMSE MAE

ResNet-18 9.24 7.06 9.14 6.92 33 8.38
MDN-18 8.96 7.21 8.82 6.77 7 5.66
ResNet-34 8.63 6.82 8.56 6.47 64 12.85
MDN-34 8.26 6.82 8.42 6.77 14 6.73
ResNet-50 8.81 6.92 8.40 6.79 63 12.22
MDN-50 8.13 6.39 8.16 6.45 21 7.40
ResNet-101 8.51 6.79 8.20 6.57 121 17.80
MDN-100 7.62 6.14 7.92 6.21 36 10.34
ResNet-152 8.30 6.58 8.01 6.30 168 24.7
MDN-152 7.55 6.24 7.65 6.06 52 13.36

P. and F. represent parameters (�106) and FLOPs (�109), respectively.

TABLE 5
Results and Analysis of Complexity of MDN, I3D,

and T3D Architectures

Network AVEC2013 AVEC2014 P. F.

RMSE MAE RMSE MAE

I3D 8.66 6.64 8.55 6.36 13 6.99
T3D 8.75 6.76 8.55 6.54 68 51.64
MDN-50 8.13 6.39 8.16 6.45 21 7.40
MDN-100 7.62 6.14 7.92 6.21 36 10.34
MDN-152 7.55 6.24 7.65 6.06 52 13.36

P. and F. represent parameters (�106) and FLOPs (�109), respectively.
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MDN-50 on AVEC2014 in terms of MAE). We can observe
that the difference of performance is higher in terms of
RMSE. Regarding the T3D model, our models achieve better
results where the difference in terms of RMSE on AVEC2013
is 1.13, considering the MDN-100 model.

In Table 5, we also present the computational complexity
of I3D, T3D and MDN architectures. Compared to T3D, the
MDN-50, MDN-100 and MDN-152 models use fewer
parameters and require a smaller number of FLOP compu-
tations. The I3D model employs even less parameters when
compared with our MDN models, and requires around 6.99
FLOPs, at the cost of a worse performance. These results are
expected since our model is designed to explore both sud-
den and smooth temporal information.

In summary, the structures of the MDNmodule based on
complementary functions and diverse depths demonstrated
good potential to capture spatio-temporal variations in
facial expressions. The proposed architecture can learn how
to obtain a rich representation of the facial expression varia-
tions even with limited training data. The results of the pro-
posed models indicate good performance to explore
appearance and dynamics of facial videos for depression
detection.

5.4 Comparison With State-of-the-Art

We compare the performance of our three networks, MDN-
50, MDN-100, and MDN-152, with the state-of-the-art meth-
ods for depression detection on AVEC2013 and AVEC2014
datasets.

5.4.1 Comparisons on AVEC2013

Table 6 shows the performance of our proposed method
compared with baselines and state-of-the-art methods on
AVEC2013 dataset. The methods based on hand-engineered
representations are [32], [35], [36], [37], [38], [50]. All these
methods are outperformed by our MDN networks. Zhu
et al. [15] proposed a method based on two-stream networks
which uses RGB frames and optical flow as input. The

proposed models achieve better results than this method,
indicating that having structures with capability of captur-
ing multiple ranges of information is effective for depres-
sion detection. In [18] and [19], the authors explore different
facial regions using two C3D models. The MDN models
outperform both methods, demonstrating the power of the
model in exploring diverse facial regions. When compared
with the models that employ one or more ResNet-50, MDN-
50 achieves very competitive results, although MDN-50
employs fewer parameters.

MDN-100 and MDN-152 outperform the method in [20]
that is based on distribution learning. In [16], the authors
employ four ResNet-50 to explore facial areas, MDN-100
outperforms such method whereas MDN-152 obtains better
results in terms of RMSE, and competitive performance in
terms of MAE. We believe that such results confirm the
importance of capturing directly spatio-temporal informa-
tion with the MDN module rather than only appearance
information. Song et al. [45] explore multiple behavior sig-
nals using Fourier transforms and a CNN. It can be
observed that the performance of MDN-100 and MDN-152
surpasses this model, although, in terms of MAE, for MDN-
152, the results are competitive. Finally, the authors in [51]
employ a two-stream network where a temporal pooling
method captures dynamic information into an image map.
As we can see, MDN-100 and MDN-152 achieve better
results in terms of RMSE, and competitive results in terms
of MAE when compared with the method in [51].

5.4.2 Comparisons on AVEC2014

Table 7 reports the comparative results of our proposed
models and the state-of-the-art on AVEC2014 dataset. Our
methods outperform the schemes based on hand-crafted
features that are [33], [39], [40]. The authors in [43] apply
Deep Transformation Learning (DTL) to encode deep fea-
tures. The MDN models yield lower values of RMSE and
MAE than this method. We can observe that MDN-50
achieves good results where, in terms of RMSE, it is only
outperformed by the methods in [21], [51] which employ
many more parameters. MDN-100 and MDN-152 achieve

TABLE 6
Error Rates of Methods for Predicting the Depression

Scores on the AVEC2013 Dataset

Method RMSE MAE

Baseline [32] 13.61 10.88
LPQ + SVR (K€achele et al. [34]) 10.82 8.97
MHH + LBP (Meng et al. [35]) 11.19 9.14
PHOG (Cumins et al. [36]) 10.45 N/A
LPQ-TOP + MFA (Wen et al. [37]) 10.27 8.22
CCA (Kaya et al. [38]) 9.72 7.86
Two CNN (Zhu et al. [15]) 9.82 7.58
Two C3D (Jazaery et al. [18]) 9.28 7.37
Classifier + Regressor (Ma et al. [50]) 8.91 7.26
Two C3D (Melo et al. [19]) 8.26 6.40
Four ResNet-50 (Zhou et al. [16]) 8.28 6.20
ResNet-50 (Melo et al. [20]) 8.25 6.30
Behavior signals (Song et al. [45]) 8.10 6.16
Two ResNet-50 (Melo et al. [51]) 7.97 5.96

MDN-50 (ours) 8.13 6.39
MDN-100 (ours) 7.62 6.14
MDN-152 (ours) 7.55 6.24

TABLE 7
Error Rates of Methods for Predicting the Depression

Scores on the AVEC2014 Dataset

Method RMSE MAE

Baseline [33] 10.86 8.86
MHH + PLS (Jan et al. [39]) 10.50 8.44
LGBP-TOP + LPQ (Kaya et al. [40]) 10.27 8.20
DTL (Kang et al. [43]) 9.43 7.74
Two CNN (Zhu et al. [15]) 9.55 7.47
Two C3D (Jazaery et al. [18]) 9.20 7.22
Two C3D (Melo et al. [19]) 8.31 6.59
VGG + FDHH (Jan et al. [21]) 8.04 6.68
ResNet-50 + Pool (Zhou et al. [17]) 8.43 6.37
Four ResNet-50 (Zhou et al. [16]) 8.39 6.21
ResNet-50 (Melo et al. [20]) 8.23 6.15
Two ResNet-50 (Melo et al. [51]) 7.94 6.20

MDN-50 (ours) 8.16 6.45
MDN-100 (ours) 7.92 6.21
MDN-152 (ours) 7.65 6.06
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better results than the method in [17] which explore facial
features with attention mechanisms. MDN-152 outperforms
the methods in [15], [16], [18], [19], [20], [51]. The authors
in [21] employ VGG network to explore facial images and
use Feature Dynamic History Histogram (FDHH) to map
the changes in the features. MDN-100 and MDN-152
achieve better results compared to this approach. Observe
that our models outperform methods with different pooling
schemes for facial static features, providing a good alterna-
tive approach to these methods. From the results in Tables 6
and 7, we can claim that our architecture is an efficient
option to capture spatio-temporal information related to
depressive behaviors from facial videos.

5.4.3 Task-Based Comparisons on AVEC2014

In Table 8, we present the performance of the proposed
model for each task and for the combination of them as well
as the results presented in [45]. As mentioned previously,
the AVEC2014 have two tasks: Freeform and Northwind
which are considered in the analysis. The results of our
architecture for each task are very similar, indicating that
our method keeps a good performance for exploring spatio-
temporal variations regardless of the task. The combination
of the tasks is carried out by a simple score fusion scheme
considering all the values generated in both videos. It is
important to note that each participant has one sample in
each task (Freeform/Northwind) with the same depression
score. Therefore, our method generates predictions by ana-
lyzing both samples. As we can see, the performance of the
method improves with the fusion of the tasks, since the
score fusion act as a regularizer that minimizes the effect of
outliers. When compared against the method in [45], we
observe that our architecture outperforms such method in
task-based or combination of tasks approach. The results
suggest that our architecture can produce more discrimina-
tive features using facial videos than models based on the
analysis of high-level behavior features.

5.5 Cross-Database Analysis

To assess the generalization capability of MDN-152, we per-
form cross-database validation on AVEC2013 and
AVEC2014 datasets. In this procedure, the model is trained
on the source database and tested on the target database.
Table 9 presents the results of this experiment. As can be
seen, when the source is AVEC2013 dataset, the perfor-
mance of the model degrades slightly when compared with
AVEC2014 as the source database. However, in both cases,

the results are competitive with the ones shown in Table 4.
The representations learned by our proposed model pro-
vide good generalization ability.

5.6 Qualitative Results

5.6.1 MDN Module Feature Visualization

Fig. 3 shows an analysis of our MDN based on depression
feature maps generated by maximization and difference
blocks. To facilitate the analysis and visualization, we con-
sider the MDN module employed in the res2_1 layer.
Fig. 3a presents a frame from the RGB input clip which is
being analyzed, while the output of the max pooling layer,
the one after the conv1 layer, that is fed into the res2_1 layer
is shown in Fig. 3b. This provides insight into the input type
for the MDN module. From the output of the maximization
block, it can be noticed that the scheme spreads more
energy along the face of the subject compared to the original
input features. It demonstrates that the block is paying
attention to global spatio-temporal information which
increases the potential to explore smooth facial variations.
With respect to the difference block, it can be seen that it
captures the motion of feature maps and, since the block is
based on first and second-order differences, this allows the
module to explore sudden spatio-temporal variations. The
complementary characteristics of the blocks builds a mod-
ule with potential to explore rich spatio-temporal variations.

5.6.2 Visualization of Activation Maps

In order to interpret how the MDN architecture predicts
depression scores from faces, we visualize class activation
maps produced using the Grad-CAM method [53]. Fig. 4

TABLE 8
Comparisons Considering Single Task and

Fusion of Tasks on AVEC2014

Method Task RMSE MAE

Behavior signals [45] Freeform 8.30 6.78
MDN-152 Freeform 7.67 5.95

Behavior signals [45] Northwind - -
MDN-152 Northwind 7.57 6.12

Behavior signals [45] Fusion 7.15 5.95
MDN-152 Fusion 7.10 5.74

TABLE 9
Performance of the Proposed Method in Cross-Dataset Setting

Training set Test set RMSE MAE

AVEC2013 AVEC2014 8.04 6.40
AVEC2014 AVEC2013 7.90 6.19

Fig. 3. Feature visualization of MDN module.
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shows an example of class activations maps produced for 4
distinct depression levels, that were interpolated and overlaid
onto the corresponding facial images. The facial areas that
most contribute to the prediction are represented by lighter
colors. As shown in the figure, our model pays high attention
to an area from the eyes to the chin. Interestingly, the most
active area for all cases is the region that covers the mouth. It
is important to observe that manifestations of depression
include slow speech, fewer smiles, mouth shape, etc., which
are characteristics that the model may explore. These visual-
izations show that MDN presents a different behavior when
compared to models like in [16] which changes the most
important facial area in accordance with the depression level.
This indicates that MDN may rely on more optimal facial
regions to explore spatio-temporal variations.

5.7 Error Analysis

In order to provide more information about the capabilities
of the proposed architecture in a way that can be translated
into clinical practice, we present the error for each sample
(videos in the testing set) of the AVEC2013 and AVEC2014
datasets. We depict the errors in Fig. 5, ordered from the
video presenting the smallest error to the one presenting the
largest error. By observing the figure, we can conclude that
the probability of error is approximately equally distributed
from 0 to 12.5, with only a few outliers over that value. More
concretely, the model achieves error less than 6.0 for more
than 60 percent of the samples for both AVEC2013 and
AVEC2014. It is worth noting that the error around 6.0 indi-
cates a misclassification of the depression severity only
between adjacent categories and for scores at the border of
the class (e.g., the predicted level is 18, mild severity level,
and the actual score is 12 which is the minimal level). The
worst case is when a subjectwithminimal level of depression
is classified with a severe level or the other way around. This
is the case when the error is greater than 16. Our proposed
model produced error greater than 16 only on 1 and 5 videos
on AVEC2013 and AVEC2014, respectively. These results
show that our architecture generalizes well, and the proba-
bility of gravemisclassification is small.

5.8 Pain Estimation

To further validate the ability of our proposed MDN to cap-
ture and leverage spatio-temporal information, additional
experiments are conducted for pain intensity estimation.
The dataset employed is the well-known UNBC-McMaster
Shoulder Pain Expression Archive Database [54]. It includes
200 face videos of 25 subjects, each one annotated using
PSPI score at frame-level in range of 0� 15.

For fair comparison with the state-of-the-art schemes, we
report the performance of our approach in terms of Mean
Squared Error (MSE) and MAE, where leave-one-subject-
out cross-validation strategy is adopted. As the input of the
MDN is a clip (16 frames), we define the ground truth as the
mean of pain intensity of each frame inside the clip. In
Table 10, we show the results of MDN-152 compared with
six methods presented in the literature. As we can see,
MDN outperforms five methods. For instance, our method
obtains better results than the method in [59], where such
method uses around 138 million parameters whereas MDN

Fig. 4. Visualization of activation maps for inputs with different depres-
sion levels.

Fig. 5. Visualization of the error per sample using MDN-152 on
AVEC2013 (above) and AVEC2014 (below). To facilitate the visualiza-
tion, we present the absolute value of the error.

TABLE 10
Comparison of Methods for Predicting the Intensity of

Pain on the UNBC-McMaster Dataset

Method MSE MAE

Shape + DCT + LBP (Kaltwang et al. [55]) 1.39 �
HoT (Florea et al. [56]) 1.21 �
OSVR (Zhao et al. [57]) � 0.81
RCNN (Zhou et al. [58]) 1.54 �
VGG16 + LSTM (Rodriguez et al. [59]) 0.74 0.5
SCN (Tavakolian et al. [60]) 0.32 �
MDN (ours) 0.68 0.42
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employs only 52 million parameters. Our approach achieves
competitive results when compared with the method
in [60], but that method uses 586.8 million parameters,
which means more than 11 times the number of parameters
of MDN, demonstrating the efficiency of MDN to explore
the spatio-temporal information in other related problems.

In order to show the capabilities of our architecture in
estimating different intensities of pain, Fig. 6 shows the
ground truth and the predictions of MDN on a video of a
subject. As shown, MDN detects the intensities of pain in a
satisfactory way, and follows the different transitions of lev-
els of pain. These results indicate that MDN has good poten-
tial to explore face expression variations related to pain.

6 CONCLUSION

We presented the Maximization and Differentiation Net-
work (MDN) for encoding spatio-temporal variations of
face videos for automatic depression detection. The pro-
posed method is composed of a maximization block to
model smooth facial expression variations and a difference
block to encode sudden facial variations. The combination
of these blocks forms the MDN module which explore mul-
tiple temporal information without 3D convolutions. We
incorporated our MDN module in 3D ResNet-type architec-
tures to generate our novel MDN architecture. We evalu-
ated the performance of the proposed method on the two
benchmark datasets for depression detection from facial
videos, namely, AVEC2013 and AVEC2014. The experi-
ments demonstrated the improvement in performance
against 3D ResNet as well as T3D and I3D models. Our
architecture also outperformed the state-of-the-art
approaches for depression detection. As a future work, we
intend to investigate other complementary modalities (e.g.,
audio and video-based biosignals), integrating these signals
in our proposed architecture in order to further improve the
performance of the model.
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