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Abstract

Purpose: Coronary artery events are mainly associated with atherosclerosis in adult popula-

tion, which is recognized as accumulation of plaques in arterial wall tissues. Optical Coherence

Tomography (OCT) is a light-based imaging system used in cardiology to analyze intracoronary

tissue layers and pathological formations including plaque accumulation. This state-of-the-art

catheter-based imaging system provides intracoronary cross-sectional images with high resolution

of 10-15µm. But, interpretation of the acquired images is operator dependent, which is not only

very time-consuming but also highly error prone from one observer to another. An automatic

and accurate coronary plaque tagging using OCT image post-processing can contribute to wide

adoption of the OCT system and reducing the diagnostic error rate.

Method: In this study, we proposed a combination of spatial pyramid pooling module with

dilated convolutions for semantic segmentation to extract atherosclerotic tissues regardless of their

types and training a sparse auto-encoder to reconstruct the input features and enlarge the training

data as well as plaque type characterization in OCT images.

Results: The results demonstrate high precision of the proposed model with reduced compu-

tational complexity, which can be appropriate for real-time analysis of OCT images. At each

step of the work, measured accuracy, sensitivity, specificity of more than 93% demonstrate high

performance of the model.

Conclusion: The main focus of this study is atherosclerotic tissue characterization using OCT

imaging. This contributes to wide adoption of the OCT imaging system by providing clinicians

with a fully automatic interpretation of various atherosclerotic tissues. Future studies will be

focused on analyzing atherosclerotic vulnerable plaques, those coronary plaques which are prone

to rupture.

Keywords: Atherosclerotic plaque, Optical Coherence Tomography, Deep learning, plaque characterization
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I. INTRODUCTION AND PURPOSE

Coronary artery disease (CAD) is associated with coronary atherosclerosis, which is

the main leading cause of myocardial infarction with almost seven million reported deaths

worldwide1,2. Understanding the process of plaque development, progression, and rupture

is significant to guide enhancing the existing techniques for better indication of plaque mor-5

phology and improving patient’s outcome. Catheter-based procedures, minimally invasive

interventional methods, are prime in assisting millions of patients every year. Open heart

surgery for coronary bypass intervention is therefore often avoided. Catheter-based proce-

dures still require better understanding the type and location of coronary plaques in order

to personalize treatment and target the most vulnerable lesions.10

A. Atherosclerotic plaque development

Accumulation of Low-Density Lipoprotein (LDL) results in a lipid-driven coronary in-

flammatory called atherosclerosis. Normal arterial wall is a three-layered structure. Intima

is the first arterial wall layer surrounded by endothelial cells. The second layer, media, is

responsible to provide bio-mechanical strength of the artery, and control the reversible ex-15

tensibility of the arterial wall during cardiac cycles. Media is composed of Smooth Muscle

Cells (SMCs) and Extracellular Matrix (ECM), which is separated from intima, and the

third layer, adventitia, with internal and external elastic lamina respectively. Endothelial

cells provide anti-thrombotic molecules to prevent blood clot. In addition, they adjust con-

traction of the SMCs in Media. The inflammatory process in atherosclerosis starts with20

endothelial dysfunction, and accumulation of lipids in intima layer and continues by in-

filtration of SMCs and accumulation of macrophages to form foam cells. Progression of

atherosclerotic lesions results in development of various plaque profiles including fibrous

plaque, fibrocalcific plaque, fibroatheroma, and lesions with acute thrombosis1,3. The ear-

liest stage of atherosclerotic plaque development is called pathological intimal thickening25

or fibrous plaque. Fibrous plaque is intimal thickening followed by small area of lipid pool

and possible macrophage accumulation. Micro-calcification and cholesterol crystals can be

seen in fibrous plaques1,4. Lack of enough oxygen in intimal thickening results in forma-

tion of micro-vessels with permeable and weak structure. Micro-vessels can be the sign
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of plaque instability since they cause infiltration of lipids and inflammatory cells into the30

intima layer and followed by intraplaque haemorrhage. Intimal calcification is the most

common form of fibrocalcific plaques with the lowest grade formation in fibrous plaque and

the highest grade formation in fibroatheroma. Calcification is a sign of plaque stability

since calcified arterial wall tissues are hard to get ruptured1,5. Progressive atherosclero-

sis is recognized by fibroatheroma development. Degrading the collagen and infiltration of35

SMCs results in reducing the fibrous cap thickness and remodelling of the arterial wall.

Invasion of macrophages to act as mediators results in necrotic core formation. Extensive

lipid pool/ necrotic core and macrophage infiltration are the most common characteristics of

fibroatheroma1,6,7. Extensive macrophage infiltration results in plaque rupture. This leads

to coronary thrombosis and acute coronary syndrome1,8.40

B. Atherosclerotic imaging

Coronary angiography (CA) is widely used in cardiology to evaluate the structural vari-

ations of coronary artery in CAD. Using x-ray, intravascular structure can be evaluated if it

becomes calcified. Moreover, the system is limited to determine intracoronary plaque sub-

components due to its low spatial resolution of 0.5-0.7 mm9. Indication of plaque morphology45

requires detailed information of tissues under review in cross-sectional view. Intravascular

Ultrasound (IVUS) is a catheter-based imaging system, which provides gray-scale cross-

sectional images of coronary artery with the resolution of 100-150 µm. IVUS is restricted

to visualize plaque components due to its low spatial resolution. Virtual histology IVUS is

still limited to indicate fibroatheroma, which is the most important determinant of plaque50

rupture9,10. Optical Coherence Tomography (OCT) is the state-of-the-art imaging system.

OCT employs interferometry using back-scattered near-infrared light to image intracoronary

cross-sections with high resolution of 10-15 µm. Due to its high resolution, OCT can pro-

vide detailed information of intracoronary tissues including plaque morphology, and plaque

sub-components. Fast image acquisition, and non-ionizing radiation are other advantages55

of using OCT9,11,12. Despite the strengths, OCT has significant limitations to be addressed.

Considering recent studies, Kini et al, evaluated inter-observer agreement in interpreta-

tion of OCT images. Based on this study, understanding the clinical features of various

coronary plaques in OCT images can improve the inter-observer agreement in various de-
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grees depending on the type of pathology13. This improved interpretation comes following60

extensive focused training, and yet remains sub-optimal to general practice. Considering

recent studies, lack of an integrated automatic tissue characterization software system in

OCT imaging for real-time high precision analysis of intracoronary tissues remains a major

problem. Applying artificial intelligence paradigms will overcome the following limitation

inherent to subjective operator-dependent interpretation: 1) Understanding the features of65

various plaques in OCT images requires intensive training, which is time-consuming for clin-

icians; 2) Visual interpretation of the images is still error prone compared against a trained

automatic tissue characterization model; 3) Complete interpretation and manual detection

of various lesions is tedious and considerably time-consuming for clinicians given the diffuse

nature of coronary artery disease sequelae, which postpones the diagnostic process, decision70

making, and the possibility of accurate personalized treatment strategy for better patient’s

outcome.

II. RELATED STUDIES

Many studies were focused on analyzing coronary artery tissues using OCT imaging.

Optical properties of intracoronary tissues using OCT images were evaluated in some75

studies14–19. Other studies focused on plaque characterization using attenuation and back-

scattering coefficient15. Moreover, evaluation of coronary artery tissues as well as atheroscle-

rotic tissue characterization were performed using various machine learning methods includ-

ing combination of texture features and optical attenuation coefficients to train Random

Forest as classifier20,21 and A-line modeling for atherosclerotic plaque characterization22.80

Deep learning started to be widely used in the field of medical imaging for various

applications23–26. Convolutional Neural Networks (CNNs) were used to classify various coro-

nary tissues using models, which they were built and trained from scratch or applying the

pre-trained models, which they can be effective by fine-tuning and transfer learning27–30.

Deep learning-based techniques are rapidly evolving in the field of medical image analysis85

due to their strength in describing various tissues by considering low level to deep detailed

features associated with each tissue. Such features can discriminate different tissues more

precise than many other machine learning algorithms23–26,31,32. Patch-based classification

of coronary plaques including calcium, lipid tissue, fibrous tissue, mixed tissue, and non-
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pathological tissues were performed using CNN33. Another patch-based tissue classification90

method using VGG-based CNN was proposed to detect lipid and fibrous plaque. Training

data was prepared by applying intensity based approaches as well as dilation and erosion

method to remove catheter and detect lumen border34. Combination of four different CNN

models are applied to detect vascular bifurcation using OCT imaging. Pre-processing was

performed in various steps of binarization, morphological gradient, Hough transform, and95

cropping35. Macrophage accumulation was detected using normalized-intensity standard

deviation approach36. It should be considered that macrophage accumulation results in

plaque development and progression but it is not considered as coronary plaque. Also, in-

tensity based approaches are not guaranteed to be generalized to all the cases considering

very similar intensity-based features of various atherosclerotic tissues and plaques. Binary100

classification using a modified Resnet101-based U-net was performed to detect vulnerable

plaques37. This study is not focused on plaque type characterization although understand-

ing unstable plaques is important to be considered. OCT images were classified based on

presence or absence of fibroatheroma. Local binary pattern, Haar-like, and histogram of

oriented gradients were considered as features to train a support vector machine for bi-105

nary classification and detect fibroatheroma in the images38. Using hand-crafted features

fairly describe the intracoronary tissues, but considering the challenges of the OCT images,

more detailed tissue information is required to generalize the model to all the cases. In

another study, local maximum of standard deviation was used to detect lumen border as

pre-processing. Then multi-layer model was proposed to classify lipid, fibrous, and calcified110

plaques39. ResNet was trained to detect lipid and calcified tissues in the work of Lee et al40.

Pre-processing was performed in five different steps, which results in extra computational

burden while using fully convolutional networks, pre-processing is not required. In the other

study, pre-trained SegNet was used to detect calcification and lumen area in intracoronary

OCT images41. In the work of Dong et al, finite element method was used for stent placement115

evaluation42. Although the focus of this study is not atherosclerotic tissue characterization,

but this can be a complementary study to fully analyze coronary artery. Combination of

deep and hand-crafted features were used to detect lipid and fibrocalcific plaques. Classifi-

cation was performed using Random Forest43. In another study, combination of deep and

texture features were used to train Random Forest for detection of lipid, and calcification.120

The usefulness of texture features should be investigated since such features are included in
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deep features. A complete model to analyze coronary artery in OCT imaging was proposed

by our team44. In this work, we consider the main limitations of all the related studies

including our previous studies to propose a model which can overcome some limitations of

previous proposed methods.125

III. MOTIVATION & CONTRIBUTIONS

Referring to the related studies, significant progress made to characterize various plaques

in OCT imaging. We consider our previous work and other related articles to address some

of their limitations and contribute in designing an atherosclerotic tissue characterization

model, which can be used in real-time OCT imaging. Deep learning demonstrated promising130

performance in the field of medical image analysis. But, there are some points regarding the

deep learning models that should be considered in analyzing medical images since real-time

application of these models has significant impact on accelerating the process of diagnosis

and decision-making. Tuning deep learning networks for classification task results in a time-

consuming and complex process, which is not desirable in real-time applications. We should135

take the advantages of using deep learning models, but simplify the steps as much as possible.

Therefore, we consider the following points in our proposed model,

• The existing studies did not focus on characterizing all the atherosclerotic plaques

from early stages of the disease (development of fibrous plaque) to development of

fibrocalcific plaques and progression of the disease by developing lipid pool/necrotic140

core, which results in fibroatheroma. Also, determinant components of plaque rupture

were not analyzed in the existing studies.

• To our knowledge, in all the proposed methods in the literature, various pre-processing

steps were performed on the images before feeding them to the analytical model. 1.

Pre-processing steps are additional computational burden. 2. We may lose some145

important tissue information since the pre-processing steps are based on filtering and

defined thresholds, which cannot be guaranteed to be generalized to all the challenging

cases with high level of deformation and structural changes due to the disease.

• In most of the deep learning based existing studies, convolutional neural networks

(CNNs) were applied to detect few atherosclerotic plaques .CNNs demonstrate strong150
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features to describe various tissues in medical applications. But, using a CNN for seg-

mentation should be patch-based, which is not efficient for various reasons including:

1) High computational burden caused by overlapped patches and redundant feature

extraction. 2) Many pre-processing steps to remove unwanted information in images

for reducing the computational complexity. 3) Patch-size selection is tricky consider-155

ing the pooling steps in designing deep networks. 4) The input size of the network is

fixed due to fully connected layers in the network architecture. Therefore, the patches

should be resized.

• Lack of access to enough samples for each pathological tissue is another point to be

considered in solving this problem. This is one of the reasons that patch-based CNNs160

were used frequently in the literature instead of using a multi-class FCNs.

This study contributes to:

• Designing a fully automatic atherosclerotic plaque characterization model to detect

and characterize atherosclerotic plaques as well as pathological tissues, which are sings

of plaque rupture.165

• Using the original images to avoid the pre-processing steps.

• Applying spatial pyramid pooling module with dilated convolutions as a pixel-wise

segmentation model overcomes many limitations of CNNs.

• Accelerating the analysis of atherosclerotic OCT images by minimizing the computa-

tional complexity, and accelerating the model performance considering advantages of170

using dilated convolutions instead of standard convolutions.

• Using the advantages of deep features and sparse auto-encoder to generate more fea-

tures and expanding on the training data to overcome the problem of lack of enough

pathological tissue samples.

• Using sparse auto-encoder for plaque type characterization with fast and accurate175

training using minimum feature extraction process.

This work is organized as follows: The proposed method and data collection are explained

in section 4. The results are discussed in section 5, and the work is concluded in section 6.
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FIG. 1: Different steps of the atherosclerotic tissue characterization model.

IV. MATERIAL & METHODS

A combination of spatial pyramid pooling module with dilated convolutions is proposed180

for semantic segmentation to extract all atherosclerotic tissues regardless of their types in

the first step. Then, sparse auto-encoders are trained on CNN features extracted from

various coronary plaques and pathological formations for both feature reconstruction and

plaque type characterization. The diagram of figure 1 demonstrates the workflow. When

the network in the first step detects all the atherosclerotic tissues without considering their185

types, we extract them separately to feed them to the next step of the model, which is the

atherosclerotic tissue type characterization. In this final step, using a Resnet as feature

extractor, we extract deep feature vectors from each detected tissue in the previous step.

Then, we use a sparse auto-encoder to expand on the feature map for better training our

classifier. All the feature vectors with assigned labels for each tissue are used to train the190

softmax layer of the sparse auto-encoder to classify them by type. All the steps are shown

in figures 1 and 2, and explained in detail in the following sections.

9



FIG. 2: Complete configuration of the atherosclerotic plaque characterization model consists of

the following steps: 1) Resnet-based spatial pyramid pooling module with dilated convolutions for

extraction of all plaques and pathological formations, 2) Feature extraction for plaque detection,

3) Sparse auto-encoder training as feature generator to expand on training data. 4) Sparse auto-

encoder training to characterize various plaque types.

A. Data collection

The experiments are performed on 41 atherosclerotic OCT pullbacks. Each OCT pull-

back consists of approximately 200 frames of DICOM images. There are some cases with195

less than 200 frames per OCT pullback. Image acquisition is performed using FD-OCT (St.

Jude Medical Inc., St. Paul, Minnesota, USA) with the pullback speed of 20 mm/sec. The

axial and lateral resolutions of the OCT system are 12-15 µm and 20-40 µm respectively.

Permission to conduct this study on retrospective OCT studies was granted by the institu-

tional review board. We considered detecting various atherosclerotic plaques in this study200

including fibrous plaque, fibrocalcific plaque, fibroatheroma with lipid pool/necrotic core.

We also considered miro-vessels, and thrombus since they can be assigned to plaque vul-

nerability. Intima is characterized as homogeneous signal-rich layer in OCT images. Media

layer is visualized as a signal-poor layer with internal and external elastic lamina as signal-

rich bands in OCT images. Macrophages are shown by OCT as signal-rich bright bands or205
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FIG. 3: Various atherosclerotic plaques in OCT imaging: a) a1 is the original image, and a2 is

the annotated image showing fibrous plaque (F) with macrophage and lipid pool (< 1 quadrant of

the cross-section). b) b1 is the original image, and b2 is the annotated image showing thrombus

(T) which created shadow on the arterial wall tissue. c) c1 is the original image, c2 is annotated

image visualizing fibrocalcific plaque (C) and a micro-calcification. There is also macrophage

accumulation with lipid pool as it is shown in the figure. d) An example of fibroatheroma with thin

fibrous cap followed by macrophage accumulation and lipid pool/necrotic core. d1 represents the

original image with corresponding annotated image, d2. e) An example of micro-vessel development

in intimal thickening. e1 shows the original image with corresponding annotated image shown in

e2. Arrows show the micro-vessels.

spots with a dorsal shadow in the direction of the light (figure 3a, 3d) and micro-vessels are

visualized as rounded signal-poor structures (figure 3e). Fibrous plaque is visualized as a

thick signal rich layer followed by media destruction and small area (< 1 quadrant) of lipid

pool and probable macrophage accumulation (figure 3a). Micro-calcification and cholesterol

crystals can be seen in fibrous plaques. fibrocalcific plaque is visualized in OCT images210

as sharply delineated signal-poor regions (figure 3c). Necrotic core is a signal poor region,

which is not distinguishable by OCT. Therefore, lipid pool/necrotic core, which takes > 1

quadrant of the arterial cross-section is visualized as a signal poor region and is considered

as the main characteristic of fibroatheroma (figure 3d). White and red thrombus are vi-

sualized with OCT as homogeneous signal-rich and signal-poor regions respectively (figure215

3b). OCT images were labeled by trained operator using custom software in MATLAB.
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Each annotated image was sent to be reviewed by two cardiologists to reach a consensus by

carefully reviewing each region of interest if there is any disagreement. For atherosclerotic

tissue type characterization, the total of 665 images with fibrocalcific plaque, 881 images

with fibroatheroma, 204 images with thrombus, 232 images with fibrous plaque, and 70220

images with micro-vessels were analyzed.

B. Extraction of atherosclerotic tissues

Different configurations of fully convolutional networks (FCNs) were used for semantic

segmentation and object detection in various applications45–48. The models which perform

spatial pyramid pooling by applying dilated convolutions demonstrated promising perfor-225

mances. Inspired by the study of Chen et al, employing deep convolutional neural networks

with dilated convolutions results in faster and stronger encoder-decoder architecture com-

pared against VGG-based FCN that we proposed in our previous study for extraction of

various coronary pathological formations from OCT images44,49. We consider the advan-

tages of both networks to develop an appropriate encoder-decoder for intracoronary OCT230

images. The model is built based on Resnet architecture with depthwise separable con-

volution structure, which is modified by using an additional parameter as dilation rate in

convolutional layers as it is explained by Chen et al49. This network is used for semantic

segmentation in the first step of our proposed model. The network is prepared for our appli-

cation using fine-tuning and transfer learning to define the optimal learning parameter, and235

selecting the appropriate loss function, optimizer with optimal training options. Using di-

lated convolution results in extraction of dense feature maps, which are considerably smaller

than the input resolution. This can accelerate the training process. Dilated convolutions

assign an additional parameter called dilation rate to the convolutional layers. Therefore,

compared against standard convolutions, the stride, number of parameters, and computa-240

tional cost maintain constant while the field of view is expanded. This results in denser

output feature maps, which improve the segmentation performance. Dilated convolution is

applied as follows,

y[i] = Σkx[i+ r.k]w(k) (1)

Where i is a location in output y. Dilated convolution with dilation rate i is applied over

the feature map x with kernel w. Resnet-based encoder with dilated convolutions is applied245
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in this study.

To find the optimal learning parameters, we consider extensive range of values for each

parameter and evaluate the performance of the network on validation set. Assigning learning

rate of 0.01 results in optimal performance of the network as it was expected considering our

previous works. All the process of fine-tuning and transfer learning of pre-trained networks250

for the application in coronary tissue characterization using OCT imaging were explained in

our previous studies30,50. To select the optimizer, we compare the performance of the model

using both Stochastic gradient descent (Sgdm), and Adaptive moment estimation (Adam).

The model performance improves by applying Adam as optimizer. Using Sgdm, the overall

accuracy and the BF-score for detecting the atherosclerotic tissues are obtained as 89% and255

80% respectively. While the overall accuracy and the BF-score are about 94% and 84%

respectively using Adam as the optimizer. Moreover, Adam as optimizer has the advantage

of requiring little memory and fast convergence. To select the appropriate loss function in

this application, we evaluate the performance of the model using weighted cross-entropy,

and generalized dice loss. Although the generalized dice improve the BF-score up to 83%,260

but the obtained overall accuracy is 70%, which is considerably lower than the obtained

accuracy using weighted cross entropy. Using weighted cross entropy, both the accuracy and

BF-score demonstrate the good performance of the model. Therefore, the experiments are

performed by applying weighted cross entropy as the loss function. Dilation rate of 2 and 4

are applied to the last two blocks for output stride of 8 to obtain denser feature map and265

improve the network segmentation performance. Decoder up-samples the encoder output

by up-sampling factor of 8 and combine them with corresponding low level features after

applying 1x1 convolution. The last step is to refine the features using 3x3 convolutions for

final segmentation result. Various atherosclerotic tissues illustrate a small fraction of the

image considering the background and other surrounding tissues. Therefore, to deal with the270

class-imbalanced problem, we use weighted cross-entropy with the weight51, which defined

as follows,

w = (N − Σnpn)/Σnpn (2)

Where N is the number of images annotated as foreground with predicted probabilistic map

elements pn.

To start training the model, 80% of the images from all the pullbacks are considered as275

training set, and the rest 20% is divided by two to be considered as validation and test
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FIG. 4: Leave-one-out cross-validation to evaluate the performance of the first step of the model,

explained in section IV.B, using various choices of training, and validation sets. It should be noted

that the obtained overall accuracies in different steps of cross-validation are sorted from low to

high.

sets. Leave-one-out cross-validation is performed to evaluate the performance of the model

on various settings of training, validation, and test sets to assure that the model has high

performance using various choices of training, and validation sets. At each step we leave one

pullback as validation set, and train the model on other remaining pullbacks (figure 4).280

C. Atherosclerotic tissue type characterization

The auto-encoder is a neural network with the same structure as the multi-layer

perceptrons.Auto-encoders can investigate the attributes that can properly represent and

reconstruct the input data. This can prevent over-fitting due to insufficient annotated data.

In this study we train a sparse auto-encoder, with an additional parameter of sparsity reg-285

ularization to enforce a constraint on the sparsity of the output from the hidden layer. The

input data is mapped by encoder into the code, which is generated by the hidden layer.

Then, decoder maps the code to reconstruct the input data. As the first step, we train the

sparse auto-encoder to generate more input data. Since deep features represent detailed
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information of the coronary tissues accurately, to accelerate the process of auto-encoder290

training, we apply Resnet50 as feature extractor. Since Resnet is used as feature extractor

in the second step of the model, we do not need to fine-tune the network. Fine-tuning is

necessary when a CNN is used as classifier. The extracted atherosclerotic tissues from the

output of the first step are fed to the Resnet to extract deep feature vectors from each

tissue. The features extracted from the “avg-pool” layer, right before the fully connected295

layer. The size of each feature vector is 2048, which results in a feature matrix with the

size of 2052 × 2048 for all the 2052 tissue samples. All the atherosclerotic tissue types in

the OCT images were annotated by trained operator. Therefore, for each feature vector

extracted from each tissue, we assign the corresponding label based on our ground-truth.

A detailed investigation of CNN features has been explained and visualized in our previous300

study52. The extracted deep features is used as the input data to train the sparse auto-

encoder with mean square error as the loss function, L2 regularization of 0.001 with sparsity

regularization, and sparsity proportion of 1 and 0.05 respectively. Training is performed for

1750 epochs. Optimal value of each parameter is selected through grid searching for various

range of values by evaluating the model performance at each step of grid searching (figure305

5). Satlin demonstrates the best performance as neural transfer function for both encoder

and decoder. The reconstructed feature map is evaluated by measuring the mean square

error between the input deep features and reconstructed features. In the second step, we

combine the reconstructed features and the original features to expand on the training data

for plaque type characterization. A softmax layer is trained to classify atherosclerotic plaque310

types including fibrous plaque, fibrocalcific plaque, and fibroatheroma and other pathological

formations including micro-vessel, and thrombus since they are important factors in coro-

nary plaque vulnerability. Then, we stack the encoder of the auto-encoder with the softmax

layer to build a stacked network for classification task. It should be noted that although

auto-encoder training is unsupervised, but in the second step, training the softmax layer is315

supervised using the training data labels. The total input data is divided into three sets

of 70% for training, 15% for validation, and the remaining 15% for test. We also perform

leave-one-out cross-validation to assure that the model can be generalized to all possible

selections of training, validation, and test sets (figure 6).
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FIG. 5: Investigating the optimal number of epochs, hidden units, L2 regularization, and sparsity

regularization to train a sparse autoencoder.

V. RESULTS & DISCUSSION320

As the first step of atherosclerotic coronary analysis, all the atherosclerotic tissues in-

cluding plaques and other pathological formations are extracted using a spatial pyramid

pooling module with dilated convolutions to build an encoder-decoder network for fore-

ground/background segmentation. All atherosclerotic tissues are annotated as foreground.

Image background and other tissues are labeled as background. The results are shown in325

table I. Measured accuracy, specificity, sensitivity, and BF-score demonstrate the good per-

formance of the model to extract all the atherosclerotic tissues regardless of their types.

The training time is 29 minutes and 38 seconds for 25 epochs, the total of 2875 iterations.

Mini-batch accuracy started by 42.61% for the first iteration and it reached to 97.24% at
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FIG. 6: Leave-one-out cross-validation to evaluate the performance of the second step of the

model, explained in section IV.C, to characterize tissue types using various choices of training,

and validation sets. It should be noted that the obtained overall accuracies in different steps of

cross-validation are sorted from low to high.

FIG. 7: Overlap between the original and reconstructed features
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FIG. 8: Atherosclerotic tissue characterization: a) a1 shows the original image, and a2 is the

characterization result to detect thrombus (light blue), and fibrous plaque (orange). b) b1 is the

original image, b2 is the characterization result, which detects fibrocalcific (red). c) c1 is the

original image, and c2 is the result of characterization, which detects fibroatheroma with lipid

pool/necrotic core. d) d1 shows the original image, and d2 is the characterization result, which

shows micro-vessels (yellow)

.

the end of training. Using the trained network, automatic tissue detection for each OCT330

image takes approximately 0.3 seconds.

TABLE I: Measured accuracy, sensitivity, specificity, and BF-score for detecting the plaques and

pathological formations regardless their types.

Tissues under review accuracy sensitivity specificity BF-Score

Atherosclerotic tissues 0.93±0.10 0.90±0.13 0.95±0.07 0.84±0.18

The next step is to train the sparse auto-encoders for two reasons: 1)Feature recon-

struction, 2) Atherosclerotic tissue type characterization. Using deep features, training the

auto-encoder is very fast with accurate performance. We use deep features extracted from

various plaques as input of the sparse auto-encoder. The mean square error measured be-335

tween the original input features and reconstructed features is 0.006. The overlap between

the original and reconstructed features is shown in figure 7 for small portion of the data.

For plaque classification including fibrous plaque, fibrocalcific, and fibroatheroma as well as
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FIG. 9: Confusion matrix related to the atherosclerotic tissue type characterization: Labels 1 to

5 represent fibrous plaque, thrombus, fibrocalcific, micro-vessel, and fibroatheroma, respectively.

The rows represent the classifier output, and the columns represent the true classes according to

the ground-truth. The diagonal cells represent the samples which are correctly classified. The

column on the right side represents per-class precision, and the row at the bottom of the confusion

matrix represents the per-class sensitivity.

.

other pathological formations such as thrombus and micro-vessel, a softmax layer is trained

in 1000 epochs. Per-class classification results shown in table II and figure 9 demonstrate the340

high performance of the model. The final classification model assigns a label from the range

of 1 to 5 to the various atherosclerotic tissues in an OCT image. Based on the predicted

label, the corresponding tissue will be shown with a color code in the original OCT image.

This is how the classification result of the auto-encoder can be converted into the visual

representation of the result. Visual representation of the proposed atherosclerotic tissue345

characterization model is shown in figure 8.

As it was mentioned previously in this article, the models we propose in the field of
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TABLE II: Measured accuracy, sensitivity, specificity, for plaque type characterization

.

Atherosclerotic tissues accuracy sensitivity specificity

Fibrous plaque 0.96 0.94 0.99

Fibrocalcific 0.99 0.98 0.99

Fibroatheroma 0.99 0.99 0.99

Thrombus 0.98 0.97 0.99

Micro-vessel 0.90 0.80 1.00

medical image analysis are designed to be applicable in real-time analysis of tissues under

review. Therefore, not only the models should perform precisely, but also they should be

fast with reduced computational complexity as much as possible. In this particular problem,350

we considered the following points in designing our model:

• Using the interventional imaging systems, it is preferred to avoid interventions as much

as possible for patient’s safety. Therefore, there is lack of enough data to start from

scratch in designing a deep learning-based model. To overcome this issue, we use pre-

trained networks since the architectures were validated on very large datasets and can355

be transferred to be used for our application with different choices of parameters, loss

function, optimizer, and training options. But designing an appropriate and precise

model based on these pre-trained networks highly depends on accurate investigation

of the problem and the tissues under review.

• Pathological tissues have different types, and they develop in various stages of the360

disease.Therefore, in some segments of the imaged artery, we may not have any plaque,

or we may have one type, which is more common (fibrous plaque in early stages of

the disease or fibroatheroma in disease progression). For other plaques or pathological

tissues, they develop or not in different stages of the disease. Therefore, the number

of developed pathological tissues varies from one patient to another and depends on365

many factors such as the level of disease progression, and the specific tissue texture

and functionality in each patient. This results in accessing to limited number of

pathological tissues in our analyses, which can affect the training process.

• In technical point of view, our segmentation model has good performance if it can
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capture various aspects of the segmentation quality. Therefore, high rate of correctly370

labeled pixels and good contour segmentation are both important to be considered in

evaluation of our model performance. To this end, not only the accuracy, sensitivity,

and specificity are important to be measured to evaluate the number of correctly

labeled pixels, but also, BF-score is important to have high value since it is the measure

of a good contour segmentation.375

Considering all the above points, we applied the spatial pyramid pooling with dilated convo-

lution in two different ways: 1. Multi-class segmentation to detect all types of atherosclerotic

tissues: In this case, the accuracy, sensitivity, and specificity demonstrated fair values, but

the BF-score of less than 60% demonstrated poor performance of the model. Therefore, our

overall evaluation for model performance was not satisfying in addressing our problem in380

this study. The visual representation of the result verifies the noisy result using this ap-

proach. Also, random selection of the training set is not possible in this approach since we

had to control our training set to assure that it has been taught with all the atherosclerotic

tissue types. 2. Foreground/background segmentation to detect all atherosclerotic tissues

regardless of their types: In this approach, all the evaluation metrics ( accuracy, sensitivity,385

specificity, and BF-score) demonstrate high performance of the model for both correctly

labeled pixels, and contour segmentation (table I).

For tissue type characterization, we improved our previous study by addressing its limi-

tations. In our previous work, we tried to reduce the computational burden while we kept

the model precision high. But, there are some limitations regarding our previous model390

that we address in this study: 1) Our previous model was proposed for intracoronary tissue

characterization in pediatric patients affected by Kawasaki disease. The model we pro-

pose in this study considers the atherosclerotic tissues. Therefore, plaque types and clinical

features of atherosclerotic tissues should be considered in designing our new intracoronary

tissue characterization algorithm. 2) In our previous model, we extracted all the lesions and395

plaques regardless of their types using a VGG-based FCN, which worked properly. In this

study, we had to modify the model not only to be adapted to atherosclerotic tissues, but

also to reduce the computational complexity as well. Therefore, we employed the advantage

of using dilated convolutions in this step of the work. 3) For tissue type characterization

using our previous model, we applied three CNNs to extract three different sets of feature400

maps to train Random Forest to discriminate between various tissues. Then, majority voting
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approach was applied to all the three sets of classifier decisions to deliver the final decision.

This method is efficient considering fast and accurate performance of CNNs as feature ex-

tractors to train other classifiers with less complexity, which Random Forest worked better

than other classifiers in our application. But, using three different CNNs result in three405

different sets of deep feature matrices, and three times training of the Random Forest. The

whole process takes less time than fine-tuning and training a deep learning model as a clas-

sifier, but we could significantly reduce the computational complexity even more than our

previous model by employing sparse auto-encoders and using only one set of deep features

while the results show the high precision of the model.410

We also considered the limitations of the existing studies to design our proposed model.

Therefore, the efficiency of the proposed model is not only because of the details of the

network architecture, but it is more about the selection of the networks and the way we

solved the problem to address the limitations of the existing studies. For this purpose, we

considered the following points:415

• In the field of OCT image analysis, we deal with tissues at a very small scale. Every

pixel is important to be considered in our analysis since the region of interest is very

small. Therefore, we should select a mathematical model which can consider all the

tissue information, deformation and pathological changes caused by disease.

• Lack of large datasets and lack of enough samples for each pathological formation is420

another point to be considered in designing our model.

• The aim of this study is to accelerate, facilitate, and improve the diagnostic process by

designing a model which can analyze atherosclerotic tissues precisely. Therefore, we

should consider the model, which is not computationally expensive while it has high

precision in detecting the plaques and pathological tissues.425

Considering the existing studies, to our knowledge, pre-processing was performed prior to

feeding the images to the proposed analytical model. Not only the pre-processing steps are

additional computational burden, but also they are based on defining various filtering and

thresholds, which cannot be guaranteed to be generalized to all the cases specifically when

we have considerable deformation and structural changes due to the disease. In more detail,430

When a network was trained on the original images without any pre-processing: 1) The
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network understands the original image as the input image. Therefore, when the trained

network is used in clinical application, no pre-processing is required, and the network can

get the original image as the input and in less than a second (0.3 seconds) return the result

with detected atherosclerotic tissues. But, if the pre-processing steps apply on the original435

images prior to feeding them to the network, the trained network only understands the pre-

processed image as the input. Therefore, when the model is used in clinical applications,

the pre-processing steps should be performed on the original images and make the images

recognizable for the network as input. This results in more computation time due to pre-

processing steps. 2) Secondly, considering the unpredictable deformations of the artery due440

to the disease, we may face some cases during the analysis that designed pre-processing steps

result in losing important tissue information if they cannot be applicable properly on that

specific case. Therefore, it is safe and more accurate if we avoid the pre-processing steps.

Since we used the original images without pre-processing, we had to consider the networks,

which can keep using the original images while it performs fast and accurate to analyze the445

images. Therefore, using patch based convolutional neural networks for segmentation, which

was proposed in many existing studies cannot be efficient. The reason is that feeding the

original image without any pre-processing to a CNN results in a very time-consuming and

expensive computational process. The patches are overlapped, and this results in redundant

feature extraction and classification. Choosing the patch size, which can match the kernel450

size of each convolutional layer is very challenging. Also, the input size of the CNNs is

fixed because of the fully connected layers in their architecture. Therefore, we cannot use

the original size of the images and we have to resize the patches to the acceptable input

size of the network. Therefore, we decided to use a fully convolutional network, which

the input size can be flexible based on our application. Pixel to pixel segmentation using455

encoder-decoder is fast even if the original images are fed to the network. Also, using dilated

convolutions instead of standard convolution can contribute to maintaining the same number

of parameters as standard convolution but accelerate and accurate the analysis based on the

defined dilation rate. To deal with the problem of lack of access to large datasets, we

fine-tuned the pre-trained networks by defining the hyper-parameters and the loss function,460

which are more appropriate for our application. Also, to deal with the problem of lack of

enough samples for each pathological tissues to train the FCN for multi-class segmentation,

we divided our analytical process into two different steps: 1. Extracting all the plaques
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and pathological tissues regardless of their types using a FCN, and train an auto-encoder to

classify them by type.465

TABLE III: Inter-observer agreement for fibrous tissue

.

Observers Observer1 Observer2 Ground-truth Model

Observer1 1.00 0.45 0.51 0.53

Observer2 1.00 0.58 0.58

Ground-truth 1.00 0.98

Model 1.00

TABLE IV: Inter-observer agreement for calcification

.

Observers Observer1 Observer2 Ground-truth Model

Observer1 1.00 0.77 0.85 0.85

Observer2 1.00 0.84 0.84

Ground-truth 1.00 0.98

Model 1.00

TABLE V: Inter-observer agreement for fibroatheroma

.

Observers Observer1 Observer2 Ground-truth Model

Observer1 1.00 0.68 0.56 0.53

Observer2 1.00 0.62 0.58

Ground-truth 1.00 0.95

Model 1.00

We asked two observers to interpret the images, the inter-observer reliability was mea-

sured by calculating the confusion matrix between every two observers for each tissue type

separately. The inter-observed agreement is reported in the following tables for each tissue

type separately. The same calculations were performed for each observer interpretation ver-

sus ground-truth as well as the tissue characterization model. The reported results in tables470

III-VII show the disagreement between the observers in visual recognition of challenging

tissue types (fibrous and fibroatheroma) while in less challenging tissue type recognition the
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TABLE VI: Inter-observer agreement for micro-vessel

.

Observers Observer1 Observer2 Ground-truth Model

Observer1 1.00 0.82 0.92 0.90

Observer2 1.00 0.88 0.88

Ground-truth 1.00 0.96

Model 1.00

TABLE VII: Inter-observer agreement for thrombus

.

Observers Observer1 Observer2 Ground-truth Model

Observer1 1.00 0.89 0.90 0.88

Observer2 1.00 0.97 0.97

Ground-truth 1.00 0.98

Model 1.00

inter-observer agreement is high. This demonstrates the necessity of having access to an au-

tomatic system to characterize various atherosclerotic tissue types. The agreement between

ground-truth and the model decision for all the tissue types demonstrates the robustness475

of the model performance based on what it was trained for to recognize and characterize.

Briefly, this investigation demonstrates two important points: 1. Superiority of the system

compared against human observation, and 2. Different levels of difficulties for individual

readers depending on the type of lesions. More precisely, our proposed end-to-end pipeline

to detect and characterize atherosclerotic tissues can overcome the following limitations480

inherent to subjective operator-dependent interpretation:

• Understanding the features of various plaques in OCT images requires intensive train-

ing, which is time-consuming for clinicians.

• Visual interpretation of the images is still error prone compared against a trained

automatic tissue characterization model.485

• complete interpretation and manual detection of various lesions may take weeks and

even months for clinicians given the diffuse nature of coronary artery disease seque-

lae, which postpones the diagnostic process, decision making, and the possibility of

accurate personalized treatment strategy for better patient’s outcome.
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Using the trained network, automatic tissue detection for each OCT image takes approx-490

imately 0.3 seconds. Depends on the size of the arterial wall segment, which is studied

using OCT imaging, tissue detection for an OCT pullback including around 200 images will

take about 60 seconds. Therefore, analyzing and studying OCT pullbacks obtained from

100 patients takes less than 2 hours. With human intervention, the interpretation of the

images for 100 patients can take over weeks and even months. Therefore, the automatic495

segmentation model can considerably accelerate the identification time.

In this study, we detect some significant determinants of plaque vulnerability such

as micro-vessels, thrombus, and fibroatheroma with macrophage infiltration and lipid

pool/necrotic core formation. This can be the base of our future work to design a model,

which can only analyze plaque vulnerability.500

VI. CONCLUSION

This study is focused on atherosclerotic tissue characterization using OCT imaging. This

can contribute to wide adoption of OCT imaging system by providing clinicians with fully

automatic interpretation of various atherosclerotic tissues. Our proposed model composed of

an encoder-decoder with dilated convolutions to extract all atherosclerotic tissues regardless505

their type. Then, training sparse autoencoders on deep features for either feature recon-

struction and atherosclerotic tissue type characterization. For future work, we mainly focus

on analyzing plaque vulnerability in more details than our current study.
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