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Abstract—Machine Learning (ML) is emerging as a promising 

solution for managing the physical layer complexity of 

heterogeneous dynamic optical networks transporting multiple 

applications in a software defined network (SDN) context, 

namely for performance prediction. We propose two multivariate 

neural network models based on Gated Recurrent Unit (GRU) 

and Long Short-Term Memory (LSTM) methods, trained with 

field performance data and features, for predicting lightpath 

signal-to-noise ratio (SNR) over forecast horizons of up to 4 days. 

The best performance is achieved by using a 5-feature LSTM 

multivariate model over forecast horizons of up to 96 hours, with 

an absolute maximum error (AME) of 0.90 dB, compared to 

0.91 dB and 0.97 dB for the GRU and LSTM univariate models, 

respectively, and 1.21 dB for a persistence model. The 2-feature 

multivariate models obtained through feature engineering 

perform better than their univariate counterparts for forecast 

horizons of up to 40 hours. Lastly, we explore the concept of 

transfer learning (TL) by testing the trained multivariate LSTM 

and univariate GRU models on field data from two lightpaths 

carried on the same route. The TL models underperform the 

naive model for the lightpath carried in a different optical fiber. 

However, for the lightpath carried in the same optical fiber on a 

portion of the same route, the LSTM-based TL model 

outperforms the naive model with a difference of up to 0.11 dB at 

a 96-hour forecast horizon, compared to 0.30 dB for the lightpath 

in the source domain, while using 3 times less training data. 

 
Index Terms— Gated Recurrent Unit, Long Short-Term 

Memory, Machine Learning, Multivariate Neural Network, 

Performance Prediction, Quality of Transmission, Transfer 

Learning. 

 

I. INTRODUCTION 

O deal with the constant growth in traffic, telecom 

operators deploy optical WDM transmission systems with 

ever-increasing data rates, capacity, and flexibility. 

However, as these systems’ capacity increases and as they 

carry a multitude of applications, the impact of performance 

degradations and network failures is also greater. A potential 

way to reduce the impact of performance degradations and 

failures at the component, link, and network levels is to 

implement proactive network control and management tools 
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by leveraging the field data collected by the performance 

monitors deployed in the network. These tools can be 

implemented using ML-based performance predictors in a 

software-defined network (SDN) context.   

In this paper, we propose two new multivariate QoT 

prediction models, expanding on the univariate LSTM and 

GRU models presented in [1], in order to forecast the QoT of 

an established lightpath. The two multivariate forecast models 

proposed in this study are trained using a database, herein 

referred to as KB-1. It consists of the historical BER data 

presented in [1], the channel received optical power (PRX), the 

differential group delay (DGD) for one lightpath (hereafter 

called lightpath-1) carried on a 1300-km route in the 

CANARIE network, and the outside temperature and period of 

the day as additional features. Moreover, an analysis of the 

aforementioned features is carried out to study their impact on 

the performance of the multivariate models. Finally, the 

potential of transfer learning is explored by testing the trained 

multivariate SNR forecast models for lightpath-1 using two 

different datasets from two other optical lightpaths labeled 

lightpath-2 and lightpath-3, respectively. Lightpath-2 is 

carried on a 600-km segment of the 1300-km route, in the 

same direction as lightpath-1. Lightpath-3 is deployed in the 

opposite direction on the same 1300-km route as lightpath-1. 

The objective here is to evaluate two possibilities, one is the 

forecasting of the SNR of lightpaths that come from domains 

that have different configurations (opposite direction and 

different fiber on the same route) and the other, lightpaths that 

have identical configurations (same direction and same fiber 

on a portion of the route) of the source domain. 

The paper is organized as follows. The first section provides 

an overview of the context of the paper while the following 

sections present the process of implementing the SNR 

prediction model as shown in Fig. 1. Thus, Section II 

describes the short-term SNR forecast problem as well as an 

overview of previous works in this area. The first step of the 

SNR prediction process is data preprocessing and it will be 

presented in Section III. This section includes a description of 

the lightpaths and databases. The first database (KB-1) is used 

for the construction of the multivariate ML models for 

lightpath-1 and the two others (KB-2 and KB-3) are used to 

evaluate the models on lightpath-2 and lightpath-3 using the 

transfer learning approach. Section III describes the 

management of missing data instances in the time series, and 

presents a statistical analysis of the data. 
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Fig. 1.  SNR prediction methodology 

 

Fig. 2.  Evolution of SNR for lightpath-1 in the CANARIE network over a 13-month observation period 

 

The second step is the construction of the multivariate 

LSTM and GRU models (Section IV). This section includes a 

general description of the multivariate LSTM and GRU 

algorithms and hyperparameter optimization. The performance 

evaluation of the multivariate models trained with lightpath-1 

data and the comparative analysis conducted with their 

univariate counterparts is also presented. Feature engineering 

is performed in Section V to assess the impact of each feature 

on the prediction accuracy. In Section VI, the transfer learning 

approach’s validation is presented through a performance 

evaluation of the multivariate models constructed with 

lightpath-1 data on lightpath-2 and lightpath-3. Finally, the 

conclusions are drawn in Section VII. 

II. SHORT-TERM SNR FORECAST PROBLEM 

Today’s optical networks are vast (measuring up to several 

thousands of kilometers) and heterogeneous (fiber and 

equipment types, outside plants, etc.), and are becoming more 

and more dynamic. Such network heterogeneity and 

complexity, together with incomplete topology and inventory 

databases, raise significant challenges, such as the effect of 

these combined factors on the performance of the lightpaths 

carried in these networks. Furthermore, the optical fiber itself 

is not only the best medium for transporting optical signals 

over extremely long distances, it is also a good temperature 

and strain sensor. Lightpath performance can exhibit seasonal 

variations and degradations due to weather conditions, soil 

conditions (in the presence of ice, for example) and cable 

mishandling. Fiber cable aging can also cause loss increases 

over time. Accurate prediction of lightpath performance, either 

before or after their establishment, can be a complex task in 

such conditions as the accuracy of the analytical models used 

for such purposes is heavily dependent on the knowledge of 

system and link parameters and does not factor in external 

factors such as weather, outside plant characteristics and 

fiber/component aging.  

Lightpath performance can be very stable over time. In such 

a case, short-term performance prediction is a very easy task 

that can be handled without the need for complex methods and 

tools. But some lightpaths exhibit a much more dynamic 

behavior that cannot be explained or predicted by theoretical 

models and switching effects. Fig. 2 shows a good example of 

a dynamic lightpath. On this figure, we can see the evolution 

of the SNR for lightpath-1 occurring in the CANARIE 

production network over a 13-month period. The SNR exhibits 

SNR degradations of up to several dB’s during the spring and 

summer period, as well as several drops and increases in SNR 

during winter. These SNR variations last from a few days to 
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several months and cannot be explained by channel add-drop 

or switching.  

Previous studies carried out on field data collected in aerial 

and buried links from different backbone networks in North 

America have revealed different patterns in the lightpath SNR 

time series: a seasonal behavior (i.e., lower SNR during the 

winter season); daily variations of polarization-dependent loss 

(PDL); and a much higher PDL activity during weekdays 

compared to weekends [2, 3].  

The primary motivation of this work is to leverage machine 

learning (ML) to capture complex patterns in SNR time series 

and to exploit them for lightpath SNR forecast.  

Machine learning (ML) has been studied for optical 

communication and network applications in the last few years 

[4, 5]. ML models have been explored for quality of 

transmission (QoT) estimation before lightpath establishment. 

Various supervised learning models trained with synthetic data 

have been proposed predicting the probability that the bit error 

rate (BER) will not exceed a predefined performance 

threshold [1, 6-8]. In [1], Artificial Neural Network (ANN) 

and Support Vector Machine (SVM) algorithms with different 

feature sets have been used to estimate the QoT of 

unestablished lightpaths. Random Forest (RF), linear and 

nonlinear regression models have been used to predict the 

actual BER value of a new lightpath to be established. This 

study, performed using a small knowledge base (KB) of 2,700 

real BER samples, showed that RF tends to perform better 

than linear regression models [6]. ANN, RF, and logistic 

regression models have also been proposed to estimate the 

residual margin of a lightpath, with a better performance for 

ANN [7]. An NN-based algorithm has been proposed to 

estimate the lightpath optical signal-to-noise ratio (OSNR) for 

unestablished WDM channels using a synthetic KB of 1,400 

samples [8]. 

ML methods can also be used for performance prediction. 

In the wireless domain, LSTM and GRU variants of deep 

recurrent neural networks (RNNs) have been proposed for link 

quality prediction [9]. In the optical domain, ML methods 

have also been used to predict lightpath performance using 

historical performance data [1, 10-12]. Two NN variants, 

namely GRU and LSTM algorithms, have been trained using 

monitored field data to predict signal-to-noise ratio (SNR) for 

an existing lightpath over forecast horizons of up to 24 hours 

[1, 10-12]. 

LSTM and GRU models provided better performance over 

very short horizons (8 hours and 12 hours) [11]. On the other 

hand, in [1, 10], LSTM and GRU models exhibited better 

performance for longer horizons (from 24 to 96 hours). More 

recently, a Convolutional Neural Network (CNN) was 

proposed to predict the performance of a lightpath using field 

data; the model was shown to capture the temporal SNR 

changes and to forecast it correctly over horizons of up to 24 

hours [13]. The NN-based forecast models considered so far 

were univariate, using single-lightpath historical field BER 

data to predict its future performance.  

Moreover, the transfer learning approach has been used to 

predict or estimate the QoT of an unestablished lightpath [14-

16]. In [14, 16], an ANN-based transfer learning model trained 

on a synthetic source domain for an optical system was used to 

predict the Q-factor on different optical systems, using 

datasets with similar distributions in the source and target 

domains. In [15], the authors used an SVM-based transfer 

learning model trained on synthetic data from a source domain 

to estimate the QoT of new optical lightpaths to be carried in a 

network with a different topology but using the same type of 

optical fiber and the same equipment. 

To sum up, most of the ML applications at the physical 

layer have focused thus far on estimating lightpath QoT before 

establishment, using mainly synthetic data. Due to the scarcity 

of field data, less focus has been put on predicting the QoT of 

established lightpaths; the few models proposed so far are 

univariate LSTM and GRU models trained with historical 

BER data [1, 10, 12]. It should be noted that these univariate 

models only use historical SNR data from a single optical 

lightpath to predict SNR over a horizon of a few days. 

However, when no pattern is observable in the SNR time 

series, it becomes difficult for these ML models to predict the 

SNR data by taking into account only its temporal variations 

and to outperform a simple persistence model, as observed in 

previous work. 

In this paper, our contributions are therefore organized as 

follows. First, we use multivariate deep RNNs models to take 

advantage of the available features in the field datasets for 

short-term SNR forecast. Then, based on the Pearson 

correlation test, we select the relevant features that can 

improve the performance and speed of the predictive models. 

Finally, we preliminarily experiment with transfer learning on 

two datasets of limited size. If successful, these predictive 

models could be used by network operators to trigger 

proactive responses to performance degradations. 

 

III. KNOWLEDGE BASE 

This section first presents a description of the databases, 

followed by the pre-processing phase and finally a statistical 

analysis of the time series data. 

 

A. Databases description 

The three databases (KB-1, KB-2 and KB-3) used in this 

study are built using the performance metric (PM) data from 

three different lightpaths deployed in a section of the 

CANARIE production network, as shown in Fig. 3. 
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Fig. 3.  Topology of the CANARIE network section (distances are approximate)   

 

Fig. 4.  Probability distribution function of SNR for: (a) lightpath-1; (b) lightpath-2; (c) lightpath-3 

 

This network section comprises 3 reconfigurable optical 

add-drop multiplexer (ROADM) nodes interconnected with 

bidirectional optically amplified optical links. The average 

span length is 95 km, but no further details on the fiber, 

amplifier and fiber plant type are available. The network 

carries traffic using an unknown number of 100 Gb/s and 

40 Gb/s channels. Lightpath-1 and lightpath-3 are two 

100 Gb/s polarization multiplexed (PM) quadrature phase shift 

keying (QPSK) channels deployed on a bidirectional link of 

about 1300 km between ROADM 1 and ROADM 3. 

Lightpath-2 is a 40 Gb/s PM-QPSK channel deployed in a 

subsection of approximately 600 km between ROADM 1 and 

ROADM 2.  

The collected PM data, monitored at a 15-minute sampling 

rate, include pre-forward error correction (pre-FEC) BER, PRX 

and DGD for KB-1 and only the pre-FEC BER and PRX for 

KB-2 and KB-3. The observation period is 13 months (i.e. 

from February 2017 to March 2018) for lightpath-1 [12], 5 

months for lightpath-2 (i.e. from February 2017 to July 2017) 

and 18 months for lightpath-3 (i.e. from February 2017 to 

August 2018) [11]. Next, the SNR time series is computed 

from the raw pre-FEC BER data extracted from the PM data. 

The SNR time series includes 38,203 (KB-1), 16,000 (KB-2) 

and 17,832 (KB-3) data instances. For the purpose of this 

study, in order to consider KBs of similar size, the observation 

period for KB-3 was truncated from 18 months to 5 months 

(i.e., from February 2017 to July 2017). The number of 

missing instances is 1,020 (i.e. 14.07% of KB) in KB-1, 704 

(i.e. 4.42%) in KB-2 and 711 (i.e. 4.05%) in KB-3. The 

resulting SNR time series and probability distribution 

functions for the 3 lightpaths are shown in Fig. 4. 

Missing values in time series can affect the performance of 

the prediction models [17]. Therefore, the missing data 

instances in the SNR, PRX and DGD time series have been 

replaced with a moving average. Due to the sensitivity of 

information loss, as the time window of the moving average 

gets wider, it was set to 7.5 hours, as in [1]. In addition, note 

that when handling missing values, outliers, defined here as 

values exceeding 3 times the standard deviation, have not been 

removed from the time series. 

In order to implement the multivariate models, two groups 

of features are considered as input to the models in addition to 

the historical SNR data. The first is from the monitored PMs, 

namely the power PRX and DGD. The choice of this first group 

was made on the one hand because of the useful information 

that the receiver power can provide in the variation of the 

SNR, (indeed, the SNR is a function of the variation of the 

noise and of the signal) and on the other hand, we wished to 

be positioned in a real-world context in which the operator 

would have different monitored PMs. The addition of these 

extracted PMs could therefore make it possible to evaluate the 

relevance of adding monitored PMs to the models.  
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  Table I. Lightpath and KB information 

 KB-1 KB-2 KB-3 

Lightpath Lightpath-1 Lightpath-2 Lightpath-3 

Link length 1300 km 600 km 1300 km 

PM data 

BER 

DGD 

PRX 

BER 

PRX 

BER 

PRX 

Features 

SNR 

DGD 

PRX 

Outside T 

Period of day 

SNR 

PRX 

SNR 

PRX 

Number of 

instances* 
38,203 16,000 17,832 

Number of 

missing data 

instances 

1,020 704 711 

Observation 

period 
13 months 5 months 18 months 

*after filling the gaps in the time series  

 

The second group consists of external factors related to the 

environment. Our objective is to predict gradual variations in 

the SNR, as observed in Fig. 2.  

These variations could be caused by the physical properties 

of the network and could correspond to the deterioration or 

aging of the fibers caused either by external temperature 

acting on them, or by the central office’s (CO) activities such 

as maintenance. Analyses that are mainly focused on data 

distribution and correlation studies, presented in [2, 18, 19], 

have indeed shown that there may be a relationship between 

BER and temperature as well as between BER and daily 

changes characterizing human activities in the CO. Thus, 

external factors are the hourly outside temperature (T) at the 

receiving site location and human activity. The temperature 

data ranged from -35 C and 34.4 C with a mean value of 2.6 C 

and a standard deviation of 14.5 C during the observation 

period [20]. As for human activity, it was defined by four 

periods of the day which represents the daily change: (5 am – 

12 pm), (12 pm – 6 pm), (6 pm – 10 pm) and (10 pm – 5 am). 

Table I summarizes the lightpath information and KB 

information also corresponding to the model input 

information.  

 

B. Statistical analysis 

The characteristics of the SNR, received optical power and 

DGD time series are shown in Table II. Note that the SNR 

variability for lightpath-2 and lightpath-3 is less than that for 

lightpath-1, with maximum SNR variation over the 

observation period of 0.08 dB and 0.39 dB, respectively, 

comparatively to 1.37 dB for lightpath-1. 

Statistical analyses are done on the entire databases using 

the statsmodels package in Python 3. These analyses make it  

Table II. Summary of statistical values of SNR, PRX and DGD 

 Lightpath-1 Lightpath-2 Lightpath-3 

SNR (dB) 

min 

max 

average 

sdev 

 

7.96 

10.34 

9.90 

0.29 

 

11.12 

13.47 

13.39 

0.07 

 

9.04 

10.28 

9.91 

0.17 

PRX (dBm) 

min 

max 

average 

sdev 

 

-6.69 

-4.00 

-5.45 

0.49 

 

-8.30 

-6.19 

-7.06 

0.33 

 

-7.5 

-5.5 

-6.15 

0.37 

DGD (ps) 

min 

max 

average 

sdev 

 

2 

10 

5.66 

1.14 

 

 

N/A 

 

 

N/A 

 

possible to better describe the data, which in turn makes it 

possible to improve the performance of the models. 

The first analysis is the seasonality test. It identifies patterns 

in time series data as well as other components to see more 

clearly the relationship between model input (features) and 

output (data to be predicted). The time series is decomposed 

into trend, seasonal and residual components, using a Seasonal 

Trend decomposition based on Loess (STL). For example, 

STL tests were recently proposed to detect trends in optical 

span loss [21]. The decomposition was performed on the SNR 

time series using the Statsmodel library in Python 3. First, a 

peak-to-peak amplitude analysis revealed very little 

seasonality pattern for lightpath-1, with peak-to-peak 

amplitudes of 0.03 dB, and 0.08 dB for the 24-hour and 7-day 

seasonal components, respectively. Likewise, no significant 

seasonal component was found for lightpath-2 and lightpath-3 

(0.06 dB for the 24-hour seasonal component). The strength of 

seasonality (FS) was also calculated as in [22]. The FS metric 

gives a measure of the strength of seasonality between 0 (no 

seasonality) and 1 (strong seasonality). FS values of 0.003, 

0.021, and 0.008 were found for lightpath-1, lightpath-2, and 

lightpath-3, respectively. This means that the daily and weekly 

seasonality information will not be useful to forecast the SNR. 

The second analysis is the stationarity test, which consists 

of performing the Augmented Dickey-Fuller (ADF) test and 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test on the SNR 

time series. The purpose of the stationarity test is to determine 

whether the statistical properties of the time series data (mean, 

variance and covariance) do not change over time. A non-

stationary time series is more difficult to predict because its 

statistical properties will probably not be the same in the 

future as in the past [22]. The results show that the SNR time 

series for lightpath-1 are not stationary (test values of -4.88 < 

critical values of -2.86 for ADF and 3.61 > critical value of 

0.176 for KPSS). Similarly, the SNR time series for the two 

other lightpaths are not stationary, with test values of -4.25 <  
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Fig. 5.  Topology of the LSTM and GRU models 

Table III. Optimal set of hyperparameters 

 Multivariate model Univariate model [1] 

 LSTM-M-1 GRU-M-1 LSTM GRU 

Number 

of units 
512 512 256 256 

Learning 

rate 
0.00001 0.00005 0.00001 0.00001 

Window 

size  

(h) 

24  24  48  48  

Dropout 

rate 
0.2 0.2 0.2 0 

 

critical value of -2.86 for ADF, and test values of 4.93 > 

critical value of 0.146 for KPSS (lightpath-2), and test values 

of -6.18 < critical value of -2.86 for ADF and test values 0.99 

> critical value of 0.146 for KPSS (lightpath-3). 

The advantage of using neural network algorithms and their 

variants is that these algorithms can predict the data without 

taking into account non-stationarity effects and without the 

need to use methods to make the time series stationary [10, 11, 

23].  

 

IV. MULTIVARIATE SNR FORECAST MODELS 

This section is subdivided into two parts. The first presents 

the implementation of the multivariate LSTM and GRU 

models, referred to as LSTM-M-1 and GRU-M-1, 

respectively. Both models are built using KB-1. The second 

part presents the performance analysis of the models. 

 

A. Architecture and parameter optimization 

The multivariate LSTM and GRU models considered for 

short and long-term SNR forecasting are derived from neural 

networks. Multivariate models differ from their univariate 

counterparts by taking into account other features in addition 

to historical SNR data to predict future SNR values. To 

evaluate the impact of adding features on the accuracy of the 

SNR prediction, our proposed multivariate models are 

compared to the univariate LSTM and GRU models in [1].  

As described in [1], the univariate LSTM and GRU models 

use structures called gates. These gates control the cell states 

and the combination of inputs to determine the desired 

outputs. The desired outputs represent the SNR value to be 

predicted over the horizon T.  

The topology of the LSTM and GRU models is illustrated 

in Fig. 5. As shown in Fig. 5, the multivariate LSTM and 

GRU models combine the observed values and other features 

as inputs, unlike the univariate models, which only use the 

observed value as input. In our proposed multivariate models, 

in order to predict the SNR of the lightpath at horizon T, the 

inputs are the channel received power, the DGD, the outside 

temperature, the period of day, as well as the SNR values over 

an observation period of N hours. 

Similar to the univariate models in [1], the multivariate 

LSTM and GRU models are built using the Keras package in 

Python 3 and implemented by dividing the KB-1 into training, 

validation and test datasets according to the ratio of 0.64, 0.16, 

0.20, respectively. 

The training and validation datasets are used to train the 

models and to determine the appropriate hyperparameters, 

respectively. Also, using the same methodology as in [1], the 

hyperparameters such as the learning rate, dropout rate, and 

size of the hidden layer are optimized by testing over different 

values ((0.00001, 0.000025 and 0.00005), (0, 0.2, 0.5, 0.8 and  

1), and (50, 150, 256 and 512), respectively) using the Root 

Mean Square Error (RMSE) as the performance metric. 

In addition to the hyperparameters, the window size also 

has an impact on model performance. The window size 

corresponds to observation period N in the sequence of inputs 

used to forecast the next SNR at a given horizon T hours 

ahead. To determine the best window size, different values (1, 

4, 8, 12, 24, 48 hours) are tested using the RMSE as the 

performance metric.  

Table III shows the optimal set of resulting 

hyperparameters. For the multivariate LSTM-M-1 model, the 

learning rate is finally set at 0.00001, the size of the hidden 

layer at 512 neurons, the dropout rate at 0.2, and the window 

size at 24 hours. For the multivariate GRU-M-1 model, the 

learning rate is set at 0.00005, the size of the hidden layer at 

512 neurons, the dropout rate at 0.2, and the window size at 24  
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Fig. 6.  Performance evaluation using the KB-1 test dataset: (a) RMSE; (b) AME; (c) R

2
 score; (d) Computation time 

hours. The univariate LSTM and GRU models used the same 

hyperparameters as in [1]. 

 

B. Performance results 

After the models are built in the training step, they are 

evaluated using the test dataset of KB-1. The test dataset 

corresponds to a period of approximately 2.5 months (from 

December 2017 to March 2018). For the purpose of 

comparison, in addition to the LSTM and GRU models, a 

persistence (naive) model has also been implemented on the 

test dataset to evaluate the performance of the models as in 

previous works [24]. This naive method consists in assigning 

to the SNR value predicted at horizon T the latest value of the 

observation window N. Note that other baseline models such 

as linear regression can also be used as in [24]. However, 

since the main focus of this study was to compare univariate 

and multivariate models and to evaluate the impact of adding 

features on the prediction accuracy, other baseline models 

were not considered.  

The four metrics used in the evaluation step are the RMSE 

to determine the accuracy of the models, the R
2
 score to 

evaluate the robustness of the models, the absolute maximum 

error (AME) to evaluate the impact of the bad predictions on 

the model performance, and the computation time to compare 

the model execution times. Fig. 6 shows the performance 

results according to these four metrics for all the models. Note 

that the evaluation was performed for forecast horizons 

ranging from 1 to 96 hours. 

The RMSE indicates how close the observed SNR values 

are to the predicted SNR values. Low RMSE values indicate 

better prediction. As shown in Fig. 6(a), the RMSE values 

increase with the forecast horizon for all the models, as 

expected. The RMSE of the multivariate and univariate 

models are very similar for all forecast horizons combined, 

with a slight advantage for the multivariate models over the 

univariate and naive models as the forecast horizon increases. 

At 96-hour forecast horizon, the multivariate models 

performed slightly better than their univariate counterparts and 

outperformed the naive method by up to 0.03 dB. 

The AME metric indicates the maximum error of the 

forecast model. Fig. 6(b) shows the AME for all the models. 

The lowest AME values were achieved with the multivariate 

models, with maximum prediction errors smaller than those of 

the univariate and naive models. Interestingly, the AME 

values for both multivariate models (and for the univariate 

GRU model) decrease as the forecast horizon increases, while 

the AME values for the naive model increase as the time 

horizon lengthens, showing the benefits of ML methods. The 

AME of the multivariate LSTM model ranged from 1.00 dB to 

0.92 dB as the forecast horizon goes from 1 hour to 96 hours, 

compared to 1.10 dB to 1.21 dB for the naive model. 

The R
2 

score, presented in Fig. 6(c), determines the 

robustness of the models. It describes how well the selected 

features characterize the variability of the data to be predicted. 

Its values are less than or equal to 1, so that the closer the 

value is to 1, the more robust the model is. The R
2 

score 

confirms the observations derived from the RMSE curves. The 

multivariate GRU-M-1 and LSTM-M-1 models performed 

very similarly and generally outperformed the univariate 

models. Note that for horizons of less than 24 hours, the R
2
 

score values for the multivariate and univariate models are 

very close. However, the higher the horizons, the more rapidly 

the univariate models become unstable, with an R
2
 score that 

is less efficient than that of the multivariate models.  
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Fig. 7.  Predicted SNR vs. observed SNR: (a) 1-hour forecast horizon; (b) 24-hour forecast horizon; (c) 96-hour forecast horizon 

Table IV. Correlation analysis 

 Channel SNR 

Channel received power  0.80 

Outside temperature -0.20 

DGD -0.10 

Period of the day  0.01 

 

As shown in Fig. 6(d), the computation time is about the 

same for both multivariate models and does not increase much 

with the lengthening of the forecast horizon, while for 

univariate models it increases as the time horizon lengthens. 

Also, at longer forecast horizons, the multivariate models 

become faster than the univariate models. The models were 

run on a system with a 2.5 GHz Intel® Core ™ i5-7200U 

processor, 8 GB RAM. 

Fig. 7 shows the predicted SNR relative to the observed 

SNR at the shortest (1-hour) and at the longest (96-hour) 

forecast horizons as well as an intermediate (24-hour) horizon 

for the best performing model, namely the multivariate 

LSTM-M-1 model. The closer the predicted values are to the 

diagonal line, the more accurate the prediction is. Fig. 7 shows 

a good prediction accuracy at a short horizon and also, that the 

forecast accuracy decreases as the horizon increases. Note that 

the LSTM-M-1 model was unable to correctly predict the SNR 

values around 10.25 dB in the test dataset. This can be 

explained by the fact that such high SNR values in the test 

dataset fall outside the range of SNR values in the training 

dataset, as shown in Fig. 2. The scatter plots widen as the time 

horizon lengthens as a result of the reduction in prediction 

accuracy. The model also struggled to predict the relatively 

sharp SNR drops in the test dataset, which led to an 

overestimation of the predicted SNR values.  

 

V. MULTIVARIATE SNR FORECAST MODELS WITH FEATURES 

REDUCTION 

In this section, we study the impact of the different features 

on the performance of the multivariate models with the aim of 

reducing the number of features in the multivariate models. 

Table V. Optimal set of hyperparameters 

 LSTM-M-2 GRU-M-2 

Number of units 512 512 

Dropout rate 0.2 0.2 

Learning rate 0.00001 0.00005 

Window size (h) 24  24  

A. Feature engineering and reducing the multivariate models  

A correlation analysis using Pearson tests was first 

performed on the feature set. The purpose of the correlation 

analysis is to evaluate the importance of the different features 

in KB-1 in the hopes of reducing the feature set to only the 

most important ones to be used in the multivariate models. 

Table IV presents the results of the Pearson tests. The tests 

reveal that the received channel received power is highly 

correlated to the SNR (correlation value = 0.8). A much 

smaller correlation is found with outside temperature, DGD 

and the period of the day. 

Based on these results, two multivariate LSTM and GRU 

models (hereafter referred to as LSTM-M-2 and GRU-M-2, 

respectively) were built using the channel SNR and PRX over 

an observation period of N hours as the only two features in 

the prediction process. Finally, using the test dataset, the same 

performance metrics (namely the RMSE, R
2
 score and AME) 

are used to compare the two models LSTM-M-2 and GRU-M-

2 to the best performing 5-feature model (LSTM-M-1), the 

best performing univariate model (GRU) and the persistence 

model. 

As in section IV, the models LSTM-M-2 and GRU-M-2 are 

built using the Keras package in Python 3 and the reduced 

feature set. The resulting KB is divided into training, 

validation and test datasets according to the same ratio (0.64, 

0.16 and 0.20, respectively). Table V presents the 

hyperparameters found from the validation dataset. 
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Fig. 8.  Performance evaluation using a reduced feature set in KB-1: (a) RMSE; (b) AME; (c) R

2
 score 

Table VI. Comparative analysis of the univariate and multivariate models 

Metric 

 

 

Forecast 

horizon 

(hours) 

Baseline  Univariate model [1]  Multivariate model 

Naïve model LSTM GRU LSTM-M-1 GRU-M-1 LSTM-M-2 GRU-M-2 

Features 

SNR SNR SNR 

SNR, DGD,  

PRX, Outside T, 

Period of the day 

SNR, DGD,  

PRX, Outside T, 

Period of the day 

SNR, PRX SNR, PRX 

RMSE  

(dB) 

1 0.04 0.04 0.04 0.06 0.04 0.04 0.04 

24 0.14 0.14 0.14 0.14 0.14 0.14 0.14 

96 0.29 0.28 0.27 0.27 0.27 0.27 0.27 

AME  

(dB) 

1 1.10 1.11 1.10 1.00 1.08 1.08 1.10 

24 1.13 1.02 1.04 0.97 0.99 1.05 1.05 

96 1.21 0.97 0.91 0.92 0.93 1.02 1.00 

 

Indeed, the hyperparameters, such as the learning rate, 

dropout rate, size of hidden layer and widow size, are 

optimized by testing with the RMSE on the same values ((0, 

0.00001, 0.000025 and 0.00005), (0, 0.20.5, 0.8 and 1), (50, 

150, 256 and 512) and (1, 4, 8, 12, 24, 48 hours), 

respectively).  

As a result, the learning rate is set at 0.00005, the size of the 

hidden layer at 512 neurons, the dropout rate at 0.2, and the 

window size at 1 hour for the multivariate LSTM model with 

2 features, whereas for the multivariate GRU model with 2 

features, the learning rate is set at 0.000025, the size of the 

hidden layer at 256 neurons, the dropout rate at 0.2 and the 

window size at 8 hours. 

 

B. Performance results 

The performance results of the LSTM-M-2 and GRU-M-2 

models using a reduced feature set in KB-1 are shown in Fig. 

8. As shown on the RMSE bars in Fig. 8(a), the models  
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Fig. 9.  Model fine-tuning process using transfer learning 

 

LSTM-M-2 and GRU-M-2 performed similarly to their 5-

feature counterparts LSTM-M-1. Both models outperformed 

the naive model with an RMSE difference of up to 0.02 dB.  

Fig. 8(b) shows that the LSTM-M-1 model outperforms the 

2-feature multivariate models LSTM-M-2 and GRU-M-2, with 

a lower (about 0.05 dB difference) AME over all time 

horizons combined. Moreover, the 2-feature models perform 

similarly and outperform the naive model.  

Fig. 8(c) shows very similar R
2
 scores for the 2-feature and 

5-feature multivariate models. 

The 2-feature multivariate GRU-M-2 and LSTM-M-2 

models were executed on a system with a 2.5 GHz Intel® 

Core ™ i5-7200U processor, 8 GB RAM and remained stable 

at approximately 15.5 ms and 16.1 ms, respectively. They are 

also faster than their 5-feature counterparts. 

Table VI presents a comparative performance analysis of 

the variants of the multivariate models against univariate and 

naive models. The RMSE and AME values are shown for 1-

hour, 24-hour, and 96-hour forecast horizons, with the best 

performance (lowest values) shown in bold characters. The 

first observation is that complex RNN models did not exhibit a 

RMSE benefit over a simple naive method at very short 

forecast horizons (24 hours or less). The slightly better RMSE 

performance of the univariate models over the naive model at 

96-hour forecast horizon did not improve further by using 

multivariate models. However, according to the AME 

performance metric, the 5-feature multivariate models 

outperformed their univariate counterparts as well as the naive 

models across all forecast horizons, except at the 96-hour 

horizon where the univariate GRU model shows a  0.01-dB 

performance benefit. Furthermore, the higher the forecast 

horizon, the bigger the AME advantage over the univariate 

and naive models. The best overall performance across all 

forecast horizons, in terms of RMSE and AME, was obtained 

by using the 5-feature multivariate LSTM model. The 

multivariate GRU model should not be discarded as it 

exhibited a similar (although slightly lower) performance but a 

shorter calculation time. Finally, although the 2-feature 

multivariate models underperformed the 5-feature multivariate 

models and the univariate models, these models should not be 

discarded neither. The 2-feature models outperformed the 

naive method and could be run in much shorter execution time 

than the 5-feature multivariate models and univariate models, 

with up to a 95% reduction in computing time up in both 

cases. 

 

VI. GENERALIZATION OF THE SNR FORECAST MODELS USING 

TRANSFER LEARNING  

Transfer learning can be useful when the amount of data on 

hand to train the forecast models is limited. Thus, in this 

section, we experiment with the concept of transfer learning 

by testing the univariate and multivariate models under two 

scenarios using the KB-2 and KB-3 databases from the 

CANARIE network. The first scenario involves field data 

from a 40G PM-QPSK lightpath (lightpath-2) carried in the 

same optical fiber and deployed on a 600-km section of the 

same route [11]. 

The second scenario considers data from another 100G PM-

QPSK channel (lightpath-3) carried in the opposite direction 

on the same 1300-km route as lightpath-1.  

 

A. Description of the transfer learning approach 

As shown in Fig. 9, the concept of transfer learning consists 

of transferring a model implemented in a given domain to 

another domain to answer a predefined problem. In the 

literature on transfer learning, a domain is defined by a feature 

space and a marginal probability distribution; furthermore, for 

a given domain, a task is defined by a label space and a 

predictive function [25]. The domain in which the model is 

implemented is called the source domain and the domain in 

which the problem needs to be solved is called the target 

domain.  

By using transfer learning, our aim is to determine whether 

the forecast models trained with a specific lightpath (source 

domain) can be generalized. They could then be used to test 

channels (target domain) deployed in the same direction on a 

portion of the same optical fiber (scenario 1) and ultimately in 

the opposite direction on the same route, i.e., on a different 

optical fiber (scenario 2), under the assumption that the source 

and target domains are different. 

In this work, the source domain dataset is KB-1 (lightpath-

1) and the target domain datasets are KB-2 (lightpath-2) and 

KB-3 (lightpath-3). As shown in Fig. 3, lightpath-3 is carried 

between the same nodes as lightpath-1, but in the opposite 

direction. Lightpath-2 is carried in the same optical fiber on a 

shorter section (600 km) of the same route as lightpath-1. The 

target dataset distributions and variabilities are also different  
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Fig. 10.  Univariate GRU and multivariate LSTM-based transfer learning models. Performance evaluation using KB-3 (lightpath 

from opposite direction on the same route): (a) RMSE; (b) AME. Performance evaluation using KB-2 (lightpath in the same 

optical fiber on a portion of same route): (c) RMSE; (d) AME 

from the source dataset. 

 

B. Implementation details 

The first step is the transfer of the source model to the target 

domain, as shown in Fig. 9. This involves using an SNR 

forecast model that has already been trained on a specific 

database (KB-1 in this case) to solve a new problem (SNR 

forecast of lightpath-2 and lightpath-3 in this case). 

The forecast models used in the transfer learning 

demonstration are the best performing models, namely the 

univariate GRU model and the multivariate LSTM-based 

transfer learning model. 

We adopt the parameter-based approach, which assumes 

that the structures learned by the two models trained on the 

source domain can be transferred to the two target domains. 

This structure transfer is implemented by weight-sharing 

between the source (lightpath-1) and target (lightpath-2 and 

lightpath-3) domains.  

The objective here is to perform a preliminary experiment 

with the transfer-learning approach to predict the SNR of two 

new lightpaths using a model that has been pre-trained on a 

different lightpath. Therefore, the weights to be used for 

models have not been optimized. The choice of weights could 

modify the performance of the model because the weight 

makes it possible to determine the interactions between all the 

neurons of each layer and the activation functions, and to 

define the knowledge acquired from the source domain [14].  

The fine-tuning strategy in [26] was followed. Thus, the 

models were first trained using 24,445 instances in the source 

domain and then partially retrained in the target domain, as 

shown in Fig. 9. The target domain datasets were split into 

retraining (or fine-tuning) and test datasets according to a 

80/20 ratio, as in [26]. This implied a fine-tuning process 

using 80% of the target domain datasets, i.e. 12,800 instances 

and 14,265 instances of the KB-2 and KB-3 databases, 

respectively. The performance of the models was evaluated 

using the remaining 20% of the target domain datasets, 

namely 3,200 and 3,567 instances of KB-2 and KB-3 datasets, 

respectively. 

 

C. Performance results 

The metrics used to evaluate the resulting models are the 

RMSE and AME. The results are shown in Fig. 10. 

As shown by the RMSE curve in Fig. 10(a), the multivariate 

and univariate models using database KB-3 underperformed 

the naive model at all horizons, with an RMSE difference of 

up to 0.06 dB. Note that the target lightpath-3 and the source 

lightpath-1 are carried in different optical fibers and that the 

datasets have different distributions and variabilities. In 

contrast, as shown in Fig. 10(c), the multivariate LSTM-based 

transfer learning model using database KB-2 slightly 

outperformed  the univariate GRU-based transfer learning and 

the naive models for all but the 24-hour forecast horizon. 

The same observations can be made by looking at the AME 

curves in Fig. 10(b) and Fig. 10(d). First, for lightpath-3, we 

can see that the multivariate LSTM and univariate GRU 

transfer learning models using KB-3 cannot outperform the 

naive method from an AME perspective. However, for 

lightpath-2, the multivariate LSTM-based transfer learning 

model using KB-2 performs better than the naive model at all 

horizons, with an AME advantage of 0.11 dB, compared to 

0.304 dB in the source KB-1 database, at the same 96-hour 

forecast horizon.  
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Fig. 11.  Predicted SNR vs. observed SNR at 1-hour, 4-hour and 96-hour forecast horizons using the multivariate LSTM-based 

transfer learning model: (a) KB-3 (b) KB-2

Interestingly, the AME values for the lightpath-2 models are 

of the same order of magnitude as for the lightpath-1 models 

(in the 1.00-1.24 dB range), unlike those for lightpath-3, 

which are lower (0.20 – 0.49 dB), although the width of the 

SNR distribution for lightpath-2 is narrower than that for 

lightpath-1 and lightpath-3. This could potentially be 

explained by the similar range of SNR values in KB-2 and 

KB-1 (2.38 and 2.35 dB, respectively) and that they are almost 

twice the range of KB-3’s SNR values (1.24 dB). 

Finally, the models using transfer learning are faster to run 

than the classic training models for both KBs, with execution 

times of up to 53 ms for the models using transfer learning, 

compared to 320 ms for the basic models. Furthermore, the 

average training time for models using transfer learning is up 

to 25 minutes, compared to 75 minutes for the basic training 

models. The models were executed on a system with a 

2.5 GHz Intel® Core ™ i5-7200U processor, 8 GB RAM. 

Shorter training and execution times are precisely one of the 

benefits of transfer learning in cases where the databases are 

not sufficient to train and test the model. In such cases, the 

transfer learning approach can reduce the training time of the 

forecast models up to about 6 times and the calculation time of 

the forecast models up to 3 times. 

Fig. 11 shows the predicted SNR vs. the observed SNR at 

the 1-hour, 4-hour and 96-hour forecast horizons for the 

multivariate LSTM-based transfer learning model. The plots 

for the models using KB-2 are more concentrated around the 

dotted line than those using KB-3, which shows a better 

forecast accuracy for the lightpath carried in the same optical 

fiber. Note that the choice of data for the target domain has an 

impact on model performance. The more the target data has 

the same distribution and information as the source data, the 

better the performance of the model. When the approach of 

transferring the weights of the networks in the source domain 

is chosen, the target domains inherit source domain 

information. And this strategy produces satisfactory 

performance in scenarios where there is a similarity between 

source and target domains. In this study, the KB-2 target data 

comes from the same optical fiber as the KB-1 source data and 

the range of SNR values is approximately the same. 

Overall, these preliminary results show the potential to 

reuse forecast models previously trained with data from one 

lightpath to predict the performance of other lightpaths carried 

in the same optical fibers through transfer learning. The 

performance of the multivariate LSTM-based transfer learning 

model is better than the naive method, with an advantage in 

terms of RMSE and AME. 

VII. CONCLUSIONS 

In this work, we proposed two multivariate LSTM and 

GRU models, referred to as LSTM-M-1 and GRU-M-1 

respectively, to forecast the SNR of a 1300-km lightpath 

(lightpath-1). The historical performance metrics used were 

the pre-FEC BER, the channel received power and DGD, as 

well as the outside temperature and period of the day. The 

models were implemented, trained and tested using a set of 5 

features over a 13-month observation period. The results show 

that the multivariate models performed slightly better than 

their univariate counterparts and a persistence model, with 

lower AME and higher R
2
 scores for horizons lower than 96-

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2021.3110513

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

13 

hour. In fact, even if the multivariate models are very close (in 

terms of RMSE performance), the multivariate LSTM-M-1 

model stands out across all the short-term forecast horizons 

and exhibits the smallest maximum error values, with 

maximum error differences of up to 0.08 dB, 0.17 dB and 

0.28 dB compared to the multivariate GRU-M-1, the 

univariate GRU and the univariate LSTM models, 

respectively.  

In addition, a statistical analysis performed on the dataset 

for feature reduction revealed that the channel power was the 

best additional feature (amongst the 5 available features) to 

use along with historical SNR values for predicting future 

SNR over time horizons of up to 96 hours. The resulting 2-

feature multivariate models underperformed the 5-feature 

models and the univariate models, but they outperformed the 

naive method and could be run in much shorter execution time 

than the 5-feature multivariate models and univariate models. 

Finally, to explore the concept of transfer learning, the best 

performing multivariate LSTM forecast model built using KB-

1 was fine-tuned using smaller datasets from a lightpath 

deployed in the same optical fiber on a shorter portion of the 

same route (lightpath-2) and from a lightpath carried in the 

optical fiber in the opposite direction on the same route 

(lightpath-3). It was possible to forecast the SNR for lightpath-

2 carried in the same optical fiber as the source domain with 

an RMSE difference of up to 0.01 dB compared to the naive 

model, while maintaining an AME advantage of up to 

0.13 dB. However, the LSTM model underformed the naive 

models across all forecast horizons for lightpath-3 carried in a 

different optical fiber. Based on these preliminary results, 

transfer learning could be a promising solution for short-term 

forecast horizons for lightpaths carried in the same optical 

fiber of the same route.  

Overall, the best performance was achieved by using the 5-

feature LSTM model. The model performed better than both 

the multivariate GRU and the univariate LSTM and GRU 

models in forecasting lightpath SNR to up to a 96-hour 

forecast horizon. Moreover, computation times for the 

multivariate models do not increase with the forecast horizon, 

contrary to the computation times for the univariate models, 

which increase as the forecast horizon increases.  

The potential benefits of multivariate models for predicting 

lightpath performance has been demonstrated in this paper by 

using field datasets made available by a network operator. 

Further work will be required to validate the results using 

bigger PM datasets including additional features and network 

topology information. The growing AME benefit of the ML 

models with respect to the naive model as the forecast horizon 

lengthens also suggests that ML forecast models would 

deserve to be studied for horizons exceeding 4 days. Future 

work will also include automated optimization of 

hyperparameters at each forecast horizon to improve the 

performance of the models regardless of the dataset and 

horizon. Finally, in order to analyze the impact of the transfer 

learning on the SNR prediction, future work will focus on the 

comparison of conventional prediction models and models 

using several datasets from multiple sources. 
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