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Abstract

Coronary artery disease is the leading cause of mortality worldwide. Almost

seven million deaths are reported each year due to coronary disease. Coronary

artery events in the adult are primarily due to atherosclerosis with seventy-five

percent of the related mortality caused by plaque rupture. Despite significant

progress made to improve intravascular imaging of coronary arteries, there is

still a large gap between clinical needs and technical developments. The goal of

this review is to identify the gap elements between clinical knowledge and recent

advances in the domain of medical image analysis. E�cient image analysis com-

putational models should be designed with respect to the exact clinical needs,

and detailed features of the tissues under review. In this review, we discuss

the detailed clinical features of the intracoronary plaques for mathematical and

biomedical researchers. We emphasize the importance of integrating this clinical

knowledge validated by clinicians to investigate the potentially e↵ective models

for proper features e�ciency in the scope of leveraging the state-of-the-art of

coronary image analyses.
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1. Introduction

Atherosclerosis is recognized as the main cause of cardiovascular disease and

the leading cause of death worldwide. Plaque development, progression, and

rupture caused by atherosclerosis result in myocardial infarction and stroke,

which are respectively the first and the fifth causes of death [1, 2]. Advances5

in interventional cardiology, the catheter-based treatment procedure of heart

disease, could improve the treatment strategy and contribute to assist millions

of patients, thus avoiding coronary bypass surgery [3, 4]. But before any treat-

ment, cardiologists need to understand the type, location, and the level of pro-

gression of the atherosclerotic plaques to personalize their treatment strategy.10

Understanding the plaque morphology and its sub-components is fundamental

to assist clinicians by providing them with the accurate information of plaque

progression. This is where advanced cardiovascular imaging systems play the

role of providing automatic plaque morphology assessment. Investigating the

performance, e↵ectiveness, advantages, and limitations of the cardiovascular15

imaging systems in plaque morphology accuracy as well as the clinical needs are

the first important steps to define the e↵ective scientific research projects. As

we take these first steps firmly and correctly, new image analysis computational

models and artificial intelligence algorithms come into play to fulfill the needs

e�ciently.20

The main goal of this review article is to strictly underline a very critical

fact that technical and clinical needs in development of medical imaging systems

are tightly linked to each other. The focus of the survey is not only to assess

the existing computational models proposed for analyzing the OCT images, but

also to highlight a significant factor to be considered in the field of research and25

development, which is understanding the clinical aspects of the problem prior

to developing any computational model. This is important since most of the

time, the proposed models are not useful in clinical applications although they
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are all grounded on very strong mathematical concepts. The reason is that the

clinical needs have not been targeted correctly or the clinical features of the30

tissues under review have not been investigated and understood for designing

an applicable analytical model. This is a repeating cycle which is taking our

research far from being advanced in terms of clinical use. In this review, we aim

to provide a reference for clinical aspects of the atherosclerotic coronary artery,

and the features of such atherosclerotic tissues in OCT images.35

We review the trending clinical needs, display the di↵erence between various

coronary artery sequelae and plaques, and we review the emerging technical

solutions for identifying, characterizing, and predicting the rupture of the vul-

nerable plaque. We address the issues from the following angles:

• Explore the existing intravascular imaging systems and their limitations40

(section 2).

• Describe the normal structure of coronary artery and visualization of var-

ious arterial wall tissues in OCT images (section 3).

• Review the process of atherosclerotic plaque development and clinical fea-

tures of plaques and other atherosclerotic tissues in OCT images (section45

3).

• Discuss the technical innovations, which should be considered to improve

the imaging systems.

• Review the existing technical studies to investigate the needs and further

technical improvements (section 4).50

• The limitations of recent studies, the clinical needs, and possible future

development of the state-of-the-art intravascular imaging is discussed in

section 5.

• Section 6 is a summary with conclusion remarks on findings from the body

of the paper.55

3



Sections 2,3, and 5 present specifically the interventional cardiologists’ views.

For related technical studies, we considered sixteen related works, which were

performed in 2019-2021 to improve the plaque indication in intravascular Opti-

cal Coherence Tomography imaging. The studies are assessed based on targeted

clinical needs, and the designed computational models based on machine learn-60

ing and deep learning approaches in various stages of the disease.

2. Review of the intravascular imaging systems

Intravascular imaging evolved in response to the limitations of the cardiac

imaging systems to indicate intracorornay plaque morphology and their sub-

components. For x-ray based imaging systems, the penetration depth is in-65

versely proportional to tissue density. Intravascular structures cannot be deter-

mined by radiography unless they become calcified to attenuate more radiation

and are visualized radiopaque. This is the main limitation of invasive coronary

angiography (CA), and non-invasive coronary computed tomographic angiogra-

phy (CCTA), which are both in the category of cardiovascular anatomic imag-70

ing systems. Consequently, both systems are limited to indicate intracoronary

plaque sub-components [5, 6, 7, 8]. Compared against x-ray-based imaging sys-

tems, Magnetic Resonance Angiography (MRA) should have better soft-tissue

characterization as well as lacking harmful radiation. Despite the strength, in

coronary circulation, MRA is not recommended to be used. High quality coro-75

nary image acquisition using MRA is challenging considering its motion artifacts

caused by extended acquisition time, low spatial resolution, and low volumetric

coverage [9, 5, 6, 8].

Detailed indication of plaque morphology is possible by imaging the arterial

wall in cross-sectional view. Intravascular Ultrasound (IVUS) is a catheter-80

based imaging system. The IVUS catheter generates sound wave in the range

of 20 to 60 MHz and provides gray-scale cross-sectional images of arterial wall

tissues. IVUS is limited to indicate plaque components. Using virtual histol-

ogy (VH-IVUS), spectral analysis of back-scattered IVUS radio-frequency data,
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characterization of four plaque types is possible. Although VH-IVUS can in-85

dicate fibrous, fibrofatty, necrotic core, and dense calcium, but detection of

the thin cap fibroatheroma, which is the most important predictor of plaque

rupture is not possible using VH-IVUS. The limitation is due to noise enhance-

ment, system artifacts, and low spatial resolution of the system (100-150 µm)

[5, 10]. Optical Coherence Tomography (OCT) is an interferometric imaging90

modality with high resolution that maps the back-scattered near-infrared light

to create cross-sectional images of the tissues under review. OCT is a turning

point in medical imaging techniques. Intravascular OCT has become an increas-

ingly powerful tool in interventional cardiology with the highest resolution of

10-15 µm to provide detailed intracoronary tissue information, including various95

elements of vascular wall infiltration, and indication of atherosclerotic plaque

morphology. Despite its high resolution, there is no harmful radiation involved,

and image acquisition is very fast with minimum risk for patients (excluding

the risk inherent to the invasive nature of the image acquisition). Compared

against other intracoronary imaging systems, this state-of-the-art imaging sys-100

tem has incredible advantages. But OCT has some important limitations to be

addressed [11, 5, 12]. Various generations of the OCT system were developed

to ease the interpretation of the OCT images such as multi-modality IVOCT

imaging and dual-modality catheter endoscope. Although the new generations

of the OCT system could improve the quality of the acquired images, but inter-105

pretation of various pathological tissue types remains challenging [13, 14]. As

the main limitation, interpretation of the acquired images is operator depen-

dent, which is not only very time-consuming but also highly error prone from

one observer to another. The gap is identified as being the lack of a precise and

accurate automated technology for analyzing OCT images of coronary artery,110

which would enable widespread use of this technology for diagnosis and inter-

vention purposes. Being innovative to design a technique, which can accurately

address this issue of the OCT imaging system, we have to understand the exact

mechanism and clinical features of the atherosclerotic plaques. Full understand-

ing of the plaque formation mechanism depends on comprehensive knowledge115
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of the structure and functionality of normal arterial wall.

3. Intracoronary plaque development & rupture

3.1. Normal coronary artery

Normal arterial wall has three-layered structure. Intima is the first and clos-

est layer to the arterial lumen, which is covered by single layer of endothelial120

cells. Normal intima is nourished by oxygen di↵usion of the lumen. Endothe-

lial cells have significant responsibilities in arterial wall functionality. They

are responsible to provide anti-thrombotic molecules to prevent blood clot. In

addition, they secrete substances (vasodilators and vasoconstrictors) to adjust

contraction of the smooth muscle cells (SMCs) in the media layer. To deal with125

the local inflammations and adjust the immune responses, endothelial cells re-

sist leukocyte adhesion, which are white blood cells of immune system. It is

very important to know that being exposed to di↵erent stressors, endothelial

cells can produce pro-thrombotic molecules[1]. Intima is visualized as homo-

geneous signal-rich layer in OCT images. It is di�cult to specify the exact130

thickness of the intima layer by pathology since intima thickness depends on

various factors such as age, gender, and bio-mechanical characteristics. But, in

OCT, the thinnest intima is defined as intima layer with the thickness of 4-5µm,

which becomes thicker by age. Intima layer with the thickness of 300-600µm is

considered as non-atherosclerotic intimal thickening [15]. Media is the second135

and thickest layer of normal arterial wall, which is mainly responsible of elastic

functions of the artery. It is nurtured by vasa vasorum in the outermost layer of

arterial wall, adventitia. Two boundaries of elastin called internal and external

elastic lamina separate media from intima, and adventitia respectively. Media

composed of SMCs and extracellular matrix (ECM), which they tightly work140

together. SMCs not only provide vasoactive and inflammatory mediators, but

also they synthesize the collagen, elastin, and proteoglycans, which form the

bulk of ECM. ECM is responsible for retaining the structural integrity of the

arterial wall, which composed of collagen, and elastin. Collagen provides the

6



Figure 1: OCT image of normal arterial wall: Intima is visualized as a signal-rich layer,

Media is shown as a signal-poor layer by OCT, adventitia is characterized as a signal-rich

layer. Internal and external elastic laminae are shown as signal-rich bands with dashed and

filled lines respectively [15].

bio-mechanical strength of the artery to avoid failure at high pressure, while145

elastin provides flexibility and control the reversible extensibility of the arterial

wall during cardiac cycles[1, 16]. Media layer is characterized as a signal-poor

layer in OCT images with the thickness of 125-350µm. Internal and external

elastic lamina are signal-rich bands in OCT images with the thicknesses < 3µm,

and 3-6µm respectively (figure1) [15].150

3.2. Atherosclerosis and plaque development

Atherosclerosis initiates by accumulation of low-density lipoprotein (LDL)

in the arterial wall, which results in an active inflammatory process. Various

factors contribute to the inflammatory process of atherosclerosis, which can be

categorized accordingly: Endothelial dysfunction, accumulation of lipids in the155

intima layer, deployment of leukocytes and SMC to the vessel wall, foam cell

formation, and deposition of ECM [1]. Based on the classification of atheroscle-

rotic lesions by the American Heart Association (AHA) [17], development of

atherosclerosis includes various stages: 1. Non-atherosclerotic intimal thicken-

ing as a result of SMCs accumulation in the intima while lipid or macrophage160

foam cells are not developed in this stage. 2. Fatty streak or intimal xanthoma

which appears as a result of accumulation of foam cells in the luminal side of the
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arterial wall while no necrotic core and fibrous cap are seen in this stage of the

disease. 3. Pathological intimal thickening is defined as accumulation of SMCs

in a proteoglycan-rich matrix with areas of extracellular lipid accumulation while165

there is no sign of necrotic core. This stage of the disease can be followed by

the luminal thrombus 4. Fibroatheroma (fibrous cap atheroma) is developed as

a result of the necrotic core formation with an overlying fibrous cap. This stage

can be followed by luminal thrombus. 5. Thin cap fibroatheroma (Thin fibrous

cap atheroma) which is characterized by infiltration of macrophages and lym-170

phocytes with SMCs and an underlying necrotic core. This stage can be followed

by plaque rupture. 6. Fibrocalcific plaque which is a collagen-rich plaque with

large calcification and few inflammatory cells. This results in a severe stenosis

with or without necrotic core development. The process of plaque development

is explained in the following sections.175

3.2.1. Intimal thickening

Non-atherosclerotic intimal thickening

Accumulation of SMCs and proteoglycan-rich ECM results in intimal thick-

ening. In the absence of the inflammatory infiltration, lipid accumulation, and

macrophage foam cells, the intimal thickening is considered as non-atherosclerosis.180

Although this type of intimal thickening occurs in atherosclerosis-prone arteries

including coronary artery, but they do not result in atherosclerosis necessarily.

In OCT, non-atherosclerotic intimal thickening is visualized as signal rich re-

gion with the thickness of 300-600 µm [1, 15]. Figure 2 shows partial intimal

thickening with partial media disappearance in OCT images.185

Pathological intimal thickening

Pathological intimal thickening (PIT) is the earliest stage of the atheroscle-

rotic lesion formation. In histological point of view, PIT is characterized by

intimal thickening > 600µm with small area of lipid pool ( < 1 quadrant of

the OCT cross-sectional image), which may follow by macrophage accumula-190

tion in luminal side of the lipid pool (figure 3). Micro-calcification emanated by
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Figure 2: Part of OCT coronary cross-section with partial intimal thickening and media

disappearance [15].

Figure 3: Pathological intimal thickening/fibrous plaque. (a) shows the original OCT image.

(b) is annotated OCT image: F:Fibrous tissue, L: Lipid pool, i: Intima, m: Media, and a:

Adventitia. Corresponding histological sections are shown in (c) and (d) [15].

SMCs, and free cholesterol crystals can be found in lipid pools as well (figure

4) [18, 19, 1, 15].

3.2.2. Fibrocalcific plaque

Intimal calcification is the most common type of calcification. The process of195

calcification formation and progression is not completely known. Apoptosis of

SMCs and macrophage may contribute in development of fibrocalcific plaques.

Lowest grade of calcification is seen in pathological intimal thickening close to

internal elastic lamina and healed plaque rupture followed by fibroatheroma

show the highest grade of calcification. It is important to mention that stable200

plaques are more calcified than vulnerable plaques. Calcification is visualized in

OCT images as sharply delineated signal-poor regions (figure 6) [20, 19, 1, 15].
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Figure 4: Examples of intimal thickening with macrophage infiltration, cholesterol crystal,

and micro-calcification, which are shown with arrows in (a), (b), and (c) respectively.

Figure 5: OCT images with micro-vessels: (a) Original image, (b) annotated image. Corre-

sponding histological sections are shown in (c) and (d) [15].

Figure 6: Calcification in OCT imaging: (a) Original OCT image, (b) Annotated image: F:

Fibrous tissue, t: Fibrous tissue with low signal intensity, i: Intima, m: Media, a: Adventitia,

(c) Corresponding histological image [15].
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Figure 7: Example of early-stage fibroatheroma with lipid pool/necrotic core. (a) Original

OCT image. (b) Annotated OCT image: FC: Fibrous cap, i: Intima, m: Media, a: Adventitia,

L: Lipid pool, start shows lipid pool/necrotic core. Corresponding histological images are

shown in (c) and (d) [15].

3.2.3. Fibroatheroma

In progressive atherosclerosis, secreting proteolytic enzymes particularly ma-

trix metalloproteinases (MMPs) at luminal border of the plaques degrade the205

collagen and allow infiltration of SMCs. This results in thinning the fibrous

cap and remodelling of the arterial wall. Macrophages act as mediators in re-

sponse to the remodelling of the vessel, which leads to excessive infiltration of

macrophages. Death macrophages create necrotic core, which is surrounded by

fibrous cap. This is the most important characteristic of fibroatheroma as a sign210

of progressive stage of the atherosclerosis process. Fibroatheroma progression

associates with di↵erent stages of the necrotic core formation, which results in

either early-stage or late-stage fibroatheroma. Early-stage fibroatheroma is dis-

tinguished by presence of the proteoglycans in the lipid pool and macrophage

accumulation (figure 7). Late-stage fibroatheroma is characterized by the exces-215

sive amount of cellular debris, free cholesterol, calcification, intra-plaque haem-

orrhage, and fully evacuated ECM (figure 8). Fibroatheroma is distinguished

in OCT images with signal-poor regions of lipid pool and necrotic core. Since

necrotic core is not distinguishable by OCT, lipid pool/necrotic core is con-

sidered as a single signal-poor region in the OCT images and commonly this220

region takes > 1 quadrant of the arterial cross-section. Fibrous cap thickness

is an indicator of plaque vulnerability and is categorized as follows: 1. Fibrous

cap thickness < 55 µm is related to ruptured plaques. 2. Fibrous cap thickness
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Figure 8: Example of late-stage fibroatheroma with necrotic lipid pool/necrotic core, micro-

vessels, and intra-plaque haemorrhage. (a) Original OCT image. (b) Annotated OCT image:

FC: Fibrous cap, and star shows lipid pool/necrotic core region. Corresponding histological

images are shown in (c), and (d): NC: Necrotic core, red arrows show micro-vessels, and black

arrows represent intra-plaque haemorrhage [15].

Figure 9: Example of thin-cap fibroatheroma with fibrous cap thickness of 65 µm. (a)

Original OCT image. (b) Annotated OCT image: FC: Fibrous cap, F: Fibrous tissue, stars

show lipid pool/necrotic core region, direction of light beam is shown in red, and signal rich

band is shown in yellow. Corresponding histological images are shown in (c), and (d): Yellow

dots show macrophages [15].

> 84 µm is defined as stable fibroatheroma. 3. Fibrous cap thickness in the

range of 55-84 µm is characterized as thin cap fibroatheroma (TCFA). TCFAs225

usually have necrotic core arcs > 120� (figure 9) [1, 15, 21, 22, 23].

3.2.4. Determinants of plaque rupture

Atherosclerosis is a complex inflammatory disease of coronary artery. Macrophage

accumulation is the most important and the main factor and e↵ector of the

inflammatory process, which associates with almost all stages of the atheroscle-230

rotic plaque development and progression. In early stages of the disease, macrophages

infiltrate in intima to respond the cholesterol uptake, and LDL phagocytosis,

which results in foam cell formation. Macrophages are characterized by OCT

as signal-rich bright bands or spots with a dorsal shadow in the direction of
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Figure 10: Example of thrombus: (a) Original OCT image. (b) Annotated OCT image: C:

Calcification, T: Thrombus. Corresponding histological image is shown in (c) [15].

the light ( one example is shown in figure 4) [24, 1, 15]. By progression of235

the atherosclerosis, in intimal thickening of about 500 µm, hypoxia, lack of

optimal oxygen supply in intima, results in progression of micro-vessels. Micro-

vessels density depends on chronic inflammatory cell infiltration. Due to their

defective endothelial junctions, micro-vessels are characterized by weak and per-

meable structure, which results in invasion of lipids and inflammatory cells into240

the intima and intraplaque haemorrhage, which they can highly contribute in

plaque vulnerability. Micro-vessels are shown in OCT images as rounded signal-

poor structures (figure 5). Extensive macrophage infiltration results in plaque

rupture, which causes coronary thrombosis and acute coronary syndrome. Coro-

nary thrombus is categorized in two types: 1. White thrombus is composed of245

platelets and fibrin, which is visualized as homogeneous signal-rich region in

OCT images. 2. Red thrombus is composed of the red blood cells, and char-

acterized by OCT as signal-poor region since blood highly attenuates the light

(figure 10) [1, 15, 25].

As it was mentioned previously in this review article, medical imaging sys-250

tems play significant role in early detection, diagnosis, e↵ective decision-making

and treatment of the disease. Interpretation of the medical images by human

experts including radiologists, clinicians, and trained technicians is non-accurate

and highly challenging considering high variation of pathological features of the

disease and possible human errors. We investigated the state-of-the-art imaging255

system for coronary plaque indication and understood the mechanism of plaque

development and clinical features of the coronary plaques. Now it is the time to
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integrate machine learning approaches and design proper computational models

which can provide clinicians with a real-time fully analytical model of coronary

artery with high precision. To this end, we refer to recent related technical260

studies to realize what needs to be done further considering the limitations of

the existing studies in both technical and clinical aspects.

4. Review of algorithms & their applicability in image interpretation

Artificial intelligence, computer-aided models, is rapidly evolving in various

medical fields. Due to their high fidelity and e�ciency, these machine learning-265

based, and specifically deep learning-based techniques can improve medical im-

age analysis for fast and accurate interpretation of the medical images [26, 27].

Therefore, deep learning is widely used to provide accurate analysis of the im-

ages in various medical fields. The most important characteristic of deep learn-

ing models is their strength to extract features, which can accurately provide270

distinctive descriptions of various tissue types [28, 29, 30, 31]. In this section,

we focus on reviewing the most recent studies related to the coronary plaque

characterization using OCT imaging.

A CNN-based approach was used by Athanasiou et al, for patch-based clas-

sification of coronary plaques including calcium, lipid, fibrous, mixed tissues,275

and non-pathological tissues. Training and validation was performed on OCT

images of 26 patients (the total of 700 cross-sections). Pre-processing was per-

formed using bilateral filtering, and K-means approach to detect the arterial

wall prior to applying CNN for tissue classification [32]. Although the work

is interesting to classify di↵erent plaques, but there are some limitations to be280

considered. In clinical point of view, definition of non-pathological arterial wall

should be clarified. Also, there are other significant factors of plaque develop-

ment and rupture such as macrophage infiltration, type of fibroatheroma and

micro-vessels that are not considered in this study. In technical point of view,

pre-processing steps are time-consuming and may result in losing important in-285

formation. It is di�cult to generalize the pre-processing steps to all the cases
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considering the artifacts of the system, and disease progression stage, which

can completely deform the arterial wall. Also, patch-based CNN has some

limitations. Pre-processing steps are required considering the huge computa-

tion time, patch size selection is challenging, and redundant feature extraction290

process because of overlapping patches is another limitation of the patch-based

classification using CNNs. Ren et al proposed another patch-based classification

approach using CNN to detect lipid and fibrous plaque. As pre-processing steps,

intensity based approaches were used to detect catheter. Lumen boundary was

detected by applying dilation and erosion. Then, the images were cropped based295

on the lumen boundary to reduce the image size and make the feature extrac-

tion process faster. Proposed CNN model was inspired by the VGG architecture

[33].

Miyagawa et al proposed a CNN-based approach to detect vascular bifur-

cation using OCT imaging. Although this study is not concentrated on the300

atherosclerotic plaque characterization, but the risk of atherosclerosis is higher

in vessel bifurcation. This can be an important complementary study to be

considered. In technical point of view, the pre-processing was performed in

various steps including binarization, morphological gradient, Hough transform,

and cropping. Then, combination of four di↵erent CNN architectures were305

used to detect the region with bifurcation in the images [34]. Normalized-

intensity standard deviation (NSD) was used to detect regions of the arterial

wall with macrophage accumulation by Rico et al. An intensity-based method

was used to detect the punctuated signal rich areas of the arterial wall followed

by the signal-poor area with high and low NSD value respectively [35]. Al-310

though macrophage infiltration is associated with every stage of the atheroscle-

rotic plaque development, but it is not coronary plaque by itself. Moreover,

intensity based characterization of macrophage is not accurate since residual

blood, which highly attenuates the light, can create the same visualization as

macrophage in the OCT images. The signal-poor area followed by the punc-315

tuated signal-rich area can be lipid pool, which is not necessarily followed by

the macrophage infiltration, specifically in early stages of the atherosclerosis
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development. A deep residual U-net was designed for binary classification to

discriminate between the areas in the OCT images with vulnerable plaques ver-

sus other tissues. Resnet101-based U-net was modified by adding the residual320

units to the network architecture. Loss function was replaced by a combination

of weighted cross-entropy loss and dice coe�cient to improve the segmentation

performance. The results were compared against the results of the Resnet50-

based U-net, Resnet101-based U-net, and VGG-based U-net [36]. Although the

work is very interesting, specifically to detect vulnerable plaques, but plaque325

types and vulnerable plaque components should be considered in future stud-

ies to assist clinicians in decision-making and personalized treatment strategies.

U-net is robust for binary classification. Although it is used for multi-class

classification problems, but the performance is not as accurate as binary clas-

sification. The other work was focused on discriminating between OCT images330

with and without fibroatheroma. Pre-processing steps and cropping the images

were performed to reduce the feature extraction computational burden. Then,

three types of features including Local Binary Patterns, Haar-like, and His-

togram of Oriented Gradients were extracted from the region of interest (arterial

wall). Support Vector Machine was used for binary classification to distinguish335

between images with and without fibroatheroma [37]. Although hand-crafted

features can provide a fair description of the tissues, but considering the chal-

lenges of the OCT images, detailed tissue information is required for better

representation and evaluation of the intracoronary plaques. Lipid, fibrous, and

calcified plaques were detected by Ren et al. An intensity-based approach was340

used for pre-processing to detect the catheter. Lumen border was detected by

considering local maximum of standard deviation. Multi-layer model was pro-

posed for classification task. Training and validation was performed using OCT

images obtained from seven patients [38]. The other study focused on detection

of lipid and calcified plaque from OCT images. Pre-processing was performed345

in five di↵erent steps to detect the lumen border, denoising, and extraction of

the region of interest. Then, ResNet was trained to segment lipid and calcified

tissues. Training and validation were performed on 57 OCT pullbacks obtained
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from di↵erent patients [39]. Using fully convolutional networks, pre-processing

is not required. Accurate choice of parameters at each layer of the network and350

right choice of loss function, which is sensitive enough for the segmentation task

create a fast and precise network configuration to avoid pre-processing steps.

Secondly, the clinical need is not clear in this study. Pre-trained SegNet was

used to detect calcification and lumen area in OCT images. Conditional Ran-

dom Fields (CRFs) was applied to refine the classification results. The model355

was trained and validated on 34 OCT pullbacks [40]. The clinical need is not

clear in this study since calcification can be detected using coronary angiog-

raphy as well. Dong et al proposed a finite element method to evaluate stent

placement in calcified coronary arteries. Cross-sectional area, angle, and maxi-

mum thickness of the intracoronary calcified regions were quantified to analyze360

stent implementation [41]. This work is interesting since such information is

useful in accurate stent placement. Lack of information regarding the dimen-

sion, type, and location of the plaque in the process of stent placement can

result in plaque rupture. In the other study, combination of deep features and

hand-crafted features were used to detect lipid and fibrocalcific plaques versus365

other coronary tissues. Di↵erent pre-processing steps were performed to extract

the region of interest (arterial wall). Then, a CNN with three convolutional and

three fully connected layers was applied to extract deep features from the OCT

images. Combination of deep features and lumen morphology features were

used for classification task using Random Forest. At the end CRF method was370

used to refine the classification result [42]. Combination of deep features and

texture features were used to detect coronary plaques including lipid and calci-

fication. Random forest was used as the classifier [43]. Since detailed texture

information was included in deep features, this question should be investigated

that how much it is e�cient to combine texture or lumen morphology features375

with deep features to improve classification accuracy. Combination of U-Net-

and residual learning-based model was used for segmentation of intima, media,

lumen, guidewire shadow and plaques by [44]. The model does not characterize

the plaque types. A clustering method to discriminate between calcified versus
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other tissues using auto-encoders were proposed by [45]. Although creating the380

ground-truth for supervised learning is time-consuming but this method is not

validated on characterizing all types of atherosclerotic plaques. Attenuation

coe�cients are estimated for OCT images by [46]. These measurements and

investigations are important for better understanding of the optical properties

of various tissues, which is crucial in quantitative analysis of the OCT images.385

A complete model to analyze coronary artery in OCT imaging was proposed by

our team. Combination of CNN and FCN was used to design the model not

only to avoid pre-processing steps, but also to apply the end to end networks

for segmentation instead of using patch-based CNN. The model starts by eval-

uating the arterial wall to distinguish between normal three-layered structure390

and intimal thickening with media disappearance. If the arterial wall is recog-

nized as normal in the first step, various arterial wall layers (intima and media)

will be detected for accurate evaluation of each layer thickness in early stages

of the disease, which three-layered structure is maintained. If the arterial wall

is recognized as pathological in the first step, a FCN model is used to detect395

all possible plaques and pathological formations to be characterized by type in

the final step. Figure 11 demonstrates all the steps of our model, which will

be extended to characterize all types of the atherosclerotic plaques [47]. Recent

studies to indicate coronary plaque morphology is summarized in table 1.

5. Discussion400

Deep learning and machine learning methods are evolving to meet many

clinical needs. Before proposing mathematical solutions using physical concepts

and deep learning models, technical researchers need to understand the prob-

lem in detail. Teamwork between mathematicians, physicists, machine learning

and deep learning experts is required to converge with clinical needs. Con-405

ducting a successful and e↵ective research project, which can be applicable to

improve patient’s outcome has significant requirements. Without understanding

the process of plaque development and having adequate knowledge of clinical
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Figure 11: Deep learning based model for fully analysis of coronary arteries in OCT imaging

[47]
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Table 1: Recent studies concentrated on indication of plaque morphology in OCT images.

Reference Proposed method Contribution Model validation

[32] Patch-based CNN for

plaque classification.

Detection of calcium,

lipid, fibrous, mixed and

non-pathological tissues.

Accuracy varies from

73% to 93% based on

the tissue type.

[33] Patch-based CNN for

plaque classification

Detection of healthy tis-

sues, lipid and fibrous

plaque.

Accuracy, precision,

specificity, and sensi-

tivity vary as follows

respectively: 87% to

88%, 75% to 94%, 90%

to 94%, and 61% to 90%

[34] CNN-based classification Detection of vascular bi-

furcation

Depends on the network

architecture and in

Cartesian coordinate,

accuracy, specificity, and

precision respectively

vary as follows: 97% to

98%, 97% to 99%, and

96% to 98%

[35] Normalized-intensity

standard deviation

(NSD)

Detection of macrophage

accumulation

Using NSD, accuracy,

specificity, and sensitiv-

ity vary as follows respec-

tively: 53% to 88%, 54%

to 89%, and 51% to 84%
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Reference Proposed method Contribution Model validation

[36] Deep residual U-net for

binary classification

Detection of vulnerable

plaques versus other tis-

sues

Using U-

Net+ResNet101, mean

accuracy, mean preci-

sion, mean IOU, and

mean recall vary as fol-

lows respectively: 90%,

94%, 85%, and 91%

[37] Combination of LBP,

Haar-like, and HOG

features for classification

using SVM

Detection of fi-

broatheroma

Using all three types

of features, accuracy,

specificity, and sensi-

tivity vary as follows

respectively: 88%, 91%,

and 89%

[38] Multi-layer model for tis-

sue classification

Detection of lipid, fi-

brous, and calcified

plaques

Accuracy varies from

90% to 94% based on

the plaque type

[39] Pre-trained ResNet Detection of lipid and

calcification

Compared to other

methods, sensitivity,

specificity, and dice of

the proposed method

vary based on the plaque

type, which are respec-

tively reported as: 85%

to 98%, 70% to 90%,

and 82% to 90%
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Reference Proposed method Contribution Model validation

[40] Pre-trained SegNet Detection of calcification

and lumen area

Sensitivity, specificity,

and F1score respectively:

Lumen: 97% to 100%,

97% to 99%, 89% to

91%, Calcification: 76%

to 88%, 96% to 98%,

39% to 45%

[41] Finite element method Evaluation of stent

placement in calcified

coronary artery

Material coe�cients

were reported for this

study.

[42] Combination of deep

CNN features and hand-

crafted features to train

Random Forest

Detection of lipid and fi-

brocalcified plaques

Di↵erent features and

methods were compared

against each other in this

study.

[43] Combination of deep fea-

tures and texture fea-

tures for classification us-

ing Random Forest

Detection of lipid and

calcification

Sensitivity, specificity,

and dice after applying

CRF vary based on the

tissue type as follows:

67% to 97% for sensi-

tivity, 84% to 97% for

specificity, 63% to 89%

for dice.

[44] Combination of U-Net-

and Residual learning-

based models was used in

this study.

Detection of intima, me-

dia, lumen, guidewire,

and plaques.

Metrics are not reported

for all the tissue types.
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Reference Proposed method Contribution Model validation

[45] A clustering method us-

ing auto-encoders.

Discrimination between

calcified versus other tis-

sues.

The best average preci-

sion of the model ob-

tained for one-half clus-

tered as 76%.

[46] Estimation of attenua-

tion coe�cients for intra-

coronary OCT images.

Various optical parame-

ters were estimated.

Only measured parame-

ters were reported.

[47] Combination of CNN

and FCN models

Complete analysis of

coronary arteries in

OCT images

Accuracy, specificity,

and sensitivity respec-

tively vary as follows

based on the plaque

type: 90% to 95%, 95%

to 97%, and 84% to 90%.

features of the plaque formation, it is hardly possible to propose a model, which

can e�ciently address this problem. The clinical needs in the opinion of the410

interventional cardiologists lay the ground for future works based on the com-

putational models will help describing the exact features of the tissues under

review with the means of deep learning algorithms. Although interventional

cardiology created a new platform to help millions of patients avoid bypass

surgery, the current upper edge need is as follows: 1. Understanding the clin-415

ical features of the various coronary plaques in OCT images can improve the

inter-observer agreement in various degrees depending on the type of pathology

[48]. This improved interpretation comes following extensive focused training,

and yet remains sub-optimal to general practice. 2. Considering recent stud-

ies and discussing with di↵erent interventional cardiologists to understand the420

unmet needs, we realized that lack of an integrated automatic tissue character-

ization software system in OCT imaging for real-time high precision analysis of

intracoronary tissues remains a major problem.
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Applying artificial intelligence paradigms will overcome the following limi-

tations inherent to subjective operator-dependent interpretation:425

• Understanding the features of various plaques in OCT images requires

intensive training and visual interpretation of the OCT images is still

highly error prone.

• complete interpretation and manual detection of the various lesions may

take weeks and even months for clinicians given the di↵use nature of the430

coronary artery disease sequelae, which postpones the diagnostic process,

decision making, and possibility of the accurate personalized treatment

strategy for better patient’s outcome.

• The current cardiac imaging systems have many limitations when it comes

to detecting vulnerable plaques, those types of plaques prone to rupture.435

Considering the advantages and incredible functionality of the intravascu-

lar OCT imaging, evaluation and automatic indication of the vulnerable

plaques in OCT images is another important clinical need.

Considering the clinical features of the coronary plaques and various stages

of disease progression. We should divide our technical solution into three dif-440

ferent steps. Classification, segmentation, and prediction (figure 12). Since we

need to have an automatic analytical model of coronary artery, which can be

applied in real-time for immediate and accurate analysis of the images during

intervention, the models with pre-processing steps are not desirable for the fol-

lowing reasons: 1. Pre-processing steps are additional computational burden.445

2. We may lose some important information regarding tissue features during

pre-processing. 3. Pre-processing steps are not certainly generalized to all the

cases since we have vessel remodelling caused by the disease, which can result

in complete deformation of the arterial wall. There are various types of deep

learning architectures, which should be chosen wisely to design an appropriate450

model. Considering the related studies, CNNs are used in di↵erent studies for

segmentation purpose. CNNs are very strong feature extractors and can be
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trained and used e�ciently for classification purposes. Although patch-based

CNN can be used for segmentation task, but it has some important limitations:

1. Path-based segmentation using CNN is computationally very expensive be-455

cause patches are overlapped, which results in redundant feature extraction. 2.

Pre-processing steps are inevitable since we need to extract the region of inter-

est (arterial wall tissues) to reduce the computational time. 3. Choosing the

right patch size, which is not too small or too large considering the max-pooling

steps, is another challenge of using CNNs for segmentation task. Therefore,460

CNN models can be used mainly for feature extraction and classification, while

we are characterizing various types of plaques or tissues. On the other hand,

fully convolutional networks, which are trained end-to-end can be used for seg-

mentation tasks. The advantage of using them is that the arbitrary size of the

images can be used as the network input since there is no fully connected layer465

involved in the network architecture. Without involving the fully connected

layers, the number of parameters will be reduced considerably. This can highly

accelerate the process of network training. Therefore, the original images can

be fed to the network for segmentation. For any other type of deep learning

architectures, we need to investigate if they can properly be used to address the470

problems related to di↵erent stages of the disease (figure 12). It is also important

to note that the quantitative evaluations that we report in research papers are

important in research point of view but such measurements do not demonstrate

the readiness of the proposed model for clinical applications. Research usually

performs using limited data. The quantitative evaluations become important if475

the method will be applicable and it can be generalized to the challenging cases.

These evaluations are useful not only by testing a method on large datasets, but

also by evaluating its performance on various challenging cases.

6. Conclusion

In this review article, we investigate di↵erent aspects of the coronary artery480

disease from both clinical and technical perspectives. We aim to underline the
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Figure 12: Complete model to analyze coronary artery in OCT imaging. Deep learning models

should be chosen by considering the step of problem solving to select appropriate networks

for classification, segmentation, and prediction purposes.
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importance of having thorough and detailed knowledge of the clinical features of

the disease as well as the clinical needs to find the mathematical solution, which

can address the problem accurately. Since OCT is a turning point and powerful

tool in cardiovascular imaging for coronary plaque detection, we investigated its485

limitations to be addressed. Based on the discussions with di↵erent interven-

tional cardiologists, we realized that there is a clear need for an automatic fully

analytical model to accurately evaluate coronary artery in real-time using OCT

imaging. By reviewing the existing technical studies, we divide di↵erent steps

of the model into three categories of segmentation, classification, and prediction490

not only to detect coronary plaque morphology, but also to predict the plaques

prone to rupture using various machine learning approaches. Future studies can

be concentrated on the physics of the system during image acquisition and the

limitations such as low penetration depth of the OCT imaging, and the need

of blood clearance during image acquisition. We may also consider the opti-495

cal properties of the various plaque sub-components for detailed analysis of the

tissues.
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