
algorithms

Article

Enhanced Hyper-Cube Framework Ant Colony Optimization
for Combinatorial Optimization Problems

Ali Ahmid 1,*, Thien-My Dao 2 and Ngan Van Le 2

����������
�������

Citation: Ahmid, A.; Dao, T.-M.; Le,

N.V. Enhanced Hyper-Cube

Framework Ant Colony Optimization

for Combinatorial Optimization

Problems. Algorithms 2021, 14, 286.

https://doi.org/10.3390/a14100286

Academic Editors: Hsiang-Ling Chen,

Yun-Chia Liang, Mehmet Fatih

Tasgetiren and Quan-Ke Pan

Received: 30 August 2021

Accepted: 28 September 2021

Published: 29 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Independent Researcher, Montréal, QC H3C 1K3, Canada
2 Mechanical Engineering Department, École de Technologie Supérieure ÉTS, Montréal, QC H3C 1K3, Canada;

thien-my.dao@etsmtl.ca (T.-M.D.); vanngan.le@etsmtl.ca (N.V.L.)
* Correspondence: ali-elmbrok-salem.ahmid.1@ens.etsmtl.ca

Abstract: Solving of combinatorial optimization problems is a common practice in real-life engi-
neering applications. Trusses, cranes, and composite laminated structures are some good examples
that fall under this category of optimization problems. Those examples have a common feature of
discrete design domain that turn them into a set of NP-hard optimization problems. Determining the
right optimization algorithm for such problems is a precious point that tends to impact the overall
cost of the design process. Furthermore, reinforcing the performance of a prospective optimization
algorithm reduces the design cost. In the current study, a comprehensive assessment criterion has
been developed to assess the performance of meta-heuristic (MH) solutions in the domain of struc-
tural design. Thereafter, the proposed criterion was employed to compare five different variants
of Ant Colony Optimization (ACO). It was done by using a well-known structural optimization
problem of laminate Stacking Sequence Design (SSD). The initial results of the comparison study
reveal that the Hyper-Cube Framework (HCF) ACO variant outperforms the others. Consequently,
an investigation of further improvement led to introducing an enhanced version of HCFACO (or
EHCFACO). Eventually, the performance assessment of the EHCFACO variant showed that the
average practical reliability became more than twice that of the standard ACO, and the normalized
price decreased more to hold at 28.92 instead of 51.17.

Keywords: combinatorial optimization; Ant Colony Optimization (ACO); buckling load factor;
composite laminate

1. Introduction

Combinatorial optimization is devoted to the mathematical process of searching for
the optimal solution (maxima or minima) of an objective function with a discrete domain
of decision variables. The possible number of solutions for a combinatorial optimization
problem is equal to [D]n, where D is the discrete design domain vector and n represents
the number of design variables [1]. Therefore, the optimization problem becomes more
computationally difficult to be solved when the number of design variables increases.
Accordingly, many combinatorial optimization problems are hard to solve within determin-
istic polynomial time (or NP-hard). A Travelling Salesman (or TSP) is a typical example
of this type of optimization problem where the number of cities to be visited is given
and the shortest path needs to be determined [2]. As the number of cities increases, the
number of possible solutions increases too and this leads to the computational complexity
of the problem, where it is not possible to enumerate all these solution possibilities with
limited computation resources, such as memory size or processor speed. Furthermore,
many structural design problems fall under this category of optimization problems be-
cause of the discrete nature of their design domain. It makes the objective function a
multimodal (non-convex) function. As a consequence, the design space will have more
than one optimal solution which then turns the structure design into an NP-hard design
optimization problem. Trusses, beams, and composite structures are good examples of

Algorithms 2021, 14, 286. https://doi.org/10.3390/a14100286 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a14100286
https://doi.org/10.3390/a14100286
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14100286
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14100286?type=check_update&version=2


Algorithms 2021, 14, 286 2 of 19

real-life combinatorial optimization problems [3]. In recent years, several studies have been
published regarding the optimization of composite laminated structures [4]. This interest
of the research community has been driven by the shared property of high-specific strength
(or strength/weight ratio), thermal stability, corrosion resistance, and the high impact
strength of the composite materials [5]. Hence, to solve such problems, many optimization
techniques have been developed.

The Ant Colony Optimization (ACO) algorithm demonstrated a significant perfor-
mance improvement in solving NP-hard combinatorial optimization problems. The Trav-
eling Salesman Problem (TSP) is a good example of such problems and it is solved using
an early version of ACO [6]. The improvements in subsequent ACO algorithms focused
on enhancing the algorithm variants to yield better searching and computational per-
formance. As a result of the improved algorithm performance, many new applications
of ACO appeared, such as the probabilistic TSP using estimation based ACO in Weiler
and Biesinger’s [7] work. Gambardella and Dorigo [8] used a hybrid ACO with a novel
local search tool to solve the Sequential Ordering Problem (SOP). Zheng and Zecchin [9]
introduced a novel approach of ACO to optimize a water distribution system design.
Furthermore, the optimization of the space truss design, using improved ACO, was demon-
strated by Kaveh and Talatahari [10].

In the field of structural design problems, a well-known optimization problem of
Stacking Sequence Design (SSD) of composite laminate has been solved. It is done by
using ACO to determine the optimal stacking sequence design for maximum critical
buckling load factor or natural frequency [11]. Aymerich and Serra [12] examined the
ACO performance in solving the Stacking Sequence Design problem and he compared
a modified standard ACO performance with Genetic Algorithm (GA) and Tabu Search
(TS). He found that ACO performed much better than GA and TS in terms of solution cost
and quality. Rama Mohan Rao [13] presented a hybrid ACO–TS algorithm to optimize
the stacking sequence of a composite laminate subjected to bidirectional compression
loading. He concluded that ACO is an effective optimization technique if combined with
an appropriate local searching tool. Bloomfield and Herencia [14] conducted a comparison
study of three meta-heuristics of GA, ACO, and Particle Swarm Optimization (PSO) to
determine the optimal stacking sequence composite laminate. Based on the results of this
comparison study, ACO was found to outperform GA and PSO algorithms in the field of
Stacking Sequence Design (SSD). This remarkable performance of ACO in solving such
NP-hard combinatorial optimization is expected where it was designed to solve discrete
optimization problems [2].

The literature of SDD optimization is full of valuable contributions that advanced
our knowledge in this specific area. This subject of research still evaluates debates on
various issues, not only how we could achieve the desired maximum buckling load, but
also how we could make this happen efficiently at the lowest possible computational
cost. In this regard, selecting the optimization algorithm to solve a SDD problem was
not addressed clearly, i.e., most published studies do not explain why a certain algorithm
has been selected. Therefore, the selection of an efficient optimization algorithm needs
to develop a substantial compromise criterion to determine which MH becomes a cost-
effective solution for a SDD optimization problem. Well-defined selection criteria will
help to make the appropriate selection in this regard. Additionally, investigating possible
improvements of candidate MH exploration and exploitation features could lead to finding
a new cost-effective solution that defeats the solution obtained by the original MH.

In the current study, a comprehensive assessment criterion has been developed to
assess the performance of the meta-heuristic (MH) solutions in the domain of structural
design. Thereafter, the proposed criterion was employed to compare five different variants
of Ant Colony Optimization (ACO). This was done based on a well-known structural
optimization problem of laminate Stacking Sequence Design (SSD) [1].

The Enhanced HCF-ACO (EHCFACO) variant presented here is as novel optimizer
for structural design optimization problems. The standard HCF-ACO variant was never ex-



Algorithms 2021, 14, 286 3 of 19

amined before as a solver of any structural design optimization problems, to the best of our
knowledge, even though it has been used successfully to solve other NP-hard combinatorial
optimization problems. Furthermore, a comprehensive performance assessment criterion
for MHs was used to solve structural design problems. The new criterion introduced
new performance measures such as a fitness–distance correlation factor, performance rate,
and solution quality. Both the proposed MH and the comprehensive assessment criterion
presented here will help engineers optimize their designs more efficiently.

This paper is structured as follows: firstly, it presents a review of standard ACO
followed by a brief description of other considered ACO variants; secondly, the new
optimization approach is explained in detail; then, the performance assessment criterion
is introduced, followed by the numerical experiments section; next, the results of the
performance survey are discussed; finally, the paper concludes with a summary of the
study’s research contributions, limitations, and prospective directions for future research.

2. Ant Colony Optimization Algorithms (ACOs)

Dorigo [6] developed the basic Ant Colony Optimization (ACO) algorithm, or Ant
System (AS), which is a metaheuristic approach inspired by the collaborative work of ants
in finding the source of food. The ants cooperate to find the best possible path from their
colony to the food source, Figure 1. Ants search cooperatively using pheromone trails.
During their searching tour, the ants communicate by depositing a certain amount of a
substance, called the pheromone, on their way to the food site. The following group of
ants tends to follow the paths with higher pheromone concentration. Over time, the less
selected paths gradually lose information due to the pheromone evaporation process.

Algorithms 2021, 14, 286 3 of 20 
 

The Enhanced HCF-ACO (EHCFACO) variant presented here is as novel optimizer 
for structural design optimization problems. The standard HCF-ACO variant was never 
examined before as a solver of any structural design optimization problems, to the best of 
our knowledge, even though it has been used successfully to solve other NP-hard combi-
natorial optimization problems. Furthermore, a comprehensive performance assessment 
criterion for MHs was used to solve structural design problems. The new criterion intro-
duced new performance measures such as a fitness–distance correlation factor, perfor-
mance rate, and solution quality. Both the proposed MH and the comprehensive assess-
ment criterion presented here will help engineers optimize their designs more efficiently. 

This paper is structured as follows: firstly, it presents a review of standard ACO fol-
lowed by a brief description of other considered ACO variants; secondly, the new optimi-
zation approach is explained in detail; then, the performance assessment criterion is in-
troduced, followed by the numerical experiments section; next, the results of the perfor-
mance survey are discussed; finally, the paper concludes with a summary of the study’s 
research contributions, limitations, and prospective directions for future research. 

2. Ant Colony Optimization Algorithms (ACOs) 
Dorigo [6] developed the basic Ant Colony Optimization (ACO) algorithm, or Ant 

System (AS), which is a metaheuristic approach inspired by the collaborative work of ants 
in finding the source of food. The ants cooperate to find the best possible path from their 
colony to the food source, Figure 1. Ants search cooperatively using pheromone trails. 
During their searching tour, the ants communicate by depositing a certain amount of a 
substance, called the pheromone, on their way to the food site. The following group of 
ants tends to follow the paths with higher pheromone concentration. Over time, the less 
selected paths gradually lose information due to the pheromone evaporation process. 

 
Figure 1. Cooperative search of ants using pheromone trails. 

The virtual ants traveling and selecting paths can be interpreted as a probabilistic 
selection of certain nodes, of which they are part of the solution, in the path based on the 
pheromone value. The ACO general procedure is illustrated in Algorithm 1. 

Algorithm 1 Ant Colony Optimization procedure. 
1: Initialization 
2: not satisfied) Do         
3:       Construct Solutions Table by Ants 
4:         Local Search (optional) 
5:         Global Pheromones Updating 
6: End ACO algorithm 

Figure 1. Cooperative search of ants using pheromone trails.

The virtual ants traveling and selecting paths can be interpreted as a probabilistic
selection of certain nodes, of which they are part of the solution, in the path based on the
pheromone value. The ACO general procedure is illustrated in Algorithm 1.

Algorithm 1 Ant Colony Optimization procedure.

1: Initialization
2: While (termination criteria not satisfied) Do
3: Construct Solutions Table by Ants
4: Local Search (optional)
5: Global Pheromones Updating
6: End ACO algorithm

To understand the mathematical interpretation of ACO, there is a need to go through
each step of the ACO procedure shown in Algorithm 1. ACO starts with initial values of
the pheromone trail τ0, set to a small value for all ant trails as this gives all nodes j of the



Algorithms 2021, 14, 286 4 of 19

design variable i, an equal probability of selection. Next, each ant starts to construct its
own solution by applying the rule of selection, which has the following general form:

p(k)ij =
τα

ij ·η
β
ij

∑jεNk
i

τα
ij ·η

β
ij

, ∀ j ∈ Nk
i (1)

p(k)ij represents the probability of selecting the path i j for the kth ant, τij is the updated
pheromone trail, ηij denotes the value of heuristic information for each feasible solution

s, N(k)
i indicates the neighborhood nodes of the kth ant, when it is located at node i and

α, β are the amplification parameters for pheromone trials and the influence of heuristic
information on the algorithm behavior, respectively [15]. At the end of each tour, all the
pheromone trails are updated through two steps of pheromone evaporation and depositing,
according to the following formula:

τ
k(t+1)
ij = (1− ρ)·τk(t)

ij +
n

∑
k=1

∆τ
k(t)
ij (2)

where ρ is the evaporation rate, ρ ∈ (0, 1], and ∆τ
k(t)
ij is the amount of deposited pheromone

by ant k(t) that could be determined as:

∆τ
k(t)
ij =

Q
Lk(t)

(3)

where Q is a constant and Lk(t) represents the distance traveled by ant k(t). Equation (3) is
the basic form of the pheromone trail updating which is used to solve the TSP optimization
problem and it could be implemented in more general form:

∆τ
k(t)
ij =

{
ξ· fworst

fbest
, if i, j ∈ global best solution

0, otherwise
(4)

where fworst, fbest are the worst and the best values of the objective function f obtained by
N ants in tour t and x is the global pheromone scaling factor [16]. Eventually, the ACO
loop continues until one of the termination conditions is met.

In a SDD optimization problem, the thickness of each ply (equivalent to the distance
between the cites in TSP) is assumed to be constant, so the heuristic information value,
h, will be constant all over the ant tours t which simplifies the probability of selection, in
Equation (1), into:

p(k)ij =
τα

ij

∑jεNk
i

τα
ij

, ∀ j ∈ Nk
i (5)

Local search
The procedure of the ACO algorithm includes the option of improving the intensifica-

tion feature of the ACO algorithm by adding some local search algorithms or movements
that could improve the search of the solution neighborhood [2].

2.1. Elitist Ant Colony (EACO)

Gambardella and Dorigo [8] introduced an improved version of the ACO algorithm
that uses the elitism strategy. The idea behind this strategy is a reinforcement of the best
solution path found once the algorithm is initialized. The rule of pheromone updating for
EACO is written as follows:

τ
k(t+1)
ij = (1− ρ)·τk(t)

ij +
n

∑
k=1

∆τ
k(t)
ij +e·∆τ

k(tbest)
ij (6)



Algorithms 2021, 14, 286 5 of 19

∆τ
k(tbest)
ij =

fbest

∑n
k=1 fi

(7)

where the reinforcement of selection probability of the best path (tbest ) occurs by adding
the value of e·∆τ

k(tbest)
ij where e is the weighting parameter and it represents the number of

elitist ants [13].

2.2. The Rank-Based Ant Colony Optimization (RBACO)

Bullnheimer and Hartl [17] proposed a new extension of the ACO that enhances the
performance of the original EACO by ranking the ants based on their path length. The
deposited value of pheromone decreases according to its rank index, m. Moreover, only
the best ants, s, will be updated, which prevents the over-concentration of pheromones
on local optima paths chosen by other ants. Hence, the pheromone updating rule of
RBACO is:

τ
k(t+1)
ij = ρ·τk(t)

ij +
σ−1

∑
µ=1

∆τ
µ
ij+σ·∆τ

k(tbest)
ij (8)

2.3. Max-Min Ant Colony (MMACO)

Previous ACO algorithms used the strategy of reinforcing only the best-found paths.
This strategy could cause the excessive increase of pheromone values on optimal local
paths causing all other ants to follow this path. To overcome this drawback, Stützle and
Hoos [18] proposed a modified version of ACO that limits the pheromone values to a
specific interval, [τmin; τmax]. In addition, the initialization of pheromone value is set to
the upper limit of the pheromone interval, with a small evaporation rate to increase the
algorithm search diversification. The pheromone rule is:

τ
k(t+1)
ij = ρ·τk(t)

ij +∆τ
k(tbest)
ij (9)

and τ
k(t)
ij ∈ [t min; tmax

]
.

where [τmin; τmax] values are determined by the following formulas:

τmax =
1

(1− ρ)
· fworst

fbest

τmin =
τmax·

(
1− n
√

Pworst
)( n

2−1
)
· n
√

Pworst

where pbest denotes the probability of the best solution, it has a value greater than 0, while
n represents the number of ants.

2.4. Best-Worst Ant Colony (BWACO)

Zhang and Wang [19] presented BWACO as an extension of MMACO, where the
algorithm exploitation capability benefits from both best and worst solutions. During the
search tour, the pheromone trail update uses the positive return of the best solution and
the negative one generated by the worst solution. The pheromone updating rule can be
written as:

τ
k(t+1)
ij =

[
ρ·τk(t)

ij +∆τ
k(tbest)
ij

]τmax

τmin
−λ·∆τ

k(tworst)
ij (10)

where λ is a coefficient that has value within [0, 1] interval and it could be noticed that
BWACO became MMACO if λ = 0.

2.5. Hyper-Cube Framework ACO (HCFACO)

The different algorithms of ACO build a limited hyperspace of the pheromone values.
The Hyper-Cube Framework of ACO algorithms, proposed by Blum in 2001, generates
a binary convex hull hyperspace from pheromone values for the feasible solutions. In



Algorithms 2021, 14, 286 6 of 19

other words, the values of the pheromone vector, τ = [τ1,τ2, τ3, . . .·, τn], are limited to
the interval [0, 1], and this is carried out by changing the pheromone update rule. The
following formula expresses the rule of pheromone updating in HCFACO:

τ
k(t+1)
ij = (1− ρ)·τk(t)

ij + ρ·
n

∑
k=1

∆τ
k(t)
ij (11)

where:
∆τ

k(tbest)
ij = fbest

∑n
k=1 ( fi)

, and n is the number of ants follow the same best path.
HCFACO algorithms overcome the undesirable problem of different behavior of

standard ACO algorithms when the same objective function is scaled, which affects the
algorithm robustness. Moreover, it reduces the search effort and improves the algorithm
search diversification [2]. Lastly, it is worth mentioning that the HCF update rule is not
limited to standard ACO algorithm (or Ant System (AS)) as it can also be used with
MMACO, where the maximum and minimum limits of MMACO pheromone trail are set
to be 0 and 1, respectively [20].

3. Enhanced Hyper-Cube ACO Algorithms

Dorigo experimentally observed that using local search techniques can improve the
overall performance of the ACO [2,21]. Local search can be carried out by hybridizing the
ACO with local search algorithms such as Tabu search or using permutation operators
to explore the solution neighborhood [12,22]. The commonly used operators in SSD
optimization problem are two-points permutation and swap. Two-points permutation
means selecting two bits in the solution string and reversing the order of the bits in
between [1]. The swap operator is used to switch the position of two randomly selected
bits of the solution string [23].

The HCFACO algorithms presented here adopted two other permutation operators to
perform the algorithm enhancement. The first operator is called a bit flip (also known as
single point mutation), which is used successfully with Permutation Genetic Algorithm [1].
The second operator is inspired by using one of the Tabu Search movements named the
insertion [2]. The proposed Enhanced HCFACO procedure is listed in Algorithm 2.

The Enhanced HCFACO Algorithms starts by defining the standard ACO parameters
such as the maximum number of iterations (Itermax), number of ants (nAnts), number of
design variables (NV), the initial pheromone trail (τ0), and evaporation rate (r). In addition,
the solution convergence rate counter is imposed [Iconvmax] and its value determines
whether the convergence rate is slow or fast. When the ACO loop starts, all solution edges
have the same deposited pheromone trail τ0, which gives all nodes the same probability of
selection to be a part of the feasible solution. The artificial ants, k = 1 : nAnts, start building
the solution table, Si(nAnts, NV), by randomly choosing a node di on their way to build
the solution vector Si(k, N). Next, the evaluation of the solutions table is carried out by
calling the objective function, and the obtained values are stored in f (ige, Si(1 : nAnts, NV ))
matrix. The best solution of the stacking sequence design has the maximum value of
the objective function listed in f (ige, Si) matrix of the current iteration. The best solution
of each iteration ige is stored in the best solution matrix S∗(ige). Thereafter, the global
pheromone trail update is performed as described in the Hyper-Cube Framework of ACO
in Equation (11).

The local search actions are enforced as soon as the best solution of the current tour is
determined. Following this, a comparison of the generated solutions with the best solution
obtained so far is made. The best solution matrix is then updated if any improvement
is detected. Finally, the HCFACO loop continues until the termination criteria are met.
The global optimal solution is determined as the best solution matrix member with the
maximum value of the objective function.



Algorithms 2021, 14, 286 7 of 19

Algorithm 2 Enhanced HCFACO procedure

Input:
( f ) objective function, (NV) number of the design variables, (nAnts) number of ants, (Nn) length of the
design domain vector, (Itermax) maximum number of iterations, (τ0)
initialpheromonetrail, (ρ)evaporationrate, (Iconvmax ) maximum convergence rate.

Output:
( f ∗ ) the optimal solution value, (S∗ ) optimal solution vector, (ige∗ ) number of optimal solution

iterations.
Initialization:

1: ige = 0, initialize the EHCFACO main loop counter.
2: S0(1 : n Ants, NV , τ0), generate initial population.
3: f0(1 : n Ants, S0), evaluate the initial population.
4: τ(N V , Nn), update global pheromone trial.
5: While (termination criterion not satisfied) Do:
6: ige = ige + 1, update loop counter.
7: Sige(1 : nAnts, NV , τ)= RouletteWheelSelection( τi

∑ τi
), construct the new solution table.

8: fige(1 : n Ants, Sige), evaluate the objective function of the new solution.

9:
[

f ∗ige is

]
= max

(
fige

)
S∗ige= Sige(is, :)

}
, determine the current optimal solution.

- Local search:

10: Sins
(

S∗ige, NV

)
= insertion

(
S∗ige, randi(NV), randi(NV)

)
f ins= f (1 : S ins

) , insertion movement.

11: Sb_ f lip
(

S∗ige, NV

)
= bit f lip

(
S∗ige, randi(NV)

)
f b_ f lip= f (1 : S b_ f lip

) , bit flip movement.

12:
[

f ∗ige ils
]
= max[ f ∗ige f b_ f lip f ins

]
S∗ige= Sige(ils, :)

}
, update the current optimal solution.

- Update global optimal solution:

13: f ∗= max( f ∗1:ige)

- Global pheromone updating:

14: τ(ige+1) = (1− ρ)· τige+ρ·
n
∑

k=1
∆τ

S∗ige

ij ,∆τ
S∗ige

ij =
f ∗

∑n
k=1 ( f i)

- Convergence check:

15: Iconv= sum( f ind( f ∗1:ige= f ∗)), number of global optimal solution occurrences.

16:
If Iconv> Iconvmax, end, imposed convergence rate has been achieved.

If
∣∣∣max

(
f ∗1:ige

)
−min( f ∗1:ige

)∣∣∣ ≈ 0, end, all artificial ants followed the same path.

17: End while
18: Print f ∗, S∗, ige∗ .
19: End

4. Performance Evaluation

The time required by an algorithm to find the global optima is widely used to evaluate
its performance [24]. However, a single performance measure cannot reflect the effective-
ness of the algorithm in exploring the design space or determining solution quality. In the
current study, three different groups of performance measures have been applied to ensure
a fair evaluation of the proposed algorithm.

4.1. Computational Effort

In addition to the elapsed time, literature has shown that other measures can be used
to measure computational effort. The first is the price PS, which is defined as the number
of objective function evaluations within a search run and reflects the computational cost of



Algorithms 2021, 14, 286 8 of 19

the search process. The second measure is practical reliability (PR) and it is defined as the
percentage of runs that achieve practical optima (PO), at a specific run. Practical optima
is defined as the solution with 0.1% error in the best possible solution [1]. The last is the
normalized price nPS, which is defined as the ratio of price and practical reliability [1,25,26].
Finally, the performance rate measure, Prate, is also considered to link the computation
effort with the number of function evaluations [24].

Prate =
number o f success f ul runs number of
f unction

evaluations

·( total number
of runs

) (12)

4.2. Solution Quality

The solution quality of an algorithm can be measured by determining the absolute
error between the current solution and the best-known global solution [1,25,26].

Q =

∣∣∣∣S∗−Sopt

Sopt

∣∣∣∣·100 (13)

4.3. Fitness Landscape Analysis

The design space of a combinatorial optimization problem can significantly affect
the search performance of an algorithm. The notion of fitness landscape appeared in
literature as an answer to the question of “what does the design space look like?”. The
fitness landscape is defined by the feasible solutions set, the objective function (fitness),
and the structure of the solution neighborhood. To find the connection between the
fitness landscape and the problem hardness, Jones and Forrest [27] introduced a Fitness
Landscape–Distance Correlation (FDC) to determine the hardness of optimization problems
to be solved using Genetic Algorithm (GA). The distance mentioned here is defined as the
number of movements that should be imposed on a Solution Si to eliminate dissimilarity
with the optimal solution Sopt. The proposed correlation by Jones is computed using the
correlation factor, r:

r(F, D) =
CFD
σF·σD

(14)

where CFD indicates the Cov(F, D) and σF, σD are the standard deviation of F and D,
respectively. The values of the correlation coefficient r are limited to interval [−1, 1]
where negative values are desirable for maximization and indicate better searching
performance. Finally, using the scattering of fitness versus the distance to the global
optima can reveal valuable information about FDC of the optimization problem solved
by an algorithm [18,26].

5. Numerical Experiments

To demonstrate the performance of the new approach, we selected a well-known NP-
hard combinatorial optimization problem in the field of composite laminated structures.
The optimization objective is maximizing the critical buckling load of composite laminated
plate exposed to bidirectional compression loading. The decision variables are the fiber
orientation of each composite layer (lamina) which form the optimal stacking sequence of
the laminate (a group of layers). To employ ACO as an optimization algorithm for a SSD
optimization problem, there is a need to understand specific problem characteristics such as
solution representation, constraints, and objective function formulation. In meta-heuristic
algorithms, the solution (stacking sequence) takes the form of a bit string that consists of a
combination of plies with the available angle fiber orientations (e.g., 0◦,±45◦ and 90◦). The
different solutions have integer coding with 1, 2, and 3 numbers, which represent the three
possible fiber orientations, respectively. For instance, the laminate with [2132231]s stacking
sequence describes the laminate of [±45, 02, 902, 45,±45, 902, 02 ]s fiber orientations.



Algorithms 2021, 14, 286 9 of 19

The simplicity of using an integer representation along with significant performance
gains made it the most widely used method in meta-heuristic optimization algorithms for
composite laminated design. The buckling load factor lb for simply supported rectangular
laminated plate subjected to bi-axial loading is determined as follows:

λb(p, q)= π2

[
D11

( p
a
)4
+2(D12+2D66)

( p
a
)2
+D22

( q
b
)4
]

( p
a
)2Nx +

( q
b
)2Ny

(15)

where Dij denotes the bending stiffness, Nx is the axial loading in x-direction, Ny is the
axial loading in y-direction, p and q are the number of half waves in x, y directions. The
critical buckling load factor λcb is defined as the minimum obtained value of λb (p, q).
The critical values of p and q are linked to different factors such as laminate material, the
number of plies, loading conditions, and the plate aspect ratio. In uniaxial loading and a
simply supported plate, the critical buckling load occurs when p = 1 whereas in biaxial the
critical buckling loads, it needs to be determined as the minimum value of λb(p, q) [1,13].
Finally, the constraints in stacking sequence optimization with constant laminate thickness
t could be imposed as follow:

- Symmetry constraint is enforced by optimizing half of the laminate.
- Balancing constraint is enforced by selecting θ2 for the standard fiber orientation set

of 0 ,±45 and 90.
- Only N/4 ply orientations are needed to describe laminate as a result of balancing constraints.
- Contiguity constraint is handled by using the penalty parameter (β).
- The critical buckling load factor objective function fobj could be formulated as:

fobj = (1− β)·max(λcb(p, q)) (16)

To compare the performance of the proposed algorithm alongside the other ACO
algorithms, we implemented all the algorithms presented here using MATLAB R2019b
software. The benchmarking problem from the literature of Stacking Sequence Design
optimization is accredited to Le Riche and has been used by previous studies [1,23]. The
original problem describes a simply supported plate subjected to an in-plane biaxial loading
as shown in Figure 2.

Algorithms 2021, 14, 286 10 of 20 
 

software. The benchmarking problem from the literature of Stacking Sequence Design op-
timization is accredited to Le Riche and has been used by previous studies [1,23]. The 
original problem describes a simply supported plate subjected to an in-plane biaxial load-
ing as shown in Figure 2. 

 
Figure 2. Simply supported plate subjected to biaxial loading. 

The thickness of each ply 𝑡  is assumed constant, and the ply orientations are limited 
to 0 , ±45 and 90 sets of angles. The number of plies 𝑁  is constant. The required prop-
erties, dimensions, and loading conditions are listed in Tables 1 and 2. The objective func-
tion is set to maximize the critical buckling load. The constraints are integrated into the 
solution (e.g., balanced laminate, symmetrical, etc.). The implemented ACO algorithms 
were executed on the same computer for the same number of experiments; 𝑁 = 200. 
This number was used to overcome the stochastic behaviour of meta-heuristic algorithms 
[1]. Furthermore, this number of experiments was conducted over ten different random 
generating seeds of 301, 2, 50, 75, 111, 200, 167, 225 , 11, 𝑎𝑛𝑑 25. Then, the average of the 
performance measures values was used in the comparison of different ACO algorithms. 

Table 1. Graphite-epoxy lamina’s properties. 𝑬𝟏(𝑮𝑷𝒂) 𝑬𝟐(𝑮𝑷𝒂) 𝑮𝟏𝟐(𝑮𝑷𝒂) 𝒗𝟏𝟐 127.59 13.03 6.41 0.3 

Table 2. Graphite-epoxy lamina’s geometrical and loading data. 𝑵𝑳 𝒕(𝒎𝒎) 𝒂(𝒎𝒎) 𝒃(𝒎𝒎) 𝑵𝒙(𝑵/𝒎) 𝑵𝒙 𝑵𝒚⁄  64 0.127 508 254 175 1 

Lastly, all ACO algorithms were examined at two different levels of convergence rate, 
slow and fast. The slow rate forces the algorithm searching loop to stop after 56 iteration 
without improvement, while the fast rate needs just 10 iterations to be terminated [1]. 

5.1. ACO Parameters Setting 
To ensure a fair assessment of the ACO algorithms performance, the following stand-

ard ACO parameters were assumed for all implemented algorithms: number of Ants 𝑛  =  25, the maximum number of iterations 𝐼𝑡𝑒𝑟 = 1000, evaporation rate 𝑟 = 0.1, 
the parameter of the pheromone trail relative importance 𝛼 = 1, and initial one trail 𝜏 =0.004 (except for MMACO and BWACO algorithms were 𝜏 = 1). Best solution probabil-
ity was 𝑃 = 0.05 for MMACO and BWACO algorithms and lastly the coefficient of 
worst solution pheromone trail was 𝜆 = 0.6 for BWACO algorithm only. 

  

Figure 2. Simply supported plate subjected to biaxial loading.

The thickness of each ply ti is assumed constant, and the ply orientations are limited to
0 ,±45 and 90 sets of angles. The number of plies NL is constant. The required properties,
dimensions, and loading conditions are listed in Tables 1 and 2. The objective function is set
to maximize the critical buckling load. The constraints are integrated into the solution (e.g.,
balanced laminate, symmetrical, etc.). The implemented ACO algorithms were executed
on the same computer for the same number of experiments; Nexp = 200. This number was



Algorithms 2021, 14, 286 10 of 19

used to overcome the stochastic behaviour of meta-heuristic algorithms [1]. Furthermore,
this number of experiments was conducted over ten different random generating seeds
of 301, 2, 50, 75, 111, 200, 167, 225 , 11, and 25. Then, the average of the performance
measures values was used in the comparison of different ACO algorithms.

Table 1. Graphite-epoxy lamina’s properties.

E1(GPa) E2(GPa) G12(GPa) v12

127.59 13.03 6.41 0.3

Table 2. Graphite-epoxy lamina’s geometrical and loading data.

NL t(mm) a(mm) b(mm) Nx(N/m) Nx/Ny

64 0.127 508 254 175 1

Lastly, all ACO algorithms were examined at two different levels of convergence rate,
slow and fast. The slow rate forces the algorithm searching loop to stop after 56 iteration
without improvement, while the fast rate needs just 10 iterations to be terminated [1].

5.1. ACO Parameters Setting

To ensure a fair assessment of the ACO algorithms performance, the following stan-
dard ACO parameters were assumed for all implemented algorithms: number of Ants
nAnts = 25, the maximum number of iterations Itermax = 1000, evaporation rate r = 0.1, the
parameter of the pheromone trail relative importance α = 1, and initial one trail τ0 = 0.004
(except for MMACO and BWACO algorithms were τ0 = 1). Best solution probability
was Pbest = 0.05 for MMACO and BWACO algorithms and lastly the coefficient of worst
solution pheromone trail was λ = 0.6 for BWACO algorithm only.

5.2. Termination Criteria

All algorithms stop as soon as one of the following conditions are satisfied:

- If there is no improvement in the solution after 10 or 56 iterations.
- If the number of iterations exceeds 150 and the best solution is equal to the worst

solution (means all artificial ants following the same path).
- If a maximum number of iterations has been generated.

6. Results and Discussion

The case study described in the previous section was optimized using nine different
algorithms: standard ACOA, EACO, RBACO, MMACO, BWACO, HCF/EHCF for both
ACO and MMACO algorithms. Analysis of the algorithm’s performance will be divided
into two parts. First, the performance of ACO algorithms with Hyper-Cube Framework
will be assessed. The second part is dedicated to the comparison of EHCFACO algorithm
with the rest of ACO algorithms.

6.1. Hyper-Cube Framework ACO Algorithms Results Analysis

Referring to Section 2.5, the Hyper-Cube Framework (HCF) can be applied for both
versions of the standard ACOA and MMACO. Hence, this part of the analysis is devoted
to determining which version of both ACO algorithms, with HCF and EHCF, could ex-
hibit a better performance. The performance measures for the original ACOA, MMACO,
HCFACO, HCFMMACO, EHCFACO, and EHCFMMACO are listed in Table 3. The perfor-
mance values listed in Table 3 reveal that applying HCF to the ACOA positively affected
the overall performance of ACO. The average practical reliability increased by 22–56%
and the normalized price declined from 51.17 to 36.91 for the fast convergence rate and
from 181.12 to 94.24 for the slow one. The performance rate doubled at the slow rate while



Algorithms 2021, 14, 286 11 of 19

remaining the same for the fast. The FDC correlation coefficient r decreased slightly for
both levels of convergence.

Table 3. The performance measures of Hyper-Cube Framework ACO algorithms.

Performance
Measure

Convergence
Rate ACOA HCFACO EHCFACO MMACO HCFMMACO EHCFMMACO

Elapsed time,
ts, min

Slow
Fast

0.87
3

0.01
4.15

2.16
6.86

1.12
4.62

0.96
6.68

1.34
4.39

Reliability
%

Slow
Fast

35.71
36.45

77.1
93.15

89.6
98.95

16
87.7

13.37
91.05

54.36
98.25

Normalized
Price, nPs

Slow
Fast

51.17
181.12

36.91
94.24

28.92
81.49

152.23
118.53

169.26
117.3

52.2
98.25

Performance
Rate, Prate

Slow
Fast

0.0196
0.0056

0.0272
0.0106

0.0347
0.0123

0.0068
0.0088

0.0063
0.0090

0.0206
0.0106

Quality
%

Slow
Fast

99.69
99.69

99.93
99.97

99.96
99.98

98.28
99.96

98.57
98.57

99.81
99.98

Fitness-Distance
Correlation

Slow
Fast

−0.80
−0.84

−0.67
−0.71

−0.79
−0.73

−1
−0.81

−1
−0.77

−0.82
−0.75

Further improvement of HCFACO performance was acquired when the proposed
local search movements were imposed. The average practical reliability became more than
twice of the standard ACO, and the normalized price decreased more to hold at 28.92
instead of 51.17 and 81.49 instead of 181.2 for both convergence rates. The performance
rate was slightly increased, and the FDC correlation coefficient r was partially improved.
On the contrary, HCFMMACO performed poorly compared to the original MMACO.
However, the performance of MMACO improved when the Enhanced HCF was applied,
but the computational effort became more costly. Based on these results, we conclude that
EHCFACO delivers an inexpensive solution with significant performance. Eventually, the
solution convergence of the algorithms mentioned above was plotted, Figure 3: solution
convergence of ACO-MMACO and their Hyper-Cube Framework variants, for the same
selected experiment (seeds = 75).

6.2. Other ACO Algorithms Results Analysis

All ACO algorithms successfully found the best-known value of the maximum critical
buckling load factor, λcb. A different sample of optimal SSD obtained by different ACO
algorithms is listed in Table 4. The solution convergence of EACO, RBACO, and BWACO
for a selected experiment (seeds = 75) is graphically illustrated in Figure 4.

It is observed from Table 4 that the optimal stacking sequence design followed the
same pattern of switching between two groups of 902 and ±45 fiber orientations which
confirm the results of previous studies [1,23].

On the other hand, the solution convergence plot in Figure 4 illustrates that both
RBACO and BWACO algorithms develop gradual search trends on their way to the optima
whereas EACO and EHCFACO algorithms smoothly converge to the global optima. Further,
the numerical experiments confirm the fluctuation of ACO algorithms in finding the global
optimal solution due to their stochastic nature, as illustrated in Figure 5.

According to the introduced performance assessment criteria in Section 5, the average
values of different performance measures of reliability, performance rate, solution quality,
normalized price, and searching effort coefficient were determined for EACO, RBACO,
BWACO at fast and slow convergence rates. These results, alongside the EHCFACO results,
are plotted in Figures 6–12 to provide a sensible comparison of the performance evaluation
of the proposed algorithm with other ACO algorithms. The average practical reliability
of the algorithms is introduced in Figure 6. Both EACO and RBACO algorithms show
low practical reliability values, with 10% and 8%, respectively, while BWACO presented



Algorithms 2021, 14, 286 12 of 19

better value at the slow rate of convergence, but it poorly performed at the fast rate. The
EHCFACO algorithm exhibited significant reliability values of 89.6–98.95%. Furthermore,
it demonstrated the highest performance rate measure (0.012–0.035), see Figure 9. The
solution quality results of the algorithms are summarized and depicted in Figure 10, which
reveals that all ACO algorithms produce an excellent solution quality for this particular
case study.

Algorithms 2021, 14, 286 12 of 20 
 

Quality 
% 

Slow 
Fast 

99.69 
99.69 

99.93 
99.97 

99.96 
99.98 

98.28 
99.96 

98.57 
98.57 

99.81 
99.98 

Fitness-Distance 
Correlation, r  

Slow 
Fast 

−0.80 
−0.84 

−0.67 
−0.71 

−0.79 
−0.73 

−1 
−0.81 

−1 
−0.77 

−0.82 
−0.75 

 

 
(a) ACOA 

 
(d) MMACO 

(b) HCFACO 
 

(e) HCFMMACO  

 
(c) EHCFACO 

 
(f) EHCFMMACO 

  

Figure 3. Solution convergence of ACO-MMACO and their Hyper-Cube Framework variants. 

6.2. Other ACO Algorithms Results Analysis 

3500

3600

3700

3800

3900

4000

1 11 21 31 41 51 61

O
bj

ec
tiv

e 
fu

nc
tio

n,
 λ

cb

Number of iterations

Optimal solution
Average

3400

3500

3600

3700

3800

3900

4000

1 11 21 31 41 51 61 71 81 91
O

bj
ec

tiv
e 

fu
nc

tio
n,

 λ
cb

Number of iterations

Optimal solutions
Average

3500

3600

3700

3800

3900

4000

1 11 21 31 41 51 61 71 81

O
bj

ec
tiv

e 
fu

nc
tio

n,
 λ

cb

Number of iterations

Optimal solutions
Average

3500

3600

3700

3800

3900

4000

1 11 21 31 41 51 61 71 81 91

O
bj

ec
tiv

e 
fu

nc
tio

n,
 λ

cb

Number of iterations

Optimal solutions
Average

3400

3550

3700

3850

4000

1 11 21

O
bj

ec
tiv

e 
fu

nc
tio

n,
 λ

cb

Number of iterations

Obj. function
Average

3550
3600
3650
3700
3750
3800
3850
3900
3950
4000

1 11 21 31 41 51 61 71 81

O
bj

ec
tiv

e 
fu

nc
tio

n,
 λ

cb

Number of iterations

Obj. function
Average

Figure 3. Solution convergence of ACO-MMACO and their Hyper-Cube Framework variants.



Algorithms 2021, 14, 286 13 of 19

Table 4. The optimal stacking sequence for 64 ply laminates subjected to biaxial loading without
contiguity constraint

(
Ny = Nx = 1 and a/b = 2

)
.

Algorithm Optimal Stacking Sequence Design Critical Buckling
Load Factor, λcb

EACO [2333332333323333]s[
±45◦/90◦10/± 45

◦
/90◦8/± 45◦/90◦8

]
s

3973.01
RBACO [2333323333333332]s

[±45◦/90◦8/± 45◦/90◦18/45◦] s

BWCACO [3333232323222222]s
[90◦8/± 45◦/90◦/± 45◦/90◦/± 45◦/90◦ ± 452]S

EHCFACO [3333322322232222]s
[90◦10/± 45◦2/90◦/± 45◦3/90◦/± 45◦8]S

Algorithms 2021, 14, 286 14 of 20 
 

 
Figure 4. Solution convergence of EACO, RBACO, and BWACO. Figure 4. Solution convergence of EACO, RBACO, and BWACO.



Algorithms 2021, 14, 286 14 of 19
Algorithms 2021, 14, 286 15 of 20 
 

 
Figure 5. Critical buckling load factor vs. number of experiments. Figure 5. Critical buckling load factor vs. number of experiments.



Algorithms 2021, 14, 286 15 of 19Algorithms 2021, 14, 286 16 of 20 
 

 
Figure 6. Reliability of EACO, RBACO, BWACO, and EHCFACO algorithms. 

 
Figure 7. Normalized price of EACO, RBACO, BWACO, and EHCFACO algorithms solutions. 

 
Figure 8. Correlation coefficient of EACO, RBACO, BWACO, and EHCFACO algorithms. 

Figure 6. Reliability of EACO, RBACO, BWACO, and EHCFACO algorithms.

Algorithms 2021, 14, 286 16 of 20 
 

 
Figure 6. Reliability of EACO, RBACO, BWACO, and EHCFACO algorithms. 

 
Figure 7. Normalized price of EACO, RBACO, BWACO, and EHCFACO algorithms solutions. 

 
Figure 8. Correlation coefficient of EACO, RBACO, BWACO, and EHCFACO algorithms. 

Figure 7. Normalized price of EACO, RBACO, BWACO, and EHCFACO algorithms solutions.

Algorithms 2021, 14, 286 16 of 20 
 

 
Figure 6. Reliability of EACO, RBACO, BWACO, and EHCFACO algorithms. 

 
Figure 7. Normalized price of EACO, RBACO, BWACO, and EHCFACO algorithms solutions. 

 
Figure 8. Correlation coefficient of EACO, RBACO, BWACO, and EHCFACO algorithms. Figure 8. Correlation coefficient of EACO, RBACO, BWACO, and EHCFACO algorithms.



Algorithms 2021, 14, 286 16 of 19Algorithms 2021, 14, 286 17 of 20 
 

 
Figure 9. Performance rate of EACO, RBACO, BWACO, and EHCFACO algorithms. 

 
Figure 10. Solution quality of EACO, RBACO, BWACO, and EHCFACO algorithms. 

 
Figure 11. Elapsed time of EACO, RBACO, BWACO, and EHCFACO algorithms to find the optimal 
solution. 

Figure 9. Performance rate of EACO, RBACO, BWACO, and EHCFACO algorithms.

Algorithms 2021, 14, 286 17 of 20 
 

 
Figure 9. Performance rate of EACO, RBACO, BWACO, and EHCFACO algorithms. 

 
Figure 10. Solution quality of EACO, RBACO, BWACO, and EHCFACO algorithms. 

 
Figure 11. Elapsed time of EACO, RBACO, BWACO, and EHCFACO algorithms to find the optimal 
solution. 

Figure 10. Solution quality of EACO, RBACO, BWACO, and EHCFACO algorithms.

Algorithms 2021, 14, 286 17 of 20 
 

 
Figure 9. Performance rate of EACO, RBACO, BWACO, and EHCFACO algorithms. 

 
Figure 10. Solution quality of EACO, RBACO, BWACO, and EHCFACO algorithms. 

 
Figure 11. Elapsed time of EACO, RBACO, BWACO, and EHCFACO algorithms to find the optimal 
solution. 
Figure 11. Elapsed time of EACO, RBACO, BWACO, and EHCFACO algorithms to find the
optimal solution.



Algorithms 2021, 14, 286 17 of 19Algorithms 2021, 14, 286 18 of 20 
 

 
Figure 12. Fitness vs. distance to global optimal solution of ACO algorithms. 

In terms of solution cost, the normalized price results plotted on the scatter chart are 
illustrated in Figure 7. As mentioned before, the normalized price measure reflects the 
balance between the solution cost and the reliability. Thus, it is quite clear that EHCFACO 
outperformed other ACO algorithms. BWACO comes second at a slow convergence rate, 
whereas RBACO and EACO deliver a costly solution. 

The numerical experiments results show that ACO variants with high reliability need 
more computational time to find the global optimal solution while the number of itera-
tions required to find it is low. The Fitness-Distance Correlation values demonstrated the 
complexity of such a NP-hard optimization to be solved where ACOs with high reliabili-
ties have low r values. Eventually, applying the Hyper-Cube Framework (HCF) to stand-
ard ACO has a significant influence on the overall performance of ACO. In addition, im-
posing local search movements, as an enhancement of exploitation effort, helped 
HCFACO to deliver a cost-effective solution. 

7. Conclusions 
A comprehensive MHs performance assessment criterion was developed in the cur-

rent study. In addition to the computation time and statistical matrices, several new 
measures such as the practical reliability, price (computational cost), normalized price, 
performance rate, solution quality, and fitness landscape analysis were included. Addi-
tionally, two different convergence rates were imposed on examining the MHs at both the 

Figure 12. Fitness vs. distance to global optimal solution of ACO algorithms.

In terms of solution cost, the normalized price results plotted on the scatter chart are
illustrated in Figure 7. As mentioned before, the normalized price measure reflects the
balance between the solution cost and the reliability. Thus, it is quite clear that EHCFACO
outperformed other ACO algorithms. BWACO comes second at a slow convergence rate,
whereas RBACO and EACO deliver a costly solution.

The numerical experiments results show that ACO variants with high reliability need
more computational time to find the global optimal solution while the number of iterations
required to find it is low. The Fitness-Distance Correlation values demonstrated the
complexity of such a NP-hard optimization to be solved where ACOs with high reliabilities
have low r values. Eventually, applying the Hyper-Cube Framework (HCF) to standard
ACO has a significant influence on the overall performance of ACO. In addition, imposing
local search movements, as an enhancement of exploitation effort, helped HCFACO to
deliver a cost-effective solution.

7. Conclusions

A comprehensive MHs performance assessment criterion was developed in the current
study. In addition to the computation time and statistical matrices, several new measures
such as the practical reliability, price (computational cost), normalized price, performance
rate, solution quality, and fitness landscape analysis were included. Additionally, two
different convergence rates were imposed on examining the MHs at both the slow and the
fast rates. The reproducibility of the numerical experiments’ results was also considered



Algorithms 2021, 14, 286 18 of 19

within the procedure of MH assessment. Thereafter, the proposed criterion was employed
to compare five different variants of Ant Colony Optimization (ACO). The proposed
measures demonstrated a comprehensive assessment of the compared ACOs performance.
The initial results of the comparison study revealed that the Hyper Cube Framework
(HCF) ACO variant outperforms the others. Consequently, an investigation of further
improvement led to introduce an enhanced version of HCFACO (or EHCFACO). The
new variant has advanced intensification features that use both the insertion and bit-flip
movements to enhance the local search effort. Eventually, the EHCFACO variant was
compared with other ACO variants and it exhibited a significant performance.

Based on the findings of the proposed assessment scheme presented through this
research work, it was noticed that MHs with high-reliability solutions need more time
to find the global optima but need a relatively small number of computation iterations.
This observation led to another important remark, i.e., the MHs that show good perfor-
mance are hardly exploring the design space. It is the case where their Fitness-Distance
Correlation, r, and figures become lower than the other MHs. The difference in r values
was noticed, but it does not negatively impact the overall performance of the designated
MHs, except in increasing the computational time. Furthermore, it was observed that
applying the Hyper-Cube Framework (HCF) to standard ACO has a significant influence
on the overall performance of ACO. Moreover, imposing the local search movements, as
an enhancement of exploitation effort, helped HCFACO to deliver a cost-effective solution.
These improvements, in ACO performance, are in line with the suggestions made by the
previous studies.

The MHs literature is full of studies that approve the noticeable impact of the param-
eters’ fine-tuning on the MHs performance; for all examined MHs, the parameters have
been assumed constant. This perceived ignorance of such an aspect refers to the associated
computation cost of this repetitive investigation, and such an exhaustive practice would
diminish the scope of this paper significantly.

The current study allows engineers the access to an efficient variant of ACO MH to
optimize their structure designs at low computational cost. Furthermore, the comprehen-
sive assessment criterion makes it easier for the engineer to decide between any other
obtainable MHs. Eventually, the obtained data of the numerical experiments conducted in
this paper are available to other researchers to assess and reproduce the results obtained in
Supplementary Materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/a14100286/s1, Data sheets: Numerical experimental data.

Author Contributions: Conceptualization, A.A. and T.-M.D.; methodology, A.A.; software, A.A.;
validation, A.A., T.-M.D., and N.V.L.; writing—original draft preparation, A.A.; writing—review
and editing, T.-M.D.; supervision, N.V.L.; project administration, T.-M.D. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Le Riche, R.; Haftka, R.T. Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm. AIAA

J. 1993, 31, 951–956. [CrossRef]
2. França, P.; Sosa, N.M.; Pureza, V. An adaptive tabu search algorithm for the capacitated clustering problem. Int. Trans. Oper. Res.

1999, 6, 665–678. [CrossRef]
3. Gholizadeh, S.; Milany, A. An improved fireworks algorithm for discrete sizing optimization of steel skeletal structures. Eng.

Optim. 2018, 50, 1829–1849. [CrossRef]

https://www.mdpi.com/article/10.3390/a14100286/s1
https://www.mdpi.com/article/10.3390/a14100286/s1
http://doi.org/10.2514/3.11710
http://doi.org/10.1111/j.1475-3995.1999.tb00180.x
http://doi.org/10.1080/0305215X.2017.1417402


Algorithms 2021, 14, 286 19 of 19

4. Nguyen, P.D.; Vu, Q.-V.; Papazafeiropoulos, G.; Thiem, H.T.; Vuong, P.M.; Duc, N.D. Optimization of Laminated Composite
Plates for Maximum Biaxial Buckling Load. VNU J. Sci. Math. Phys. 2020, 36. [CrossRef]

5. Bouvet, C. Mechanics of Aeronautical Composite Materials; John Wiley & Sons: New York, NY, USA, 2017.
6. Dorigo, M. Ant Colony OPTIMIZATION—New Optimization Techniques in Engineering; Onwubolu, G.C., Babu, B.V., Eds.; Springer:

Berlin/Heidelberg, Germany, 1991; pp. 101–117.
7. Weiler, C.; Biesinger, B.; Hu, B.; Raidl, G.R. Heuristic Approaches for the Probabilistic Traveling Salesman Problem. In International

Conference on Computer Aided Systems Theory; Springer: Cham, Switzerland, 2015.
8. Gambardella, L.M.; Dorigo, M. An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem.

INFORMS J. Comput. 2000, 12, 237–255. [CrossRef]
9. Zheng, F.; Zecchin, A.; Newman, J.P.; Maier, H.; Dandy, G.C. An Adaptive Convergence-Trajectory Controlled Ant Colony

Optimization Algorithm with Application to Water Distribution System Design Problems. IEEE Trans. Evol. Comput. 2017, 21,
773–791. [CrossRef]

10. Kaveh, A.; Talatahari, S. An improved ant colony optimization for constrained engineering design problems. Eng. Comput. 2010,
27, 155–182. [CrossRef]

11. Koide, R.M.; Luersen, M.A. Maximization of Fundamental Frequency of Laminated Composite Cylindrical Shells by Ant Colony
Algorithm. J. Aerosp. Technol. Manag. 2013, 5, 75–82. [CrossRef]

12. Aymerich, F.; Serra, M. Optimization of laminate stacking sequence for maximum buckling load using the ant colony optimization
(ACO) metaheuristic. Compos. Part A Appl. Sci. Manuf. 2008, 39, 262–272. [CrossRef]

13. Rao, A.R.M. Lay-up sequence design of laminate composite plates and a cylindrical skirt using ant colony optimization. Proc.
Inst. Mech. Eng. Part G J. Aerosp. Eng. 2008, 223, 1–18.

14. Bloomfield, M.W.; Herencia, J.E.; Weaver, P. Analysis and benchmarking of meta-heuristic techniques for lay-up optimization.
Comput. Struct. 2010, 88, 272–282. [CrossRef]

15. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
16. Rao, S.S. Engineering Optimization Theory and Practice; John Wiley & Sons: New York, NY, USA, 2019.
17. Bullnheimer, B.; Hartl, R.F.; Strauss, C. A New Rank Based Version of the Ant System. A Computational Study. 1997. Available

online: https://epub.wu.ac.at/616/1/document.pdf (accessed on 15 August 2021).
18. Stützle, T.; Hoos, H.H. MAX–MIN ant system. Future Gener. Comput. Syst. 2000, 16, 889–914. [CrossRef]
19. Zhang, Y.; Liu, L.; Wangmeng, Z.; David, Z.; Dongyu, Z. Best-worst ant system. In Proceedings of the 2011 3rd International

Conference on Advanced Computer Control, Harbin, China, 18–20 January 2011.
20. Blum, C.; Dorigo, M. The Hyper-Cube Framework for Ant Colony Optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern.

2004, 34, 1161–1172. [CrossRef] [PubMed]
21. Dorigo, M. Luca Maria Gambardella: Ant colony system: A cooperative learning. IEEE Trans. Evol. Comput. 1997, 1, 53–66.

[CrossRef]
22. Katagiri, H.; Hayashida, T.; Nishizaki, I.; Guo, Q. A hybrid algorithm based on tabu search and ant colony optimization for

k-minimum spanning tree problems. Expert Syst. Appl. 2012, 39, 5681–5686. [CrossRef]
23. Jing, Z.; Fan, X.; Sun, Q. Stacking sequence optimization of composite laminates for maximum buckling load using permutation

search algorithm. Compos. Struct. 2015, 121, 225–236. [CrossRef]
24. Talbi, E.-G. Metaheuristics: From Design to Implementation; John Wiley & Sons: New York, NY, USA, 2009; Volume 74.
25. Kogiso, N.; Watson, L.T.; Gürdal, Z.; Haftka, R.T. Genetic algorithms with local improvement for composite laminate design.

Struct. Multidiscip. Optim. 1994, 7, 207–218. [CrossRef]
26. Malan, K.M.; Engelbrecht, A.P. Fitness landscape analysis for metaheuristic performance prediction. In Recent Advances in the

Theory and Application of Fitness Landscapes; Springer: Berlin/Heidelberg, Germany, 2014; pp. 103–132.
27. Jones, T.; Forrest, S. Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms. ICGA 1995, 95,

184–192.

http://doi.org/10.25073/2588-1124/vnumap.4509
http://doi.org/10.1287/ijoc.12.3.237.12636
http://doi.org/10.1109/TEVC.2017.2682899
http://doi.org/10.1108/02644401011008577
http://doi.org/10.5028/jatm.v5i1.233
http://doi.org/10.1016/j.compositesa.2007.10.011
http://doi.org/10.1016/j.compstruc.2009.10.007
http://doi.org/10.1109/MCI.2006.329691
https://epub.wu.ac.at/616/1/document.pdf
http://doi.org/10.1016/S0167-739X(00)00043-1
http://doi.org/10.1109/TSMCB.2003.821450
http://www.ncbi.nlm.nih.gov/pubmed/15376861
http://doi.org/10.1109/4235.585892
http://doi.org/10.1016/j.eswa.2011.11.103
http://doi.org/10.1016/j.compstruct.2014.10.031
http://doi.org/10.1007/BF01743714

	Introduction 
	Ant Colony Optimization Algorithms (ACOs) 
	Elitist Ant Colony (EACO) 
	The Rank-Based Ant Colony Optimization (RBACO) 
	Max-Min Ant Colony (MMACO) 
	Best-Worst Ant Colony (BWACO) 
	Hyper-Cube Framework ACO (HCFACO) 

	Enhanced Hyper-Cube ACO Algorithms 
	Performance Evaluation 
	Computational Effort 
	Solution Quality 
	Fitness Landscape Analysis 

	Numerical Experiments 
	ACO Parameters Setting 
	Termination Criteria 

	Results and Discussion 
	Hyper-Cube Framework ACO Algorithms Results Analysis 
	Other ACO Algorithms Results Analysis 

	Conclusions 
	References

