
algorithms

Article

Comparing Commit Messages and Source Code Metrics for the
Prediction Refactoring Activities

Priyadarshni Suresh Sagar 1, Eman Abdulah AlOmar 1 , Mohamed Wiem Mkaouer 1, Ali Ouni 2

and Christian D. Newman 1,*

����������
�������

Citation: Sagar, P.S.; AlOmar, E.A.;

Mkaouer, M.W.; Ouni, A.; Newma,

C.D. Comparing Commit Messages

and Source Code Metrics for the

Prediction Refactoring Activities.

Algorithms 2021, 14, 289. https://

doi.org/10.3390/a14100289

Academic Editors: Maurizio Proietti

and Frank Werner

Received: 13 July 2021

Accepted: 21 September 2021

Published: 30 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Rochester Institute of Technology, Rochester, New York, NY 14623, USA; ps1862@rit.edu (P.S.S.);
eaa6167@rit.edu (E.A.A.); mwmvse@rit.edu (M.W.M.)

2 Ecole de Technologie Superieure, University of Quebec, Quebec City, QC H3C 1K3, Canada;
ali.ouni@etsmtl.ca

* Correspondence: cdnvse@rit.edu

Abstract: Understanding how developers refactor their code is critical to support the design improve-
ment process of software. This paper investigates to what extent code metrics are good indicators
for predicting refactoring activity in the source code. In order to perform this, we formulated the
prediction of refactoring operation types as a multi-class classification problem. Our solution relies
on measuring metrics extracted from committed code changes in order to extract the correspond-
ing features (i.e., metric variations) that better represent each class (i.e., refactoring type) in order
to automatically predict, for a given commit, the method-level type of refactoring being applied,
namely Move Method, Rename Method, Extract Method, Inline Method, Pull-up Method, and Push-down
Method. We compared various classifiers, in terms of their prediction performance, using a dataset
of 5004 commits and extracted 800 Java projects. Our main findings show that the random forest
model trained with code metrics resulted in the best average accuracy of 75%. However, we detected
a variation in the results per class, which means that some refactoring types are harder to detect
than others.

Keywords: refactoring; software quality; commits; software metrics; software engineering

1. Introduction

Refactoring is the practice of improving software internal design without altering
its external behavior. Developers regularly refactor their code by performing various
refactoring types, including splitting methods, renaming attributes, moving classes, and
merging packages. Recent studies have been focusing on recommending appropriate
refactoring types in response to poor code design [1–4] and analyzing how developers
refactor code by making mining code changes and commit messages [5–9]. Empirical
studies have been focused on mining commit messages to extract developers’ intents
behind refactoring in terms of optimizing structural metrics (e.g., coupling, complexity,
etc.) [10,11] and quality attributes (e.g., reuse, etc.) [12,13]. Commit messages were also
used by Rebai et al. [14] to recommend refactoring operations.

To overcome the challenges and limitations of existing studies, we propose a novel
approach to predict the type of refactoring through the structural information of the code
extracted from the source code metrics (coupling, complexity, etc.). We believe that using
code metrics to characterize code is beneficial because code metrics are known to be
heavily impacted by refactoring, and this variation in their values can be a learning curve
for our model. Our model can learn to detect patterns in metrics values, which can be
later combined with textual information in order to support the accurate distinction the
refactoring types (move, extract, inline, etc.).

In this paper, we formulate the prediction of refactoring operation types as a multi-
class classification problem. Our solution relies on detecting patterns in metric variations to

Algorithms 2021, 14, 289. https://doi.org/10.3390/a14100289 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-1800-9268
https://orcid.org/0000-0002-8838-4074
https://doi.org/10.3390/a14100289
https://doi.org/10.3390/a14100289
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14100289
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14100289?type=check_update&version=2


Algorithms 2021, 14, 289 2 of 20

extract the corresponding features (i.e., keywords and metric values) that better represent
each class (i.e., refactoring type) in order to automatically predict, for a given commit,
the type of refactoring being applied. In a nutshell, our model takes as input the commit
(i.e., code changes) and the metric values associated with the code change in order to
predict what type of refactoring was performed by the developer. This model will support
developers in accurately choosing which refactoring types to apply when improving the
design of their software systems.

To justify the choice of metric information, we challenge the model generated by this
combination with state-of-the-art models that use only textual information. Experiments
explored in this paper were driven by various research questions, including the following:
How accurate is a text-based model in predicting the refactoring type? How accurate is
a metric-based model in predicting the refactoring type? Which refactoring classes were
most accurately classified by each method? Results show that text-based models produced
poor accuracy, whereas supervised machine learning algorithms trained with code metrics
as input resulted in the most accurate classifier. Accuracy per class varied for each method
and algorithm, and this was expected.

This paper makes the following contributions:

1. We formulate the refactoring type prediction as a multi-class classification problem
based on commit mining, and we challenge various models.

2. We evaluate the performance of our prediction model by comparing it against a
baseline approach that relies on training with commit messages. To conduct this, we
have used a dataset of 5004 commits and extracted 800 Java projects.

3. We also analyze the impact of using textual information vs. structural information in
terms of properly identifying refactoring. metric-based modeling, and random forest,
more specifically, was found to be the best performing model, with 75% accuracy.

4. We publicly provide our best model and the dataset that served as the ground-truth, for
replication and extension purposes https://github.com/smilevo/refactoring-metrics-
prediction (accessed on 20 September 2021).

The remainder of this paper proceeds by discussing the different commit message
classification and refactoring prediction techniques implemented by other researchers
where a general outline will be provided about research performed in the same field, the
approach followed to accomplish the aim of the study, and how implementation has been
performed. The last section will mainly focus on results and future work.

2. Related Work

In this section, we summarized the literature related to refactoring documentation
and commit classification. A summary of these studies is provided in Table 1.

2.1. What Is Software Refactoring?

Software quality is a multi-faceted feature of any program dependent upon design,
complexity, and a myriad of other aspects. It is also an inevitability that, given enough
time, changes and additions to the code base will cause its design integrity to deteriorate.
Refactoring is the practice of improving the internal software design without changing its
behavior. It can be performed by using various types of refactoring operations, including
renaming attributes, moving classes, splitting packages, etc. Refactoring code is a necessary
step to help reverse the negative effects of continuous development short of starting from
scratch every time the design deviates too far from its origins. In this manner, the design of
the system can be altered without modifying its behavior or functionality.

The refactoring types that we want to identify are the following:

• Extract Method: Creating a new method by extracting a selection of code from inside
the body of an existing method;

• Inline Method: Replacing calls and usages of a method with its body and potentially
removing its declaration;

https://github.com/smilevo/refactoring-metrics-prediction
https://github.com/smilevo/refactoring-metrics-prediction


Algorithms 2021, 14, 289 3 of 20

• Move Method: Changing the declaration of a method from one class to another class;
• Pull-up Method: Moving up a method in the inheritance chain from a child class to a

parent class;
• Push-down Method: Moving down a method in the inheritance chain from a parent

class to a child class;
• Rename Method: Changing the name of a method identifier to a different one.

2.2. Refactoring Documentation

Stroggylos and Spinellis [15] searched words stemming from the verb refactor, such
as refactoring or refactored, to identify refactoring-related commits. Ratzinger et al. [16,17]
also used a similar keyword-based approach to detect refactoring activity between a pair
of program versions in order to identify whether a transformation contains refactoring.
The authors identified refactorings based on a set of keywords detected in commit mes-
sages and focused on the following 13 terms in their search approach: refactor, restruct,
clean, not used, unused, reformat, import, remove, replace, split, reorg, rename, and move. Later,
Murphy-Hill et al. [18] replicated Ratzinger experiment in two open source systems using
Ratzinger’s 13 keywords. They concluded that commit messages in version histories are
unreliable indicators of refactoring activities. This is due to the fact that developers do
not consistently document refactoring activities in the commit messages. In another study,
Soares et al. [19] compared and evaluated three approaches, namely manual analysis,
commit message, and dynamic analysis, in order to analyze refactorings in open source
repositories in terms of behavioral preservation. The authors found, in their experiment,
that manual analysis achieves the best results in this comparative study and is considered
as the most reliable approach in detecting behavior-preserving transformations. In another
study, Kim et al. [20] surveyed 328 professional software engineers at Microsoft to investi-
gate when and how they conduct refactoring. They first identified refactoring branches and
then asked developers about the keywords that are usually used to mark refactoring events
in commit messages. When surveyed, the developers mentioned several keywords to mark
refactoring activities. Kim et al. matched the top ten refactoring-related keywords identi-
fied from the survey (refactor, clean-up, rewrite, restructure, redesign, move, extract, improve,
split, reorganize, and rename) against the commit messages to identify refactoring commits
from version histories. By using this approach, they found 94.29% of commits do not have
any of the keywords, and only 5.76% of commits included refactoring-related keywords.
Prior work [11,21–25] has explored how developers document their refactoring activities in
commit messages; this activity is called Self-Admitted Refactoring or Self-Affirmed Refac-
toring (SAR). In particular, SAR indicates developers’ explicit documentation of refactoring
operations intentionally introduced during a code change.

2.3. Deep Learning

Implementing a deep learning approach for commit message classification resulted in
high accuracy. For active learning of classifiers, an unlabeled dataset of commit messages
is created, and labeling is performed after performing feature extraction using the Term
Frequency Inverse Document. The approach followed the steps such as dataset construc-
tion, which includes text prepossessing and a feature extraction step; a multi-label active
learning phase during which a classifier model is built and then evaluated and unlabeled
instances are queried for labeling by an oracle; and classification of new commit messages.
GitCProc [26] is used for data collection from 12 open source projects. Classifiers using
active learning are tested by measures such as hamming loss, precision, recall, and F1
score. Active learning multi-label classification technique reduced the efforts needed to
assign labels to each instance in a large set of commits. The classifier presented in the
study by Gharbi and Sirine et al. [27] can be improved by considering the changes of
the nature of the commits using commit time, and their types also automated commit
classification written in different languages, i.e., multilingual classification is a gap for
betterment. Mining the open source repositories is difficult for the software engineers



Algorithms 2021, 14, 289 4 of 20

because of the error rate in the labeling of commits. Prior to this work, key word-based
approaches are used for bug fixing commits classification. The method implemented by
Zafar et al. [28] uses the deep learning models, Bidirec- tional Encoder Representations
from Transformers (BERT), which can understand the context of commits and even the
semantics for better classification by creating a hand labeled dataset and semantic rules
for handling complex bug fix commits, which in turn reduced the error rate of labeling by
10%. Zafar et al. [28] analyzed git commits to check if they are bug fix commits or not; this
will help the development team to identify future resources and achieve project goals in
time by integrating NLP and BERT for bug fix commit classification. This Implemented
approach is based on fine tuning with the deep neural network, which encodes the word
relationships from the commits for the bug fix identification task.

2.4. Resampling Technique

Often, commit message datasets are imbalanced by nature, and it is difficult to build
a classifier for such a dataset; it might cause undersampling and oversampling. The
method proposed in [29] classifies commit messages extracted from GitHub by using the
multiple resampling technique for highly imbalanced dataset, resulting in improvements in
classification over the other classifiers. Imbalanced datasets often cause problems with the
machine learning algorithm. There are three variants of resampling, under sampling, over
sampling, and hybrid sampling. The undersampling method balances the class distribution
to reduce the skewness of data by removing minority classes, whereas oversampling
duplicates the examples from minority classes to minimize skewness, and hybrid sampling
uses a combination of undersampling and oversampling. All these methods tend to
maintain the goal of statistical resampling by improving the balance between the minority
and majority classes. The study performed in [29] first creates the feature matrix, and
resampling is performed by using the imbalanced learn sampling method. Here, a 10-fold
cross validation is used to ensure consistent results. From the research study of [29], the
questions concerning the development process such as “do developers discuss design”
is answered.

2.5. DeepLink: Issue-Commit Link Recovery

For the online version of control systems such as GitHub, links are missing between
the commits and issues. Issue commit links play an important role in software maintenance
as they help understand the logic behind the commit and make the software maintenance
easy. Existing systems for issue commit link recovery extracts the features from issue
report and commit log but it sometimes results in loss of semantics. Xie and Rui et al. [30]
proposed the design of a software that captures the semantics of code and issue-related
text. Furthermore, it also calculates the semantics’ similarity and code similarity by using
support vector machine (SVM) classification. Deeplink followed the process in order to
calculate the semantic and code similarity, which includes data construction, generation of
code embeddings, similarity calculation, and feature extraction. The result is supported
from [30] by the experiment performed on six projects, which answered the research
questions relying on the effectiveness of deeplink in order to recover the missing links,
effects of code context, and semantics of deeplink providing 90of F1-measure.

2.6. Code Density for Commit Message Classification

The classification of commits support the understanding and quality improvement
of the software. The concept introduced by Honel et al. [31] uses code density, i.e., ratio
between net and gross size of the code change, where net size is the size of the unique
code in the system and gross size includes clones, comments, space lines, etc. Answers
for the question are revealed by [31], and the question include the following: What are
the statistical properties of commit message dataset? Is there any difference between cross
and single project classification; Do classifiers perform better by considering the net size
related attributes? Are the size and density related features suitable for commit message



Algorithms 2021, 14, 289 5 of 20

classification? They further developed a git-density tool for analyzing git repositories. This
work can be extended by considering the structural and relational properties of commits
while reducing the dimensionality of features.

2.7. Boosting Automatic Commit Classification

There are three main categories of maintenance activities: predictive, adaptive, and
corrective. Better understanding of these activities will help managers and development
team to allocate resources in advance. Previous work performed on commit message
classification mainly focused on a single project. The work performed by Levin et al. [32]
presented a commit message classifier capable of classifying commits across different
projects with high accuracy. Eleven different open source projects were studied, and
11,513 commits were classified with high kappa values and high accuracy. The results
from [32] showed that when the analysis is based on word frequency of commits and
source code changes, the model boosted the performance. It considered the cross-project
classification. The methods are followed by gathering the commits and code changes,
sampling to label the commit dataset, developing a predictive model and training on 85%
data and testing on 15% of test data from same commit dataset, Levin et al. [32] used
naïve Bayes to set the initial baseline on test data. This system of classification motivated
us to consider the combinations of maintenance classes such as predictive + corrective.
In order to support the validation of labeling mechanisms for commit classification and
to generate a training set for future studies in the field of commit message classification
work presented by Mauczka, Andreas et al. [33] surveyed source code changes labeled
by authors of that code. For this study, seven developers from six projects applied three
classification methods to evident the changes made by them with meta information. The
automated classification of commits could be possible by mining the repositories from open
sources, such as git. Even though precision recall can be used to measure the performance
of the classifier, only the authors of commits know the exact intent of the change.

Mockus and Votta [34] designed an automatic classification algorithm to classify
maintenance activities based on a textual description of changes. Another automatic
classifier is proposed by Hassan [35] to classify commit messages as a bug fix, introduction
of a feature, or a general maintenance change. Mauczka et al. [36] developed an Eclipse
plug-in named Subcat to classify the change messages into the Swanson original category
set (i.e., Corrective, Adaptive, and Perfective [37]), with an additional category, Blacklist.
Mauczka et al. automatically assessed if a change to the software was due to a bug fix
or refactoring based on a set of keywords in the change messages. Hindle et al. [38]
performed the manual classification of large commits in order to understand the rationale
behind these commits. Later, Hindle et al. [39] proposed an automated technique to
classify commits into maintenance categories using seven machine learning techniques.
To define their classification schema, they extended the Swanson categorization [37] with
two additional changes: Feature Addition and Non-Functional. They observed that no
single classifier is the best. Another experiment that classifies history logs was conducted
by Hindle et al. [40], in which their classification of commits involves the non-functional
requirements (NFRs) a commit addresses. Since the commit may possibly be assigned to
multiple NFRs, they used three different learners for this purpose along with using several
single-class machine learners. Amor et al. [41] had a similar idea to [39] and extended the
Swanson categorization hierarchically. However, they selected one classifier (i.e., naive
Bayes) for their classification of code transactions. Moreover, maintenance requests have
been classified by using two different machine learning techniques (i.e., naive Bayesian
and decision tree) in [42]. McMillan et al. [43] explored three popular learners in order to
categorize software application for maintenance. Their results show that SVM is the best
performing machine learner for categorization over the others.



Algorithms 2021, 14, 289 6 of 20

2.8. Prediction of Refactoring Types

Refactoring is crucial as it impacts the quality of software and developers decide on the
refactoring opportunity based on their knowledge and expertise; thus, there is a need for an
automated method for predicting the refactoring. Proposed methods by Aniche et al. [44]
have shown how different machine learning algorithms can be used to predict refactoring
opportunities with a training set of 11,149 real-world projects from the Apache, F-Droid,
and GitHub ecosystems and how the random forest classifier provided maximum accuracy
out of six algorithms to predict method-level, class-level, and variable-level refactoring
after considering the metrics and context of a commit.

Upon a new request to add a feature, developers try to decide on the refactoring in
order to improve source code maintainability, comprehensibility, and prepare their systems
to adapt to this new requirement. However, this process is difficult and time consuming. A
machine learning based approach is a good solution to solve this problem; models trained
on history of the previously requested features, applied refactoring, and code pick out
information outperformed and provide promising results (83.19% accuracy) with 55 open
source Java projects [45]. This study aimed to use code smell information after predicting
the need of refactoring. Binary classifiers provide the need of refactoring and are later
used to predict the refactoring type based on requested code smell information along with
features. The model trained with code smell information resulted in the best accuracy.
Table 1 summarizes all the studies relevant to our paper.

Table 1. Summarized literature review.

Study Methodology Classification Method Category Results

Towards Standardizing
and Improving

Classification of Bug-Fix
Commit [28]

1. Implemented the
deep learning model
Bidirectional Encoder
Representations from
Transformers (BERT)

which can understand
the context of commits.

Deep Learning
1. Maintenance
activities 2. Bug

fixing

Semantic rules for
handling complex bug
fix commits reduced

the error rate of
labeling by 10%.

On the Classification of
Software Change
Messages using

Multi-label Active
Learning [27]

1. Labeled dataset after
performing the feature
extraction using Term

Frequency Inverse
Document.

Machine Learning and
Systematic Labeling

1. Maintenance
activities 2.
Corrective

Engineering

High accuracy in terms
of precision, recall, and

hamming loss.

DeclareRobustCommand

Classifying Commit
Messages: A Case Study

in Resampling
Techniques [29]

1. Applied a variety of
resampling methods in
different combinations

2. Tested highly
imbalanced dataset

with classes.

Machine Learning Re-engineering

10% more accuracy
achieved by classifier

over the other
classifiers.

Boosting Automatic
Commit Classification

Into Maintenance
Activities By Utilizing

Source Code
Changes [32]

1. When the analysis is
based on word

frequency of commits
and source code
changes, model

boosted the
performance

Automated classifier Maintenance
Activities

Eleven different open
source projects were

studied, and
1151 commits were
classified with high

kappa value and high
accuracy.



Algorithms 2021, 14, 289 7 of 20

Table 1. Cont.

Study Methodology Classification Method Category Results

Identifying Unusual
Commits on
GitHub [46]

1. This model is able of
classify large commits.

2. Commits made at the
unusual time.

Statistical approaches 1. Forward Engineering

Reduced
overwhelming
notifications for

developers.

Supervised machine
learning algorithms to

predict software
refactoring [44]

1. The proposed
methods have shown

how different machine
learning algorithms can

be used to predict
refactoring

opportunities with a
training set of 11,149
real-world projects.

Supervised machine
learning approach

1. Maintenance
activities

Predicted method-level,
class-level and
variable-level

refactoring after
considering metrics

and context of commit;
the random forest
classifier produced
maximum accuracy.

3. Research Methodology and Conduction
3.1. Approach Overview

Refactoring is necessary for improving software quality, and developers often perform
refactoring to maintain their software systems, add new features, and fix problems with
existing ones. While performing these changes, it is quite difficult to identify the correct
refactoring. The methods described in this paper can help developers and maintenance
teams to decide necessary refactoring for their software. We have implemented multiple
machine learning models to predict the correct refactoring type based on the commits of
project and code metrics. Our approach will also help the development team to decide
if any commit is unusual. Detecting anomalies in commits was necessary since we are
in the era of the open source community. The models built for this study are based on
two approaches: commit message based and code metrics based. After performing some
initial analyses, we found that code metrics based models were producing better accuracy
than compared to the commit messages since code metrics are the key factors in deciding
cohesion, coupling, and complexity of refactoring class. The following section will discuss
the methodology we followed to collect the data, to preprocess it, and the methods used to
build various ML models. As depicted in Figure 1, we followed a commit classification
approach similar to [23,24,44].

As an illustrative example, Figure 2 details a commit for which its message states
the relocation of the method classFor(asmType) to an internal class utility class for the
purpose of applying the single responsibility principle and code reusability link to the com-
mit: https://github.com/modelmapper/modelmapper/commit/6796071fc6ad98150b6
faf654c8200164f977aa4 (accessed on 20 September 2021). After running Refactoring Miner,
we detected the existence of a Move method refactoring from the class ExplicitMappingVisitor
to the class Types. The detected refactoring matches the description of the commit message
and provides more insights about the old placement of the method.

In a nutshell, the goal of our work is to automatically predict refactoring activity from
commit messages and code metrics. In the data collection layer, we collected commits for
projects from GitHub with web crawling for every project, and we prepared csv files with
project commits and code metrics for further machine learning analysis. After this initial
collection process, data were preprocessed to remove noise for model building. Extracting
features helped us achieve results. Since we were dealing with text data, it was necessary
to convert it with useful feature engineering. Preprocessed data with useful features were
used for training various supervised learning models. We split our analysis into two
parts based on our initial experiments. Only commit messages were not quite robust for
predicting the refactoring type; thus, we tried to use code metrics. The following section
will briefly describe the procedure used to build models with these three inputs.

https://github.com/modelmapper/modelmapper/commit/ 6796071fc6ad98150b6faf654c8200164f977aa4
https://github.com/modelmapper/modelmapper/commit/ 6796071fc6ad98150b6faf654c8200164f977aa4


Algorithms 2021, 14, 289 8 of 20

Figure 1. Overall framework.

Figure 2. A sample instance of our dataset.

As shown in Figure 1, our methodology contained two main phases: data collection
phase and commit classification phase. Data collection will detail how we collected the
dataset for this study, while the second phase focuses on designing the text-based and
metric-based models under test conditions.

3.2. Data Collection

Our first step consists of randomly selecting 800 projects, which were curated open-
source Java projects hosted on GitHub. These curated projects were selected from a dataset
made available by [47], while verifying that they were Java-based, the only language



Algorithms 2021, 14, 289 9 of 20

supported by Refactoring Miner [48]. We cloned the 800 selected projects having a total of
748,001 commits and a total of 711,495 refactoring operations from 111,884 refactoring com-
mits. To extract the entire refactoring history of each project, we used the the Refactoring
Miner https://github.com/tsantalis/RefactoringMiner (accessed on 20 September 2021)
tool introduced by [48], since our goal is to provide the classifier with sufficient commits
that represent the refactoring operations considered in this study. Since the number of
candidate commits to classify is large, we cannot manually process them all, and so we
needed to randomly sample a subset while making sure it equitably represents the featured
classes, i.e., refactoring types.

The data collection process has resulted in a dataset with five different refactoring
classes, all detected at the method level, namely rename, push down, inline, extract, pull
up, and move. The dataset used for this experiment is quite balanced. There are a total of
5004 commits in this dataset (see Table 2).

Table 2. Number of instances per class (Commit Message).

Refactoring Classes Count

Rename 834

Push down 834

Inline 834

extract 834

Pull up 834

Move 834

3.3. Data Preprocessing

After importing data as panda dataframes, data are checked for duplicate commit
IDs and missing fields. To achieve better accuracy, data with duplicate values and missing
values should not be considered for further analysis. We also normalized the metric values
using standard deviation, randomized the dataset with random sampling, and removed
null entries. Since we are dealing with commit messages from VCS, text preprocessing is a
crucial step. For commit messages to be classified properly by the classifier, they need to
be preprocessed and cleaned, and converted to a format that an algorithm can process. To
extract keywords, we have followed the steps listed below:

—Tokenization: For text processing, we used NLTK library from python. The tokeniza-
tion process breaks a text into words, phrases, symbols, or other meaningful elements called
tokens. Here, tokenization is used to split commit text into its constituent set of words.

—Lemmatization: The lemmatization process replaces the suffix of a word or removes
the suffix of a word to obtain the basic word form. In this case of text processing, lemmati-
zation is used for part of the speech identification and sentence separation and keyphrase
extraction. Lemmatization provided the most probable form of a word. Lemmatization
considers morphological analysis of words; this was one of the reason of choosing it over
stemming, since stemming only works by cutting off the end or the beginning of the word
and takes list of common prefixes and suffixes by considering morphological variants.
Sometimes this might not provide us with the proper results where sophisticated stemming
is required, giving rise to other methodologies such as porter and snowball stemming. This
is one of the limitations of the stemming method.

—Stop Word Removal: Further text is processed for English stop words removal.
—Noise Removal: Since data come from the web, it is mandatory to clean HTML tags

from data. The data are checked for special characters, numbers, and punctuation in order
to remove any noise.

—Normalization: Text is normalized, all converted into lowercase for further processing,
and the diversity of capitalization in text is remove.

https://github.com/tsantalis/RefactoringMiner


Algorithms 2021, 14, 289 10 of 20

3.4. Feature Extraction
3.4.1. Text-Based Model

Feature extraction includes extracting keywords from commits; these extracted fea-
tures are used to build a training dataset. For feature extraction, we have used a word
embedding library from Keras, which provides the indexes for each word. Word embed-
ding helps to extract information from the pattern and occurrences of words. It is an
advanced method that goes beyond traditional feature extraction methods from NLP to
decode the meaning of words, providing more relevant features to our model for training.
Word embedding is represented by a single n-dimensional vector where similar words oc-
cupy the same vector. To accomplish this, we have used pretrained GloVe word embedding.
The GloVeword embedding technique is efficient since the vectors generated by using this
technique are small in size, and none of the indexes generated are empty, reducing the
curse of dimensionality. On the other hand, other feature extraction techniques such as
n-grams, TF-IDF, and bag of words generate very huge feature vectors with sparsity, which
causes memory wastage and increases the complexity of algorithm.

Steps followed to convert text into word embedding: We converted the text into
vectors by using tokenizer function from Keras, then converted sentences into numeric
counterparts and applied padding to the commit messages with shorter length. Once
we had the padded number sequence representing our commit message corpus, we then
compared it with the pretrained GloVe word embedding and created the embedding matrix
that has words from commit and respective values for each GloVe embedding. After these
steps, we have word embeddings for all words in our corpus of commit messages.

Text-Based Model Building. Model building and training: To build the model with
commit messages as input in order to predict the refactoring type (see Figure 3), we used
Keras functional API after we obtained the word embedding matrix. We followed the
following steps:

• We created a model with an input layer of word embedding matrix, LSTM layer,
which provided us with a final dense layer of output.

• For the LSTM layer, we used 128 neurons; for the dense layer, we have five neurons
since there are five different refactoring classes.

• We have Softmax as an activation function in the dense layer and categorical_crossentropy
as the loss function.

• As shown in Table 3, we also performed parameter hypertuning in order to choose the
values of activation function, optimizer, loss function, number of nodes, hidden layers,
epoch, number of dense layers, etc. The dataset and source code of this experiments
is available on GitHub https://github.com/smilevo/refactoring-metrics-prediction
(accessed on 20 September 2021).

• We trained this model on 70% of data with 10 epochs.
• After checking training accuracy and validation accuracy, we observed that this model

is not overfitting.
• To test the model with only commit messages as input, we used 30% of data, and we

used the evaluate function from the Keras API to test the model on test dataset and
visualized model accuracy and model loss.

https://github.com/smilevo/refactoring-metrics-prediction


Algorithms 2021, 14, 289 11 of 20

Table 3. Parameter hypertuning for LSTM model.

Parameters Used in LSTM Model Values

Number of neurons 6

Activation Function softmax

Loss Function categorical_crossentropy

Optimizer adam

Number of dense layers 1

Epoch 5

Figure 3. Overview of model with commit messages as input.

3.4.2. Metric-Based Model

We calculated the source code metrics of all code changes containing refactorings. We
used “Understand” to extract these measurements https://www.scitools.com (accessed
on 20 September 2021). These metrics have been previously used to assess the quality of
refactoring or to recommend refactorings [3,49–51]. In addition to that, many previous
papers have found significant correlation code metrics and refactoring [11,13,52]. Their
findings show that metrics can be a strong indicator for refactoring activity, regardless of
whether it improves or degrades these metric values. In order to calculate the variation
of metrics, for each of the selected commits, we verified the set of Java files impacted by
the changes (i.e., only modified files) before and after the changes were implemented by
refactoring commits. Then, we considered the difference in values between the commit
after and the commit before for each metric.

Metric-Based Model Building. After we split the data as training and test datasets.
We built different supervised machine learning models to predict the refactoring class, as
depicted in Figure 4. The steps we followed were the following steps:

• We used supervised machine learning models from the sklearn library of python.
• We trained random forest, SVM, and logistic regression classifiers on 70% of data.
• We performed the parameter hypertuning to obtain optimal results. Table 4 shows the

selected parameters for each algorithm used in this experiment.
• After checking training accuracy and validation accuracy, we observed this model is

not overfitting.
• Built models are tested on 30% of data, and the results were analyzed by varied

machine learning measures such as precision, recall, F1- score, accuracy, confusion
matrix, etc.

https://www.scitools.com


Algorithms 2021, 14, 289 12 of 20

Figure 4. Framework of model with code metrics as input.

Table 4. Parameter hypertuning for Supervised ML Algorithms.

Supervised Learning Models Parameters Values

SVM C 1.0

Kernel Linear

Gamma auto

Degree 3

Random Forest n_estimators 100

criterion gini

min_samples_split 2

Logistic Regression penalty 12

dual False

tol 1 × 10−4

C 1.0

fit_intercept True

solver lbfgs

Naive Bayes alpha 1.0

fit_prior True

class_prior None

3.5. Model Evaluation

We computed F-measures for multiclass in terms of precision and recall by using the
following formula:

F = 2 ∗
(

Precision ∗ Recall
Precision + Recall

)
(1)

where Precision (P) and Recall (R) are calculated as follows.

P =
tp

tp + f p
, R =

tp
tp + f n

Accuracy is calculated as follows.

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn

4. Experimental Results and Analysis

The following section will describe the experimental setup and the results obtained,
followed by the analysis of research questions. The study performed in this paper can



Algorithms 2021, 14, 289 13 of 20

also be extended in the future to identify usual and unusual commits. Building multiple
models with combinations of input provided us with better insights of factors impacting
refactoring class prediction.

Our experiment is driven by the following research questions:

• RQ1. How effective is text-based modeling in predicting the type of refactoring?
• RQ2. How effective is metric-based modeling in predicting the type of refactoring?

4.1. RQ1. How Effective Is Text-Based Modeling in Predicting the Type of Refactoring?

Tables 5 and 6 show that the model produced a total of 54% accuracy on 30% of test
data. With the “evaluate” function from keras, we were able to evaluate this model. The
overall accuracy and model loss show that only commit messages are not very robust
inputs for predicting the refactoring class; there are a number of reasons why the commit
messages are unable to build robust predictive models. Often, the task of dealing with text
to build a classification model is challenging, and feature extraction helped us to achieve
this accuracy. Most of the time, the use of limited vocabulary by developers makes commits
unclear and difficult to follow for fellow developers.

Table 5. Results of LSTM model with commit messages as input.

Model Accuracy 54.3%

Model Loss 1.401

F1-score 0.21035261452198029

Precision 1.0

Recall 0.1176215410232544

Table 6. Metrics per class.

Precision Recall F1-Score Support

Extract 0.56 0.66 0.61 92

Inline 0.47 0.43 0.45 84

Rename 0.56 0.68 0.62 76

Push down 0.37 0.39 0.38 87

Pull up 0.41 0.27 0.32 89

Move 0.97 0.95 0.96 73

Accuracy 0.55 501

Macro avg 0.56 0.56 0.56 501

Weighted avg 0.54 0.55 0.54 501

RQ1. Conclusion. One of the very first experiments performed provided us with the
answer to this question, where we used only commit messages to train the LSTM model
to predict the refactoring class. The accuracy of this model was 54%, and it was not up
to expectations. Thus, we concluded that only commit messages are not very effective in
predicting refactoring classes; we also noticed that the developers’ ability to use minimal
vocabulary while writing code and committing changes on version control systems could
be one of the reasons for inhibited prediction.

4.2. RQ2. How Effective Is Metric-Based Modeling in Predicting the Type of Refactoring?

To perform this experiment, we considered source code metrics as input for our
classification model. There are 64 code metrics in our dataset; source code metrics helps
to understand cohesion, coupling, and results in more accurate prediction of refactoring



Algorithms 2021, 14, 289 14 of 20

class since these metrics are closely related to each other. Metrics also help to identify
which refactoring class is suitable for changes made in the source code and leverages
traceability. We only dealt with numbers while performing this experiment. We trained
different supervised machine learning models to predict refactoring class based on code
metrics. We initially analyzed this dataset and carried out exploratory data analysis.

4.2.1. Classification Using Random Forest

We used the inbuilt functions from scikit-learn library of python to build a random
forest model and to test it. We followed the below approach to set up this experiment:

• Imported pandas, numpy, and sklearn library from python;
• Imported dataset as data frame;
• Removed null entries, randomized the dataset, and normalized it with statistical mod-

eling;
• Trained the random forest model and tested it.

This model produced overall 75% accuracy, and this was the best accuracy we have
achieved so far. We used precision, recall, F1-score and support as measuring units to
evaluate the model. Precision, recall, and F1-score for this model are shown in Table 7.
Precision provides us with the percentage of positive predictions made correctly, whereas
recall depicts the percentage of positive instances predicted correctly by the classifier over
all positive instances in the dataset. Tje F-1 score is nothing but a harmonic mean of
precision and recall.

Table 7. Results of random forest algorithm.

Precision Recall F1-Score Support

Extract 0.91 0.47 0.62 395

Inline 0.99 1.00 1.00 422

Move 0.94 0.69 0.80 429

Pull up 0.57 0.65 0.61 413

Push down 0.90 0.69 0.78 373

Rename 0.56 0.98 0.71 449

Accuracy 0.75 2481

Macro avg 0.81 0.75 0.75 2481

Weighted avg 0.81 0.75 0.75 2481

4.2.2. Classification Using Logistic Regression

Logistic regression is a predictive analysis algorithm based on the concept of prob-
ability, and it uses the sigmoid function to predict the classes. We have used the in-built
functions from the sklearn library of Python to achieve the results. As it can be observed
from Table 8, this model achieved only 47% accuracy, with best class accuracy for the
inline class.



Algorithms 2021, 14, 289 15 of 20

Table 8. Results of Logistic Regression model.

Precision Recall F1-Score Support

Extract 0.56 0.29 0.38 380

Inline 0.79 0.72 0.76 417

Move 0.94 0.69 0.80 429

Pull up 0.41 0.13 0.20 418

Push down 0.62 0.40 0.48 400

Rename 0.32 0.90 0.47 443

Accuracy 0.47 2481

Macro avg 0.53 0.46 0.45 2481

Weighted avg 0.53 0.47 0.45 2481

4.2.3. Classification Using Support-Vector Machines

Support-vector machines (SVMs) are one of the robust algorithms for multiclass
classification due to its ability to not overfit models with multiple classes. SVM predicts the
classes based on the separation distance in the hyperplane of data points, called support
vectors. For this experiment, we have used linear kernel function. Table 9 shows the overall
accuracy and class accuracies. This model achieved 44% of accuracy, with the best class
accuracy for inline class of 79%.

Table 9. Results of SVM model.

Precision Recall F1-Score Support

Extract 0.64 0.24 0.35 380

Inline 0.79 0.73 0.76 417

Move 0.69 0.30 0.42 423

Pull up 0.29 0.11 0.16 418

Push down 0.61 0.29 0.40 400

Rename 0.29 0.92 0.44 443

Accuracy 0.44 2481

Macro avg 0.55 0.43 0.42 2481

Weighted avg 0.55 0.44 0.42 2481

4.2.4. Classification Using Naive Bayes

Naive Bayes is one of the intuitive classification algorithms. However, it only works
best with categorical data. It takes the freight class occurrence with correlation with other
classes into consideration. From Table 10, it is clear that naive Bayes is not very robust
for code metrics, and this model was only 35% accurate in predicting refactoring class.
Figures 5 and 6 demonstrate the confusion matrix for each of the classifier.



Algorithms 2021, 14, 289 16 of 20

Table 10. Results of Naive bayes model.

Precision Recall F1-Score Support

Extract 0.20 0.73 0.31 380

Inline 0.65 0.60 0.62 417

Move 0.39 0.25 0.31 423

Pull up 0.47 0.13 0.20 418

Push down 0.50 0.34 0.41 400

Rename 0.72 0.08 0.14 443

Accuracy 0.35 2481

Macro avg 0.49 0.35 0.33 24,811

Weighted avg 0.49 0.35 0.33 2481

Figure 5. Confusion Matrix for random forest classifier and SVM (Metrics only).

Figure 6. Confusion Matrix for naive Bayes classifier and logistic regression classifier (Metrics only).

RQ2. Conclusion. Random forest multiclass classification model built with source
code metrics resulted in good accuracy, whereas the other three supervised learning models
resulted in poor accuracy. In this case, our experiments show in Table 11 that random forest
classification model is significantly robust in predicting refactoring classes when built on
code metrics input.

Table 11. Results of LSTM model with commit messages and code metrics as input.

Model Accuracy 40.67%

Model Loss 1.310

F1-score 0.014

Precision 0.666

Recall 0.0071



Algorithms 2021, 14, 289 17 of 20

For the study where we considered commit messages as input for the LSTM model,
the “move” class was the most accurately predicted. After training supervised learning
algorithms with code metrics as input, the random forest algorithm predicted inline class
with 99% accuracy, whereas logistic regression predicted “move” with 94% of accuracy.
The overall accuracy of the logistic regression classifier was noticeably poorer. SVM and
naive Bayes predicted inline and rename refactoring classes more accurately.

4.3. Limitations

We have only considered six method-level refactoring classes: inline, extract, pull up,
push down, move, and rename. In the future, we can extend the scope of our study by
considering more classes. Code metrics are the key factors in deciding cohesion, coupling,
and complexity of refactoring class; we have considered the dataset with 64 code metrics.
We could also extend our research by taking more metrics into account. This will extend
the scope of our study. The limited set of code metrics and refactoring classes was one of
the limitations of this study. The methods used to deal with text data and numeric data
were different and using a deep learning method with code metrics dataset was another
option to consider. Another limitation of this study is focusing on only LSTM. In the future,
we will also test different deep learning algorithms.

5. Threats to Validity

External Validity: This refers to the generalizibility of the treatment outcomes. The
first threat relates to the commits that are extracted only from open source Java projects.
Our results may not generalize to commercially developed projects or to other projects
using different programming languages.

Construct Validity: This refers to the extent to which a test measures what it claims
to be measuring. Since our approach heavily depends on commit messages, we used
well-commented Java projects when performing our study. Thus, the quality and the
quantity of commit messages might have impacts on our findings.

Internal Validity: This refers to the extent to which a piece of evidence supports
the claim. Our analysis is mainly threatened by the accuracy of the Refactoring Miner
tool because the tool may miss the detection of some refactorings. However, previous
studies [48,53] report that Refactoring Miner has high precision and recall scores (i.e.,
a precision of 98% and a recall of 87%) compared to other state-of-the-art refactoring
detection tools.

6. Conclusions and Future Work

In this paper, we implemented different supervised machine learning models and
LSTM models in order to predict the refactoring class for any project. To begin with, we
implemented a model with only commit messages as input, but this approach led us to
more research with other inputs. Combining commit messages with code metrics was our
second experiment, and the model built with LSTM produced 54.3% of accuracy. Sixty-four
different code metrics dealing with cohesion and coupling characteristics of the code are
among one of the best performing models, producing 75% accuracy when tested with 30%
of data. Our study significantly proved that code metrics are effective in predicting the
refactoring class since the commit messages with little vocabulary are not sufficient for
training ML models.

In the future, we would like to extend the scope of our study and build various models
in order to properly combine both textual information with metrics information to benefit
from both sources. Ensemble learning and deep learning models will be compared with
respect to the combination of data sources.

Author Contributions: Data curation, E.A.A.; Investigation, P.S.S.; Methodology, P.S.S. and C.D.N.;
Software, E.A.A.; Supervision, M.W.M.; Validation, E.A.A.; Writing–original draft, P.S.S. and A.O. All
authors have read and agreed to the published version of the manuscript.



Algorithms 2021, 14, 289 18 of 20

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tsantalis, N.; Chaikalis, T.; Chatzigeorgiou, A. JDeodorant: Identification and removal of type-checking bad smells. In

Proceedings of the 2008 12th European Conference on Software Maintenance and Reengineering, Athens, Greece, 1–4 April 2008;
pp. 329–331.

2. Zhang, M.; Baddoo, N.; Wernick, P.; Hall, T. Prioritising refactoring using code bad smells. In Proceedings of the 2011 IEEE
Fourth International Conference on Software Testing, Verification and Validation Workshops, Berlin, Germany, 21–25 March 2011;
pp. 458–464.

3. Mkaouer, W.; Kessentini, M.; Shaout, A.; Koligheu, P.; Bechikh, S.; Deb, K.; Ouni, A. Many-objective software remodularization
using NSGA-III. ACM Trans. Softw. Eng. Methodol. 2015, 24, 1–45. [CrossRef]

4. Ouni, A.; Kessentini, M.; Sahraoui, H.; Inoue, K.; Deb, K. Multi-criteria code refactoring using search-based software engineering:
An industrial case study. ACM Trans. Softw. Eng. Methodol. 2016, 25, 23. [CrossRef]

5. Veerappa, V.; Harrison, R. An empirical validation of coupling metrics using automated refactoring. In Proceedings of
the 2013 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, Baltimore, MD, USA,
10–11 October 2013; pp. 271–274.

6. Naiya, N.; Counsell, S.; Hall, T. The Relationship between Depth of Inheritance and Refactoring: An Empirical Study of Eclipse
Releases. In Proceedings of the 2015 41st Euromicro Conference on Software Engineering and Advanced Applications, Madeira,
Portugal, 26–28 August 2015; pp. 88–91.

7. Ubayashi, N.; Kamei, Y.; Sato, R. Can Abstraction Be Taught? Refactoring-based Abstraction Learning. In Proceedings of the
6th International Conference on Model-Driven Engineering and Software Development, Madeira, Portugal, 22–24 January 2018;
pp. 429–437.

8. Counsell, S.; Swift, S.; Arzoky, M.; Destefanis, G. Do developers really worry about refactoring re-test? An empirical study
of open-source systems. In Proceedings of the International Conference on Product-Focused Software Process Improvement,
Wolfsburg, Germany, 28–30 November 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 159–166.

9. Counsell, S.; Arzoky, M.; Destefanis, G.; Taibi, D. On the Relationship Between Coupling and Refactoring: An Empirical Viewpoint.
In Proceedings of the 2019 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM),
Recife, Brazil, 19–20 September 2019; pp. 1–6.

10. Pantiuchina, J.; Lanza, M.; Bavota, G. Improving Code: The (Mis) perception of Quality Metrics. In Proceedings of the 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME), Madrid, Spain, 23–29 September 2018; pp. 80–91.

11. AlOmar, E.A.; Mkaouer, M.W.; Ouni, A.; Kessentini, M. On the impact of refactoring on the relationship between quality attributes
and design metrics. In Proceedings of the 2019 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), Recife, Brazil, 19–20 September 2019; pp. 1–11.

12. AlOmar, E.A.; Rodriguez, P.T.; Bowman, J.; Wang, T.; Adepoju, B.; Lopez, K.; Newman, C.; Ouni, A.; Mkaouer, M.W. How do
developers refactor code to improve code reusability? In Proceedings of the International Conference on Software and Software
Reuse, Hammamet, Tunisia, 9–11 November 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 261–276.

13. Alrubaye, H.; Alshoaibi, D.; Alomar, E.; Mkaouer, M.W.; Ouni, A. How does library migration impact software quality and
comprehension? An empirical study. In Proceedings of the International Conference on Software and Software Reuse, Hammamet,
Tunisia, 9–11 November 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 245–260.

14. Rebai, S.; Kessentini, M.; Alizadeh, V.; Sghaier, O.B.; Kazman, R. Recommending Refactorings via Commit Message Analysis. Inf.
Softw. Technol. 2020, 126, 106332. [CrossRef]

15. Stroggylos, K.; Spinellis, D. Refactoring–Does It Improve Software Quality? In Proceedings of the Fifth International Workshop
on Software Quality (WoSQ’07: ICSE Workshops 2007), Minneapolis, MN, USA, 20–26 May 2007; p. 10.

16. Ratzinger, J.; Sigmund, T.; Gall, H.C. On the Relation of Refactorings and Software Defect Prediction. In Proceedings of the 2008
International Working Conference on Mining Software Repositories, Leipzig, Germany, 10–11 May 2008; ACM: New York, NY,
USA, 2008; pp. 35–38. [CrossRef]

17. Ratzinger, J. sPACE: Software Project Assessment in the Course of Evolution. Ph.D. Thesis, Vienna University of Technology,
Vienna, Austria, 2007.

18. Murphy-Hill, E.; Parnin, C.; Black, A.P. How we refactor, and how we know it. IEEE Trans. Softw. Eng. 2012, 38, 5–18. [CrossRef]
19. Soares, G.; Gheyi, R.; Murphy-Hill, E.; Johnson, B. Comparing approaches to analyze refactoring activity on software repositories.

J. Syst. Softw. 2013, 86, 1006–1022. [CrossRef]
20. Kim, M.; Zimmermann, T.; Nagappan, N. An empirical study of refactoring challenges and benefits at microsoft. IEEE Trans.

Softw. Eng. 2014, 40, 633–649. [CrossRef]

http://doi.org/10.1145/2729974
http://dx.doi.org/10.1145/2932631
http://dx.doi.org/10.1016/j.infsof.2020.106332
http://dx.doi.org/10.1145/1370750.1370759
http://dx.doi.org/10.1109/TSE.2011.41
http://dx.doi.org/10.1016/j.jss.2012.10.040
http://dx.doi.org/10.1109/TSE.2014.2318734


Algorithms 2021, 14, 289 19 of 20

21. Zhang, D.; Bing, L.; Zengyang, L.; Liang, P. A Preliminary Investigation of Self-Admitted Refactorings in Open Source Software
(S). In Proceedings of the 30th International Conference on Software Engineering and Knowledge Engineering, Hotel Pullman,
Redwood City, CA, USA, 1–3 July 2018; pp. 165–168. [CrossRef]

22. AlOmar, E.A.; Mkaouer, M.W.; Ouni, A. Can refactoring be self-affirmed? an exploratory study on how developers document
their refactoring activities in commit messages. In Proceedings of the 3nd International Workshop on Refactoring-Accepted,
Montreal, QC, USA, 28 May 2019.

23. AlOmar, E.A.; Peruma, A.; Mkaouer, M.W.; Newman, C.; Ouni, A.; Kessentini, M. How we refactor and how we document it? On
the use of supervised machine learning algorithms to classify refactoring documentation. Expert Syst. Appl. 2020, 167, 114176.
[CrossRef]

24. AlOmar, E.A.; Mkaouer, M.W.; Ouni, A. Toward the automatic classification of self-affirmed refactoring. J. Syst. Softw. 2020,
171, 110821. [CrossRef]

25. AlOmar, E.A.; Mkaouer, M.W.; Ouni, A. Mining and Managing Big Data Refactoring for Design Improvement: Are We There Yet?
In Knowledge Management in the Development of Data-Intensive Systems; Taylor & Francis: Abingdon, UK, 2020; pp. 127–140.

26. Casalnuovo, C.; Suchak, Y.; Ray, B.; Rubio-González, C. Gitcproc: A tool for processing and classifying github commits. In
Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis, Santa Barbara, CA, USA,
10–14 July 2017; pp. 396–399.

27. Gharbi, S.; Mkaouer, M.W.; Jenhani, I.; Messaoud, M.B. On the classification of software change messages using multi-label active
learning. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, Limassol, Cyprus, 8–12 April 2019;
pp. 1760–1767.

28. Zafar, S.; Malik, M.Z.; Walia, G.S. Towards standardizing and improving classification of bug-fix commits. In Proceedings of
the 2019 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), Recife, Brazil,
19–20 September 2019; pp. 1–6.

29. Shekarforoush, S.; Green, R.; Dyer, R. Classifying commit messages: A case study in resampling techniques. In Proceedings of
the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 1273–1280.

30. Xie, R.; Chen, L.; Ye, W.; Li, Z.; Hu, T.; Du, D.; Zhang, S. DeepLink: A code knowledge graph based deep learning approach for
issue-commit link recovery. In Proceedings of the 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER), Hangzhou, China, 24–27 February 2019; pp. 434–444.

31. Hönel, S.; Ericsson, M.; Löwe, W.; Wingkvist, A. Importance and aptitude of source code density for commit classification into
maintenance activities. In Proceedings of the 2019 IEEE 19th International Conference on Software Quality, Reliability and
Security (QRS), Sofia, Bulgaria, 22–26 July 2019; pp. 109–120.

32. Levin, S.; Yehudai, A. Boosting automatic commit classification into maintenance activities by utilizing source code changes. In
Proceedings of the 13th International Conference on Predictive Models and Data Analytics in Software Engineering, Toronto, ON,
Canada, 8 November 2017; pp. 97–106.

33. Mauczka, A.; Brosch, F.; Schanes, C.; Grechenig, T. Dataset of developer-labeled commit messages. In Proceedings of the 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories, Florence, Italy, 16–17 May 2015; pp. 490–493.

34. Mockus, A.; Votta, L.G. Identifying Reasons for Software Changes using Historic Databases. In Proceedings of the 2000
International Conference on Software Maintenance, ICSM, San Jose, CA, USA, 11–14 October 2000; pp. 120–130.

35. Hassan, A.E. Automated Classification of Change Messages in Open Source Projects. In Proceedings of the 2008 ACM Symposium
on Applied Computing, Ceara, Brazil, 16–20 March 2008; ACM: New York, NY, USA, 2008; pp. 837–841. [CrossRef]

36. Mauczka, A.; Huber, M.; Schanes, C.; Schramm, W.; Bernhart, M.; Grechenig, T. Tracing Your Maintenance Work–A Cross-Project
Validation of an Automated Classification Dictionary for Commit Messages. In Fundamental Approaches to Software Engineering:
15th International Conference, FASE 2012, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2012,
Tallinn, Estonia, 24 March –1 April 2012. Proceedings; de Lara, J., Zisman, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 301–315. [CrossRef]

37. Swanson, E.B. The Dimensions of Maintenance. In Proceedings of the 2nd International Conference on Software Engineering,
San Francisco, CA, USA, 13–15 October 1976; IEEE Computer Society Press: Los Alamitos, CA, USA, 1976; pp. 492–497.

38. Hindle, A.; German, D.M.; Holt, R. What Do Large Commits Tell Us?: A Taxonomical Study of Large Commits. In Proceedings of
the 2008 International Working Conference on Mining Software Repositories, Leipzig, Germany, 10–11 May 2008; ACM: New
York, NY, USA, 2008; pp. 99–108. [CrossRef]

39. Hindle, A.; German, D.M.; Godfrey, M.W.; Holt, R.C. Automatic classication of large changes into maintenance categories. In
Proceedings of the 2009 IEEE 17th International Conference on Program Comprehension, Vancouver, BC, Canada, 17–19 May 2009;
pp. 30–39. [CrossRef]

40. Hindle, A.; Ernst, N.A.; Godfrey, M.W.; Mylopoulos, J. Automated Topic Naming to Support Cross-project Analysis of Software
Maintenance Activities. In Proceedings of the 8th Working Conference on Mining Software Repositories, Leipzig, Germany,
10–11 May 2008; ACM: New York, NY, USA, 2011; pp. 163–172. [CrossRef]

41. Amor, J.; Robles, G.; Gonzalez-Barahona, J.; Navarro Gsyc, A.; Carlos, J.; Madrid, S. Discriminating Development Activities in
Versioning Systems: A Case Study. 2006. Available online: https://www.researchgate.net/profile/Jesus-Gonzalez-Barahona/
publication/228968358_Discriminating_development_activities_in_versioning_systems_A_case_study/links/0c9605200b2fd8
eed9000000/Discriminating-development-activities-in-versioning-systems-A-case-study.pdf (accessed on 30 September 2021).

http://dx.doi.org/10.18293/SEKE2018-081
http://dx.doi.org/10.1016/j.eswa.2020.114176
http://dx.doi.org/10.1016/j.jss.2020.110821
http://dx.doi.org/10.1145/1363686.1363876
http://dx.doi.org/10.1007/978-3-642-28872-2_21
http://dx.doi.org/10.1145/1370750.1370773
http://dx.doi.org/10.1109/ICPC.2009.5090025
http://dx.doi.org/10.1145/1985441.1985466
https://www.researchgate.net/profile/Jesus-Gonzalez-Barahona/publication/228968358_Discriminating_development_activities_in_versioning_systems_A_case_study/links/0c9605200b2fd8eed9000000/Discriminating-development-activities-in-versioning-systems-A-case-study.pdf
https://www.researchgate.net/profile/Jesus-Gonzalez-Barahona/publication/228968358_Discriminating_development_activities_in_versioning_systems_A_case_study/links/0c9605200b2fd8eed9000000/Discriminating-development-activities-in-versioning-systems-A-case-study.pdf
https://www.researchgate.net/profile/Jesus-Gonzalez-Barahona/publication/228968358_Discriminating_development_activities_in_versioning_systems_A_case_study/links/0c9605200b2fd8eed9000000/Discriminating-development-activities-in-versioning-systems-A-case-study.pdf


Algorithms 2021, 14, 289 20 of 20

42. Mahmoodian, N.; Abdullah, R.; Murad, M.A.A. Text-based classification incoming maintenance requests to maintenance type.
In Proceedings of the 2010 International Symposium on Information Technology, Kuala Lumpur, Malaysia, 15–17 June 2010;
Volume 2, pp. 693–697. [CrossRef]

43. McMillan, C.; Linares-Vasquez, M.; Poshyvanyk, D.; Grechanik, M. Categorizing Software Applications for Maintenance. In Pro-
ceedings of the 2011 27th IEEE International Conference on Software Maintenance, Williamsburg, VA, USA, 25–30 September 2011;
IEEE Computer Society: Washington, DC, USA, 2011; pp. 343–352. [CrossRef]

44. Aniche, M.; Maziero, E.; Durelli, R.; Durelli, V. The Effectiveness of Supervised Machine Learning Algorithms in Predicting
Software Refactoring. IEEE Trans. Softw. Eng. 2020. [CrossRef]

45. Nyamawe, A.S.; Liu, H.; Niu, N.; Umer, Q.; Niu, Z. Feature requests-based recommendation of software refactorings. Empir.
Softw. Eng. 2020, 25, 4315–4347. [CrossRef]

46. Goyal, R.; Ferreira, G.; Kästner, C.; Herbsleb, J. Identifying unusual commits on GitHub. J. Softw. Evol. Process. 2018, 30, e1893.
[CrossRef]

47. Munaiah, N.; Kroh, S.; Cabrey, C.; Nagappan, M. Curating GitHub for engineered software projects. Empir. Softw. Eng. 2017,
22, 3219–3253. [CrossRef]

48. Tsantalis, N.; Mansouri, M.; Eshkevari, L.M.; Mazinanian, D.; Dig, D. Accurate and efficient refactoring detection in commit
history. In Proceedings of the 40th International Conference on Software Engineering, Gothenburg, Sweden, 27 May–3 June 2018;
pp. 483–494.

49. Mkaouer, M.W.; Kessentini, M.; Bechikh, S.; Deb, K.; Ó Cinnéide, M. High dimensional search-based software engineering:
Finding tradeoffs among 15 objectives for automating software refactoring using NSGA-III. In Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Computation, Vancouver, BC, Canada, 12–16 July 2014; pp. 1263–1270.

50. Mkaouer, M.W.; Kessentini, M.; Bechikh, S.; Cinnéide, M.Ó.; Deb, K. On the use of many quality attributes for software refactoring:
A many-objective search-based software engineering approach. Empir. Softw. Eng. 2016, 21, 2503–2545. [CrossRef]

51. Mkaouer, M.W.; Kessentini, M.; Cinnéide, M.Ó.; Hayashi, S.; Deb, K. A robust multi-objective approach to balance severity and
importance of refactoring opportunities. Empir. Softw. Eng. 2017, 22, 894–927. [CrossRef]

52. Hamdi, O.; Ouni, A.; AlOmar, E.A.; Cinnéide, M.Ó.; Mkaouer, M.W. An Empirical Study on the Impact of Refactoring on Quality
Metrics in Android Applications. In Proceedings of the 2021 IEEE/ACM 8th International Conference on Mobile Software
Engineering and Systems (MobileSoft), Madrid, Spain, 17–19 May 2021; pp. 28–39.

53. Silva, D.; Tsantalis, N.; Valente, M.T. Why We Refactor? Confessions of GitHub Contributors. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, Seattle, WA, USA, 13–18 November 2016;
ACM: New York, NY, USA, 2016; pp. 858–870. [CrossRef]

http://dx.doi.org/10.1109/ITSIM.2010.5561540
http://dx.doi.org/10.1109/ICSM.2011.6080801
http://dx.doi.org/10.1109/TSE.2020.3021736
http://dx.doi.org/10.1007/s10664-020-09871-2
http://dx.doi.org/10.1002/smr.1893
http://dx.doi.org/10.1007/s10664-017-9512-6
http://dx.doi.org/10.1007/s10664-015-9414-4
http://dx.doi.org/10.1007/s10664-016-9426-8
http://dx.doi.org/10.1145/2950290.2950305

	Introduction
	Related Work
	What Is Software Refactoring?
	Refactoring Documentation
	Deep Learning
	Resampling Technique
	DeepLink: Issue-Commit Link Recovery
	Code Density for Commit Message Classification
	Boosting Automatic Commit Classification
	Prediction of Refactoring Types

	Research Methodology and Conduction
	Approach Overview
	Data Collection
	Data Preprocessing
	Feature Extraction
	Text-Based Model
	Metric-Based Model

	Model Evaluation

	Experimental Results and Analysis
	RQ1. How Effective Is Text-Based Modeling in Predicting the Type of Refactoring?
	RQ2. How Effective Is Metric-Based Modeling in Predicting the Type of Refactoring?
	Classification Using Random Forest
	Classification Using Logistic Regression
	Classification Using Support-Vector Machines
	Classification Using Naive Bayes

	Limitations

	Threats to Validity
	Conclusions and Future Work
	References

