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Security issues in mobile apps are increasingly relevant as this software have become part of the daily life
of billions of people. As the dominant OS, Android is a primary target for ill-intentioned programmers
willing to exploit its vulnerabilities by spreading malwares. Significant research has been devoted to
the identification of these malwares. The current paper is an extension of our previous effort to contribute
to said research with a new benchmark of Android vulnerabilities. We proposed AndroVul, a repository
for Android security vulnerabilities, that builds on AndroZoo – a well-known Android app dataset – and
contains data on vulnerabilities for a representative sample of about 16,000 Android apps. The present
paper adds confirmed malwares from the VirusShare dataset and explores more thoroughly the effective-
ness of different machine learning techniques, with respect to the classification of malicious apps. We
investigated different classifiers and feature selection techniques as well as different combinations for
our input data. Our results suggest that the classifier MPL is the leading classifier, with competitive
results that favorably compare to recent malware detection work. Additionally, we investigate how to
classify (as benign or malicious) AndroZoo apps based on the number of antivirus flags they are tagged
with. We found that different thresholds only marginally affect the machine learning classifier results
and that the strictest choice (i.e. one flag) performs best on the confirmed malwares from VirusShare.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With a market share of 73%.1 Android is undoubtedly the leading
mobile Operating System (OS) of our times. Besides, thanks to its
openness, it is well-positioned to become the default OS for new
applications centered on the Internet of Things (IoT). Security
aspects are thus increasingly relevant as there are more incentives
for malware developers to target Android devices. Android security
has accordingly been extensively researched and that effort has been
helped by the AndroZoo2 dataset put together by Allix et al. (2016) in
2016. The AndroZoo dataset is a very useful resource for Android
researchers in general but security researchers still have many hur-
dles to pass from the moment they discover AndroZoo to the
moment they can effectively get actionable data from it.

In Namrud et al. (2019), we proposed AndroVul,3 a repository
aiming to provide researchers working on anomaly detection of
Android applications with: i) a benchmark readily usable (to test
hypotheses), and ii) tool that will jumpstart their data collection.
Our dataset includes data on 16,180 applications from Google Play
store as well as third party stores (Allix et al., 2016). Our tool
extracted from these apps’ binaries called APKs (Android Package
Kits): 1) permissions classified as dangerous by the Android permis-
sion system; 2) data collected via AndroBugs, a popular Android vul-
nerability scanner4; and 3) security code smells, as recently defined
by Gadient et al. (2017). Furthermore, we proposed preliminary
experiments aiming at probing the predictive power of these various
sources of vulnerability and found that it was preferable to include
all of them, with dangerous permissions data being the best input.

The present paper builds on that previous work with an
extensive investigation of different classifiers and feature selection
techniques applied to various setups of our benchmark.
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A key question that many researchers face when using Andro-
Zoo for malware detection/ classification purposes relates to the
labeling of the apps: which ones should be considered malwares?
AndroZoo only gives the number of antivirus flags an app got on
the VirusTotal5 website and it is up to the researchers to know
how to use that information.

Arp et al. (2014) – an influential paper published in 2016 –
answered that question by classifying as a malware any app with
at least 2 flags from a set of ten selected antivirus products. Since
then, the set of antiviruses from VirusTotal has grown so the rele-
vance and completeness of that initial set of ten products is ques-
tionable. More importantly, the number of antivirus flags is the
information that is readily available from the main AndroZoo file;
there are no information on which antiviruses flagged an app. Typ-
ically, papers who consider flags from a preselected group of anti-
viruses from VirusTotal are not based on AndroZoo data. Papers
based on AndroZoo usually settle on a threshold for the number
of antivirus flags as a way to decide whether an app should be con-
sidered a malware or not. A standard threshold is 2: any app with
at least 2 antivirus flags is considered a malware (Arp et al., 2014).
However, the literature also includes papers using thresholds such
as 1 (Li et al., 2017), 28 (Li et al., 2017), 8 (Li et al., 2016), or half the
antiviruses (Wei et al., 2017). Hence, there is no firm consensus on
the threshold of antivirus flags starting from which an app in the
AndroZoo dataset should be considered a malware.

In any case, this is an important question, with which we
struggled as malware researchers and which the current paper
investigates through various setups of our dataset, which we
extended, since (Namrud et al., 2019), with confirmed Android
malwares from VirusShare, a prominent repository of malware
samples. In particular, the addition of malwares from VirusShare
serves as an interesting addition in the way of testing the effective-
ness of classifiers built using our dataset and different malware
thresholds.

Moreover, we take interest in assessing possible performance
differences between well-known machine learning techniques
(e.g., JRIP, Naive Bayes, MLP, and J48). We also included feature
selection options for a finer granularity of analysis as this – some-
times overlooked – step has proven to be a significant addition in
some studies (Bhattacharya and Goswami, 2018). In short, while
our first effort focused on proposing AndroVul and investigating
the input data (the various vulnerability metrics), the current study
expands the previous investigation on two fronts: i) the labeling
(as benign or malware) of Androzoo apps; and ii) the effectiveness
of the treatment (with machine learning) of the input.

The current paper aims to be self-contained and as such, it
includes elements from Namrud et al. (2019). The rest of the paper
is organized as follows: Sections 2 and 3 propose relevant back-
ground notions and related work on app datasets and malware
classification. Section 4 and Section 5 present the tool and datasets
in AndroVul. In Section 6, we lay out our study from preliminary
statistical analyses to the definition of research questions and
investigations aiming at answering them. Section 7 presents and
discusses our results and findings. We then discuss some of the
limitations and threats to validity to the present work in Section 8.
Finally, Section 9 concludes the paper and outlines some future
work.
6 https://developer.android.com.
7

2. Background

In this section, we briefly present the possible security vulnera-
bilities our dataset focuses on: dangerous permissions (as defined
by the Android system), troubling code attributes (as collected by
5 https://www.virustotal.com/gui/.
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AndroBugs) and security code smells (as proposed in Gadient
et al. (2017)).
2.1. Vulnerability

A vulnerability is a soft spot in a system, that places it in danger
of an attack by hackers, viruses or any other event that will lead to
breaking the security of any system (Mansourov and Campara,
2010). Mansourov and Campara (2010) define it as ‘‘a certain unit
of knowledge about a fault in a system that allows exploiting this
system in unauthorized and possibly even malicious ways”. A fault
in a system can be triggered by several factors such as human
error, poor specifications of requirements, the use of processes that
are poorly developed, the use of technologies that evolve rapidly,
or even the poor understanding of threats. Malicious software also
known as malware are a means to exploit faults in a system. Mal-
ware are usually referred to as viruses, worms, trojan horses, back-
doors, keystroke loggers, rootkits, or spyware.
2.2. Dangerous permissions

A key security mechanism of Android is its permission system,
which controls the privileges of apps, making it so that apps must
request specific permissions in order to perform specific functions.
This mechanism requires that app developers declare which sensi-
tive resources will be used by their apps. App users have to agree
with the requests when installing or using the apps. Android
defines several categories of permissions, among which‘‘danger-
ous” ones, deemed more critical and privacy sensitive since they
provide access to system features such as the camera, Internet, per-
sonal contacts, SMS, etc. Table 8 in the appendix proposes a list of
the various dangerous permissions as defined by the official
Android developer resource.6
2.3. AndroBugs

Androbugs is a popular security testing tool that checks Android
apps for vulnerabilities and potentially critical security issues. The
tool reverse engineers APKs and looks for various issues, from fail-
ures to adhere to best practices to the use of dangerous shell com-
mands or exposure to vulnerabilities from third party libraries.
AndroBugs has a proven track record of discovering security vul-
nerabilities in some of the most popular apps or SDKs. It is a com-
mand line tool that issues reports with four severity levels:
Critical.7, Warning.8 Notice9 and Infof_ootnoteNo security issue
detected.
2.4. Security code smells

‘‘Code smells” refer to code source elements that may indicate
deeper problems (Shezan et al., 2017). In Gadient et al. (2017),
Ghafari et al. introduced security code smells in Android apps as
”symptoms in the code that signal the prospect of a security vul-
nerability”. After reviewing the literature, they identified 28 secu-
rity code smells (Gadient et al., 2017) that they regrouped into five
categories, such as Insufficient Attack Protection, Security Invalida-
tion, Broken Access Control, Sensitive Data Exposure, and Lax Input
Validation.
Confirmed vulnerability that should be solved (except for testing code)
8 Possible vulnerability that should be checked by developers.
9 Low priority issue.

https://www.virustotal.com/gui/
https://developer.android.com
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3. Related work

3.1. Dataset

Dataset availability is a key issue when it comes to getting
insights about a topic or evaluating approaches or hypotheses.
We briefly present below some of the most notable efforts related
to this issue in the context of Android apps and more specifically
their possible security concerns.

A number of repositories have been proposed over the years for
the study of mobile apps. F-Droid10 is such an effort; it is a reposi-
tory of free open source Android apps that have been used in an
impressive number of studies. Recently, Allix et al. (2016) have pro-
posed and continued to maintain AndroZoo, certainly the largest
Android app repository, with millions of apps (and APKs) from the
Google Play store and other third party markets. Even more recently,
Geiger et al. (2018) made available a graph–based database with
information (metadata, commit and code history) on 8,431 open-
source Android apps available on GitHub and the Google Play Store.
Also notable, although slightly older, is Krutz et al. (2015), with a
public dataset centered on the lifecycle of 1,179 Android apps from
F-Droid. Complementary to these research initiatives, there are a
number of websites such as AppAnnie and Koodous that gather
Android apps and perform various types of analyses, including
downloads over time and advertising analytics.

When it comes to security aspects, there have been a number of
papers investigating large numbers of Android apps but few pro-
pose publicly available data-sets. Among those, we can cite
Munaiah et al. (2016) which propose data (e.g., app category, per-
missions) on reverse engineered benign applications from Google
Play store and malware applications from several sources.

Our dataset on vulnerabilities of Android apps shares some simi-
larity with the work of Gkortzis et al. (2018), which also proposes a
dataset of security vulnerabilities but for open source systems
(8,694). Similar to Krutz et al. (2015), we propose a subset of a
well-known mobile app repository; we start with AndroZoo while
Krutz et al. (2015) builds on F-Droid. Similar to Krutz et al. (2015),
we also propose tool that interface with well-known reverse engi-
neering and static analysis tools, but we do so with a focus on secu-
rity vulnerabilities and use a different set of tools. Overall, our dataset
and tool propose a unique offering for Android security researchers.

As touched upon in the introduction, malware research using
AndroZoo involve deciding on which of the apps present in the
benchmark can be considered malwares. Different approaches
are present in the literature. They fall mostly into two categories
based on whether they rely on a preselected subset of antivirus
results from VirusTotal or a given number of antivirus flags as
reported by AndroZoo data.

Zheng et al. (2012) focused on the top ten anti-virus products
from VirusTotal that flagged apps as malware. Their results were
subsequently used by Shen et al. (2014) to evaluate the effective-
ness of antivirus tools against malware obfuscation. In Yousefi-
Azar et al. (2018), Yousefi-Azar et al. considered nineteen of the
most well-known antiviruses, including Kaspersky, Symantec,
Avast, McAfee, AVG, Malwarebytes, etc.

Also notable is the work of Ma et al. (2019), which considered, as
malwares, apps that were flagged by four well-established anti-
viruses (i.e. McAfee, 360 Security Guard, Kingsoft Antivirus, Norton).
Some other approaches based their analysis on the number of anti-
virus that flagged an app as possible malware. Li et al. (2017) consid-
ered that even one flag was enough to classify an app as malware.
Other studies were more lenient, with Li et al. (2016) needing 8 anti-
virus flags before deciding that an app is a malware, and Wei et al.
10 https://f-droid.org/.
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(2017) needing flags from at least 50% of the anti-viruses of VirusTo-
tal before recognizing an app as a malware. Different from these
works, our paper attempts to evaluate the impact of different thresh-
olds for malware labelling in a machine learning context.
3.2. Malware classification with machine learning

A primary intended use of our dataset will be as input for mal-
ware detection techniques. Malware detection approaches gener-
ally use some form of machine learning to classify candidate
apps as malicious or not. The existing literature is quite extensive
on that subject. In this section, we will focus on the work that is the
most recent and the closest to our experiments.

Permissions, especially dangerous ones, have been used in lots
of studies as inputs to various classification approaches. A particu-
lar recent work of interest is the one of Bhattacharya and Goswami
(2017), which proposed a framework that gathered permissions
from apps’ manifest files and applied advanced feature selection
techniques. The features obtained from such process were organ-
ised into four groups and used as input for fifteen different
machine learning classifiers (including JRip, J48, MPL, and NB) from
Weka. The authors evaluated their approach on a sample of 170
apps and reported the highest accuracy to be 77.13%. Many other
research work investigated features other than permissions for
malware detection purposes. For instance, Sharma and Sahay
(2018) tried to leverage Dalvik11 opcode occurrences for malware
classification purposes. They selected 5531 android malwares from
the DREBIN repository (Arp et al., 2014) and 2691 benign apps from
the Google Play Store. They applied different machine learning tech-
niques and reported the best detection accuracy obtained to be
79.27%. Also of interest is the work of Sharma and Sahay (2018),
which focused on features extracted through Mobile Security Frame-
work, an open source tool dedicated to mobile app security.12 The
approach proposed in Sharma and Sahay (2018) aimed at classifying
apps with respect to three levels (Safe, Suspicious, Highly Suspi-
cious). The reported experiments involved many refined machine
learning classifiers applied on a corpus of 13,850 Android apps, with
accuracy results up to 81.80% when considering the three proposed
levels and up to 93.63% when considering a binary benign/ malicious
decision.

DroidDeepLearner is a weighted malware detection technique
proposed by Li et al. (2018). The method employs both dangerous
API calls and risky permission combinations as features in order to
build a Deep Belief Network model capable of automatically distin-
guishing malware from benign ones. Their method achieves over
90% accuracy with 237 features on the Drebin dataset, according
to the findings.

Authors Lee et al. (2020) investigated whether the dangerous
permissions are a key component of detection when determining
whether an app is malicious or benign. They used a total of
10,818 malicious and benign apps. To determine the accuracy of
the detection, they used four separate deep learning algorithms
and measured them using the confusion matrix. The selected fea-
tures resulted in about 90% accuracy. We are different then both
Li et al. (2018) and Lee et al. (2020), they focus only in dangerous
permissions while we investigated the use of vulnerabilities in dif-
ferent levels including dangerous permissions.
4. AndroVul-T: the tool

Our repository proposes a tool that allows, given a directory of
APKs, the automatic generation of a CSV file with information on
11 Dalvik is a now discontinued process virtual machine in Google’s Android OS.
12 https://github.com/MobSF/Mobile-Security-Framework-MobSF.

https://f-droid.org/
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the apps vulnerabilities. To accommodate statistical analysis, each
vulnerability corresponds to a column, to which we attach some
quantitative data indicating its presence (for dangerous permis-
sions), the certainty behind it (for AndroBugs vulnerabilities), or
its weight (for security code smells).

Fig. 1 proposes an overview of the inner workings of our tool,
which makes use of very well-known tools to reverse engineer
any APK. The tool APKtool13 is applied on a given APK to reverse
engineer its manifest file and Smali code, which is basically a human
readable description of the binary code (contained in a.dex file). Sim-
ilarly, via our tool, an APK can be given to the AndroBugs tool in
order to generate a report on its potential security vulnerabilities.

Once we get these three artefacts from AndroBugs and Apktool,
our tool proceeds on parsing dangerous permissions from the
Android Manifest, various vulnerabilities from AndroBugs and
security code smells from the Smali code. Our treatment of the
extracted information is illustrated in Fig. 2 and further detailed
in the subsections below.

4.1. Dangerous permissions extraction

Extracting dangerous permissions is a relatively straightforward
process, after which we fill in the csv file information about the pres-
ence (1) or absence (0) of any dangerous permission. This is summed
up in Eq. 1, with Vi standing for the inherent vulnerability coming
with the granting of a given dangerous permission i.14

Vi¼1::24 ¼ 1 ifthepermissionis requested

0 otherwise

� �
ð1Þ
4.2. AndroBugs extraction

As for the AndroBugs report, we parse it to extract vulnerabili-
ties tagged Critical or Warning (see Section 2.3). To quantify the
collected information for every vulnerability(V), we give a weight
of 1 to Critical, 0.5 to Warning, and 0 otherwise. This is summed
up in Eq. 2, with Vi standing for Critical or Warning-level security
vulnerabilities in our dataset.

Vi¼1::41 ¼
1 if Vi ispresent andCritical

0:5 if Vi ispresent andaWarning

0 if Vi is not present

8><
>:

9>=
>; ð2Þ
4.3. Code smell extraction

We used regular expressions to parse the Smali code and
extract security code smells defined in Gadient et al. (2017) and
used successfully in Habchi et al. (2019) and Gadient et al. (2019).

After which, we compute (see Eq. 3) for each vulnerability
posed by a security code smell, a ratio indicating the relative pres-
ence of that vulnerability; said ratio is obtained by dividing the
number of identified instances of the code smell (NSi) by the num-
ber of lines of code in the Smali format (LOCSMALI).

Vi¼1to9 ¼ NSi
LOCSMALI

� 100 ð3Þ
5. AndroVul-D: the dataset

Androvul-D is our dataset of 78 vulnerability metrics collected
on a sample of Android apps from AndroZoo. Fig. 3 illustrates the
13 https://ibotpeaches.github.io/Apktool/.
14 i is the index assigned to a given possible vulnerability in our dataset of
vulnerabilities.
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process through which AndroVul-D was generated and can serve
as a blueprint for other researchers willing to generate vulnerabil-
ity datasets for their own sample of AndroZoo apps. The figure
starts with a researcher (carefully) selecting the Android apps
she wants in her study or preliminary tests, and follows up with
the application of the scripts of AndroVul-T to generate csv files
filled with vulnerability metrics about each app of the dataset. Fur-
thermore, since AndroZoo does not have all the information related
to the apps it archived, the researcher may, as we did, have to go
fetch some metadata (e.g., category) about an app from its store.
Additionally, a researcher may have to add known malwares from
other sources.

5.1. Data selection

For our data selection, we resorted to the AndroZoo data-set
which contained 5,848,157 apps when we started our investiga-
tion. The AndroZoo dataset proposes data on the APKs it archived
in a main CSV file containing important information for each appli-
cation, including hash keys (such as sha256, sha1, md5), size infor-
mation (for APKs and DEX), date of the binary, package name,
version code, market place as well as information about how well
the app fared on the VirusTotal website (number of antiviruses
that flag the app as a malware, scan date).15 Using a sample size cal-
culator,16 we computed that to get a representative sample with
very high confidence level (99%) and confidence interval (1%), we
ought to consider 16,586 apps. After removing duplicates and some
entries that are not actual apps, we ended up with 16,180 APKs that
were downloaded and used as input for the AndroVul-T scripts.

To complement the above data, we resorted to data from
VirusShare17 as a way to obtain malware data that has been vali-
dated as such. VirusShare is a website that collects virus data,
whether from desktop or mobile software, from a variety of sources
(Zhu et al., 2018). The data is offered in big archive files with mal-
wares for desktop or mobile environments. We used two uploaded
archive files (dating from 2019–08-08 & 2019–06-02), which com-
prises around 127 K desktop or mobile apps, of which we were able
to recover 3,978 Android APK files. These files come with no infor-
mation other than a hash for file integrity.

5.2. Dataset structure

The dataset we propose consists of CSV files containing infor-
mation (as illustrated in Fig. 4) about the 16,180 apps from Andro-
Zoo and the 3,978 apps from VirusShare (Forensics, 2020), one app
per line. There are 78 columns in the file, each with a header clearly
indicating the information it provides. There are four types of
information in the CSV:

1. Information from the AndroZoo dataset, if applicable,18 as
described in Section 5.1

2. The nine (9) code smells extracted from the reverse engineered
Smali code (see Table 9 in the Appendix)

3. The twenty-four (24) dangerous permissions, as parsed from
the app’s manifest file

4. The forty (40) metrics derived from the six types of vulnerabil-
ities provided by AndroBugs

Overall, the file contains 78 metrics about info from AndroZoo,
dangerous permissions, Smali code smells and AndroBugs-tagged
vulnerabilities.
15 More information herehttps://AndroZoo.uni.lu/lists.
16 https://www.surveysystem.com/sscalc.htm.
17 https://virusshare.com/
18 Malicious apps from VirusShare do not have any info other than a hash.

https://ibotpeaches.github.io/Apktool/
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https://virusshare.com/


Fig. 1. Overview of the AndroVul tool.

Fig. 2. Parsing and Quantifying vulnerability data (i refers to the specific vulnerability).
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5.3. Dataset description

Apps from the AndroZoo dataset: Here, we provide some
descriptive statistics on our data-sets, relatively to the date,
the category, the store, APK size and number of antivirus flags.
With respect to the binary dates, 3.37% of the apps display an
Fig. 3. Data Selection and Gathering.
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unreliable date (1980). About 1 out of 4 apps are from 2016
to 2018, 2 out of 3 apps are from 2014 to 2018. The APK sizes
range from 7 KB to 330 MB, with an average of 9 MB and a
standard deviation of 12 MB. Marketplace–wise, the most dom-
inant stores are the Google Play Store (74%), appchina (10%),
mi.com (2%) and anzhi (1%). When it comes to information from
the antiviruses of VirusTotal,19 the apps in the dataset have
between 0 (74% of the apps) and 40 flags, out of the 63 anti-
viruses; the average is 2 flags and the standard deviation is
5.11. We also collected data related to the apps’ categories. A siz-
able part of the apps (about 43%) could not be mapped to a cat-
egory, mainly because they are no longer available on the market
stores. Another 14% of the apps are only available in Chinese mar-
kets. Overall, we could find the category information for only 43%
of the apps. Table 1 lists all the categories that make for at least
1% of the dataset.

Apps from the VirusShare dataset: There are no additional infor-
mation coming with the APKs in this dataset. We took interest in get-
ting an estimate about how many of these malicious apps would be
classified as such, using a threshold of 3 antivirus flags from VirusTo-
tal, threshold that we used in our previous work (Namrud et al.,
19 https://www.virustotal.com/.

https://www.virustotal.com/


Fig. 4. Information and vulnerabilities extracted from an Android app.

Table 1
App categories in our dataset.

CATEGORY Proportion

GAME 1231 (7.61%)
EDUCATION 571 (3.53%)
LIFESTYLE 540 (3.34%)
BUSINESS 437 (2.70%)
ENTERTAINMENT 423 (2.62%)
TOOLS 416 (2.57%)
PERSONALIZATION 397 (2.45%)
BOOKS AND REFERENCE 373 (2.31%)
TRAVEL AND LOCAL 307 (1.90%)
MUSIC AND AUDIO 282 (1.74%)
NEWS AND MAGAZINES 254 (1.57%)
PRODUCTIVITY 245 (1.52%)
HEALTH AND FITNESS 211 (1.31%)
FINANCE 193 (1.19%)
COMMUNICATION 169 (1.05%)
SPORTS 165 (1.02%)
SOCIAL 161 (1.00%)
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2019). There were issues in automating the scanning process from
VirusTotal, so we proceeded with a small random sample of 94 apps,
giving us a confidence level of 95% with an interval of 20%.20 We
found that 72% of these apps were flagged three times or more.21
6. Study design

In this section, we lay out the design of our study, from prelim-
inary sanity checks to research questions and experimental design.

6.1. Identifying malwares

A first point to be addressed is the identification of malwares in
the AndroZoo dataset. Androzoo does not explicitly tag apps as
20 as computed from https://www.surveysystem.com/sscalc.htm.
21 This means we can be 95% confident that between 52% and 92% of the malicious
Android apps from VirusShare (Forensics, 2020) have 3 or more antivirus flags from
VirusTotal.

https://www.surveysystem.com/sscalc.htm


Table 2
Selected one Classifies form each four known Machine learning categories.

Classifier Category

MLP Function
NaiveBayes Bayes
JRip Rules
J48 Tree
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malwares. Rather, it provides the number of antiviruses from Vir-
usTotal that flagged the app, with malware researchers left to
decide which number of antivirus flags is enough to label an app
from AndroZoo as a malware.

In addition to AndroZoo, we gathered malware apps from the
VirusShare (Forensics, 2020) repository to strengthen the general-
isability of our experiments.

Overall, we took into account three malware datasets:

1. AZM: AndroZoo apps flagged as possible malwares.
2. VSM: malware dataset from VirusShare.
3. MM: dataset mixing malwares from AndroZoo and VirusShare.

6.2. Correlation analysis on the Androzoo data

To get a quick initial sense of how much the collected metrics
can contribute to malware detection, we first proceeded to some
statistical correlation analysis of the metrics to: i) the number of
antivirus flags; and ii) a binary value representing the benign/
malicious classification: 0 for benign or 1 for malware (with the
threshold of 3 flags used in our previous work (Namrud et al.,
2019) to label an app as a malware). We computed Pearson corre-
lations for all metrics and found some interesting values in all 3
categories:

� for permissions, READ_PHONE_STATE returns the highest corre-
lations with respectively 0.35 for the number of antivirus flags
and 0.38 for a benign/malware decision;

� for code smells, the Dynamic Code Loading metric yields 0.4 for
the number of flags and 0.38 for the binary decision;

� and for Androbugs, the vulnerability Using critical function
returns 0.34 (number of flags) and 0.31 (binary decision) as cor-
relation values.

All three metrics mentioned above returned p-values signifi-
cantly lower than 0.05 (the commonly accepted statistical signifi-
cance threshold), as is the case for all but a few metrics in the
dataset.
6.3. Used classifiers

We selected four classifiers representing four types of machine
learning algorithms commonly used in the Android malware
research community. More precisely, we used the well known
machine learning software Weka and selected NaiveBayes (NB)
from its bayes category, MLP classifier from its function category,
JRip from its rules category, and J48 from its tree category as shown
in Table 2. Using these classifiers, we proceeded to the commonly
used statistical method that is the K-fold cross-validation. In short,
it consists in splitting, after random shuffling, the dataset in K
groups; after which, each group is used as a test group while the
other K-1 groups are used for training. More specifically, we chose,
in accordance to many similar studies (e.g., Bhattacharya and
Goswami, 2017), K = 10 for a 10-fold cross validation study, in
which 90% of the data is used for training and 10% for testing
(prediction).
6.4. Feature selection

The features (vulnerability metrics in our case) extracted from
our data constitute a relatively large set that is likely to contain
some duplication. To tackle this, along with reducing risks of over-
fitting, feature selection is to be considered. It allows identifying
the best features and excluding the least important features. To
do so, it generally relies on assessing the information gained or lost
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by adding or removing a particular feature. Various techniques
have been proposed and implemented in tools for this purpose.

In this work, we relied on the well-established open source
machine learning software Weka and selected the following three
attribute evaluators: ChiSquaredAttributeEval (CS),
InfoGainAttributeEval (IG), and ReliefFAttributeEval (RF).

6.5. Performance indicators

The application of classifier results in decisions about individual
apps that can be quantitatively evaluated through various mea-
sures. As it relates to the detection of malwares, we refer to True
Positive (TP) as the number of malwares actually classified as such,
True Negative (TN) as the number of benign apps classified as such,
False Positive (FP) as the number of benign apps wrongly classified
as malwares and finally False Negative (FN) the number of mal-
wares wrongly classified as benign. From these basic measures
are derived more insightful measures, commonly used in malware
detection research work, such as:

� Precision: It is the ratio of actual malwares in the set of apps
classified as such: TP/(TP + FP)
� Recall: It is the ratio of malwares that were detected as such:
TP/(TP + FN)
� Accuracy: It is the percentage of correctly classified apps:
(TP + TN)/(TP + TN + FP + FN)
� F1-Measure: It is a performance indicator that takes into
account both precision and recall of the obtained classification:
2 * (Recall * Precision)/ (Recall + Precision)
� Area under ROC Curve (AUC): It is a measure of the predictive
power of the classifier that basically informs on how much the
model is capable of distinguishing between classes (here benign
apps vs malwares).

For all these measures, the higher, the better, with 1 being the
perfect value.

6.6. Research questions

Our research questions flow from the above considerations (as
laid out in the previous subsections) and aim at answering the fol-
lowing research questions:

RQ1: Which classifiers and feature selection techniques per-
form the best? RQ2: Relatively to Androzoo, which subset of apps
should be labeled as malwares? More specifically, how many anti-
virus flags from VirusTotal are enough to label an app from the
AndroZoo dataset as a malware.

To answer these questions, we propose the following experi-
ments based on different slicing of the AndroVul data.

6.7. Answering the research questions

Our research questions are designed around two key elements
pertaining to malware classification: i) the input (the ‘‘best” data-
set to use) and ii) the treatment (the ‘‘best” machine learning tech-
nique to choose).



Table 3
Information about the datasets’ sizes and the selected thresholds for all experiments.

AZ Benign AZ Malware VS Malware All Malware
flag— Size flag—Size Size Size

Exp 0 0—11,928 1+ — 4,201 3,978 8,179
Exp 1 0–1 — 13,086 2+ — 3,042 3,978 7,020
Exp 2 0–2 — 13,553 3+ — 2,621 3,978 6,599
Exp 3 0–4 — 13,933 5+ — 2,195 3,978 6,173
Exp 4 0–9 — 14,713 10+ — 1,397 3,978 5,375
Exp 5 0–19 — 15,722 20+ — 406 3,978 4,487
Exp 6 0–1 — 13,086 10+ — 1,397 3,978 5,375
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The first point is an important one when it comes to using
AndroZoo for malware classification. Given that AndroZoo only
provides the number of antivirus flags (from VirusTotal) for a given
app, researchers typically have to decide which threshold to use to
consider a given app malicious or benign. The choice of a threshold
is somewhat arbitrary and rarely motivated so, in the following, we
propose experiments to probe the choice of a good threshold
through the lens of its contribution to effective malware classifica-
tion, especially when it comes to classifying correctly confirmed
malwares (elements from VirusShare). We mainly focus on a single
threshold below which apps are considered benign: thresholds of
1, 2, 3, 5, 10 and 20 but also consider one experiment with two
thresholds: i) benign apps being those apps with 1 or zero antivirus
flags, and ii) malware apps being those apps with 10 or more flags.

The choices outlined above delineate subsets of our benchmark
that ought to be clarified. Taking as an example the threshold 1,
meaning apps with one or more flags are considered as malwares,
we define three (3) malware datasets:

1. AZM1: the set of AndroZoo apps with 1 or more antivirus flags,
2. VSM: the set of malwares from VirusShare (Forensics, 2020),

and
3. MM1: the mixed set of apps from AZM1 and VSM.

In single threshold experiments, the choice of a threshold also
defines which apps from AndroZoo should be considered benign;
in this case, these are the apps with 0 antivirus flags: AZB0. This
means that, with a threshold of 1 for malware decision, the com-
plete datasets we use as input for malware classification are the
following:

1. AZB0 (benign apps) [ AZM1 (malicious apps),
2. AZB0 (benign apps) [ VSM (malicious apps), and
3. AZB0 (benign apps) [ MM1 (malicious apps).

Therefore, our experiments explore respectively the antivirus
flag thresholds 1 (AZB0 and AZM1), 2 (AZB1 and AZM2), 3 (AZB2

and AZM3), 5 (AZB4 and AZM5), 10 (AZB9 and AZM10), and 20
(AZB19 and AZM20) as well as a double threshold 1 and 10 (AZB1

and AZM10).22

Throughout these experiments, we computed and analyzed the
effectiveness of our selected classifiers (JRIP, NB, MPL, and J48) and
feature selection techniques (CS, IG, and RF). To assess the results
of the experiments, we relied mostly on the F1-score and the
AUC measure, which are standard metrics recognised as more
robust than, for instance, the accuracy measure.

The answers to our two research questions come from the anal-
ysis and comparisons of these numbers intra-experiment (RQ1:
best classifiers and feature selection techniques) and inter-
experiment (RQ2: best input data).
22 Some of these configurations resulted in imbalanced data; so we used a
SpreadSubsample instance filter as an imbalance reduction technique.
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7. Experiments and results

The experiments defined in Section 6.7 are summarised in
Table 3, which display, for each experiment (Exp), data about its
AndroZoo benign apps (antivirus flags and data size), its AndroZoo
malwares (antivirus flags and data size), its VirusShare malwares
(data size), and the combined set of AndroZoo and VirusShare mal-
wares (data size). The following sections present and discuss the
performance metrics for AUC & F1 obtained from these
experiments.

7.1. Results

Tables 4–6 present the results of all experiments with no fea-
ture selection. A first very clear output of our experiments is that
the various feature selection techniques only very marginally
affected the results. We thus decided, for simplicity’s sake, against
displaying them in the summary tables.

Table 4 presents the experiments using AndroZoo data only.
Below are the main observations we can draw from it.

� Experiment 0 posts the worst results (AUC: 0.77–0.85, F1: 0.72–
0.80).

� Experiments 1 & 2 (AUC: 0.82–0.87, F1: 0.76–0.82) propose very
similar results, with values within 0.01 from one experiment to
the other, suggesting unsurprisingly that there is not much dif-
ference between using two or three as the number of anti-virus
flags needed to label an app as a malware.

� The same goes for Experiments 3 and 4 (AUC: 0.82–0.89, F1:
0.78–0.83), which provide results at most 0.02 from one
another. Additionally, aside from the classifier NB, results from
experiments 3 and 4 are relatively close to those from Experi-
ments 1 & 2.

� Experiment 5 (AUC: 0.85–0.92, F1: 0.82–0.85) and Experiment 6
(AUC: 0.88–0.94, F1: 0.82–0.88) provide results that are distinct
but suggest that higher malware thresholds translate into bet-
ter results for the classifiers. It should be noted, however, for
Experiment 6, which proposes the best performance measures
that it leaves out a lot of apps (any app having between 3 and
15 flags).

� Overall, when it comes to classifier performance, MPL is the
leading classifier, with J48 coming in second.

Table 5 presents the experiments using AndroZoo data for
benign apps and VirusShare for malwares. The main insights
are as follows:

� Results are generally better than those involving only AndroZoo
apps and around 0.90 in most cases, indicating the effectiveness
of the vulnerability metrics in correctly classifying VirusShare
malwares.

� MPL and JRIP are the leading classifiers and exhibit remarkable
consistency over the range of experiments, with their results
always within 0.03 from one experiment to the other. Similar



Table 6
AUC and F1 results when considering Benign apps from <AndroZoo> & Malicious apps from <VirusShare + Androzoo>.

AUC JRIP NB MPL J48

Exp 0 0.85 0.81 0.87 0.82
Exp 1 0.86 0.83 0.89 0.76
Exp 2 0.86 0.83 0.90 0.79
Exp 3 0.87 0.84 0.90 0.86
Exp 4 0.87 0.84 0.90 0.85
Exp 5 0.89 0.85 0.91 0.75
Exp 6 0.89 0.87 0.92 0.87

F1 JRIP NB MPL J48
Exp 0 0.81 0.69 0.80 0.75
Exp 1 0.82 0.72 0.83 0.79
Exp 2 0.82 0.71 0.83 0.79
Exp 3 0.83 0.72 0.83 0.82
Exp 4 0.84 0.72 0.83 0.82
Exp 5 0.85 0.71 0.85 0.79
Exp 6 0.86 0.76 0.86 0.84

Table 4
AUC and F1 results when considering only AndroZoo apps <Benign & Malicious>.

AUC JRIP NB MPL J48

Exp 0 0.81 0.77 0.81 0.85
Exp 1 0.84 0.82 0.86 0.83
Exp 2 0.85 0.83 0.87 0.83
Exp 3 0.84 0.85 0.89 0.83
Exp 4 0.86 0.86 0.89 0.82
Exp 5 0.85 0.91 0.92 0.85
Exp 6 0.89 0.90 0.94 0.88

F1 JRIP NB MPL J48
Exp 0 0.78 0.72 0.77 0.80
Exp 1 0.82 0.76 0.80 0.82
Exp 2 0.81 0.76 0.81 0.82
Exp 3 0.83 0.78 0.83 0.83
Exp 4 0.83 0.80 0.83 0.82
Exp 5 0.82 0.83 0.85 0.85
Exp 6 0.86 0.82 0.88 0.87

Table 5
AUC and F1 results when considering Benign apps from <AndroZoo> & Malicious apps from <VirusShare>.

AUC JRIP NB MPL J48

Exp 0 0.92 0.88 0.94 0.90
Exp 1 0.92 0.88 0.93 0.90
Exp 2 0.92 0.87 0.92 0.90
Exp 3 0.91 0.89 0.93 0.89
Exp 4 0.91 0.86 0.92 0.88
Exp 5 0.92 0.85 0.91 0.88
Exp 6 0.92 0.88 0.93 0.91

F1 JRIP NB MPL J48
Exp 0 0.90 0.77 0.88 0.87
Exp 1 0.88 0.77 0.88 0.86
Exp 2 0.88 0.74 0.88 0.86
Exp 3 0.88 0.85 0.87 0.85
Exp 4 0.88 0.74 0.86 0.85
Exp 5 0.88 0.71 0.86 0.79
Exp 6 0.89 0.77 0.87 0.86
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(but somewhat lower) consistency can be observed with J48,
whereas the classifier NB proposes results that fall into a
broader and generally lower range, depending on the experi-
ment, and especially for the F1 measure (0.71–0.85).

� There’s no trend in the effectiveness of the classifiers as the
malware thresholds get higher, although the results from
Experiment 0 (one antivirus flag is enough to classify an Andro-
Zoo app as a malware) are almost always the best ones.

Table 6 presents the experiments using only AndroZoo data for
benign and AndroZoo + VirusShare for malwares. The results
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propose a pattern very similar to that of Table 4 (AndroZoo data
only): worst results for Experiment 0, Experiments 1 & 2 as well
as 3 & 4 being very close, better results as malware thresholds rise,
etc.

7.2. Analysis and discussion of the experiments

MPL is clearly the leading classifier. It was the best (or close)
classifier in all the experiments. Furthermore, looking beyond the
AUC and F1 measures, it provided balanced performance for preci-
sion and recall, with their values almost always above 0.80 (and



Table 7
Comparison with related work.

Papers Tool Accuracy F1 AUC

Bhattacharya and Goswami (2017) Weka 0.77 0.86 0.82
Sharma and Sahay (2018) Weka 0.79 / /
Sachdeva et al. (2018) Weka 0.93 / /
AndroVul Weka 0.92 0.87 0.92

23 https://github.com/Zakeya/AndroVul.
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mostly above 0.85) and within 0.02 from one another meaning that
the classifier provides a classification with roughly equal precision
and recall. JRIP is a close second; while it visibly trails MPL on the
AUC measure, it is as good as (and possibly slightly better than)
MPL on the F1 measure. The worst classifier is consistently the
Naive Bayes (NB) one.

Table 7 compares the results we obtained against those from
recent papers. To represent our experiments, we used the average
of values obtained for the experiments involving benign AndroZoo
apps and malwares from VirusShare (Table 5). The table shows that
the results we obtained compare mostly favorably to the ones from
previous studies.

As for the best dataset, the emerging picture is mixed: the
strictest approach (only apps with no antivirus flags are considered
benign) performed slightly better on VirusShare dataset (con-
firmed malwares) but marginally worse on dataset configurations
involving AndroZoo apps labeled as malwares. On the other hand,
the laxer approaches (highest thresholds) performed equally or
slightly better than mid-range thresholds. Still, the main takeaway
is that the differences between the results obtained from these
thresholds are small, suggesting that the choice of the threshold
may not matter that much.
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8. Limitations and threats to validity

The present paper extends our previous paper (Namrud et al.,
2019) and set out to provide a more complete benchmark for mal-
ware classification, along with empirical data about the effective-
ness of different classifiers and the impact of possible data
labeling decisions. As any work, it comes with limitations and
some validity threats.

The main limitation of our dataset is that many of the apps do
not have complete metadata (category, ratings, etc.). AndroZoo
does not store that info so there is a need to retrieve it from the dif-
ferent stores. That retrieval may be hampered by the following sce-
narios: i) the apps may no longer be available in those stores; and
ii) the stores themselves do not offer simple ways to automatically
get the info. In these cases, HTML parsers have to be written for
webpages that could be in other languages or have structures that
can (and do) change. We plan future work to complement the data
through the parsing of various app store clones that keep app
metadata even after their deletion from the main market places.

As it relates to our study, some threats to validity are worth not-
ing. An external threat to validity of our results is that we mostly
used a sample of AndroZoo, which itself does not account for all
Android Apps. However, AndroZoo is a widely used repository
and we took pains to extract a random sample large enough to
be reasonably representative of AndroZoo. That sample covers sev-
eral different domains (see Table 1): game, education, sports, and
tools, to name a few. Furthermore, different from our previous
paper, we retrieved additional malware dataset, which we believe
help mitigate these external validity concerns.

As for threats to internal validity, it is worth noting that our
investigation of different classifiers and feature selection tech-
niques relied mostly on default settings from the widely used sta-
tistical tool Weka. Obviously, it is possible that our results and the
ranking of these classifiers could be altered with different settings
or more elaborate versions of these classifiers. However, to the best
of our knowledge and based on the existing literature, malware
researchers generally do not engage in complex parameter tuning
of the classifiers they use. Furthermore, such parameter tuning
may depend on a research expertise with a given classifier and
may introduce additional variability. Overall, we believe that our
results provide malware researchers with an informed perspective
about which classifiers to choose or avoid, especially if they do not
intend to dedicate a significant amount of time to tune the param-
eters used by these classifiers.

Overall, we believe that the provided dataset and the accompa-
nying experiments can be used to guide research ideas for anomaly
detection, mining of safe/ dangerous patterns, etc. In addition, the
accompanying scripts that we provide offer options for researchers
needing their own datasets. By relying on the instructions available
on the AndroVul GitHub repository,23 they can add their APKs (in
the apks folder) and run the provided scripts.

https://github.com/Zakeya/AndroVul


Table 9
Regular expressions used in our tool containing Smali type for code smell.

Smell Symptom in Smali Code and Corresponding Escaped
Regexes

Custom
Scheme Channel

Scheme registration code exists Lorg/apache/
http/conn/scheme/SchemeRegistry;� >

registerLorg=apache=http=conn=scheme=Scheme; Lorg/
apache/http/conn/scheme/Scheme

Header Attachment Header attachment code exists Lorg/apache/
http/client/methods/HttpGet;� >

addHeaderLjava=lang=String; Ljava=lang=String;
Unique Hardware

Identifier
Hardware identifier access code for MACs and IMEI
exists Landroid/telephony/TelephonyManager;-nn
getDeviceIdn(n) Ljava/lang/String Landroid/bluetooth/
BluetoothAdapter; � >, getAddress\(\)\, Ljava/lang/
StringLandroid/net/wifi/WifiInfo; � >, getMacAddress
\(\), Ljava/lang/String

Exposed Clipboard Clipboard manipulation code existsLandroid/content/
ClipboardManager; � >, getPrimaryClip\(\),
Landroid/content/ClipDataLandroid/content/
ClipboardManager; � >, setPrimaryClip
Landroid/content/ClipData;

Exposed Clipboard Clipboard manipulation code exists Landroid/content/
ClipboardManager; � >, getPrimaryClipn(n)
Landroid/content/ClipData Landroid/content/
ClipboardManager; � >,
setPrimaryClipLandroid=content=ClipData;

Insecure Network
Protocol

Http connection establishment code exists Ljava/net/
HttpURLConnection;� > Ljava=net=URL;

Improper Certificate
Validation

Customised certificate validation code
existsi_mplements Ljavax/net/ssl/X509TrustManager;

Dynamic Code
Loading

Dynamic code loading mechanism exists
Landroid/content/Context;� >

createPackageContextLjava=lang=String; I
Landroid/content/Context

XSS-like Code
Injection

WebView JavaScript setting code exists Landroid/
webkit/WebSettings;� > setJavaScriptEnabledZ

Broken WebView’s WebView Java interface code exists Landroid/webkit/
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9. Conclusion

The ubiquity of smartphones, and their growing use make the
security of these devices as important as that of standard comput-
ers. In this paper, we proposed a repository for Android vulnerabil-
ities and experiments on classifier performances for different
benchmarks (taken from the repository) to better support the
research community engaged with anomaly detection and security
issues for Android apps. Our contributions are threefold. First, we
proposed a tool that harnesses well-known reverse engineering
tools and greatly simplifies the generation of diverse vulnerability
information (i.e. dangerous permissions, vulnerabilities from
AndroBugs, and code smells in Smali code) for any app. Second,
we proposed vulnerability data on a random sample of 16,180
Android apps downloaded from the well-established AndroZoo
dataset, which we extended with 3,978 malwares retrieved from
the VirusShare repository. Our tool and data make it so that an
Android app researcher can start applying statistic analysis and
machine learning experiments right away on our benchmark or
right after downloading his/her own set of APKs. Third, we pro-
posed detailed studies that provide: i) insights into the very good
predictive power of the vulnerability information mined by our
tool; and ii) information into which classifiers and data labelling
decisions perform better. Our tool and data samples are available
on GitHub and we intend to build and extend on that repository,
notably by working on recovering more completely apps metadata.
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Sandbox WebView;� > addJavascriptInterfacen(Ljava/lang/
Object; Ljava/lang/String;n)
Appendix A

Tables 8–10.
Table 8
Dangerous Permissions (Definitions from Android) (Developer.android.com, 2020).

Permission Description

READ_CALENDAR Allows an application to read the user’s calendar data.
WRITE_CALENDAR Allows an application to write the user’s calendar data.
CAMERA Required to be able to access the camera device.
READ_CONTACTS Allows an application to read the user’s contacts data.
WRITE_CONTACTS Allows an application to write the user’s contacts data.
GET_ACCOUNTS Allows access to the list of accounts in the Accounts Service.
ACCESS_FINE_LOCATION Allows an app to access precise location.
ACCESS_COARSE_LOCATION Allows an app to access approximate location.
RECORD_AUDIO Allows an application to record audio.
READ_PHONE_STATE Allows read only access to phone state, including the phone number of the device,current cellular network information, the status of any

ongoing calls, and a list of any PhoneAccounts registered on the device.
READ_PHONE_NUMBERS Allows read access to the device’s phone number(s).
CALL_PHONE Allows an application to initiate a phone call without going through the Dialer user interface for the user to confirm the call.
ANSWER_PHONE_CALLS Allows the app to answer an incoming phone call.
READ_CALL_LOG Allows an application to read the user’s call log.
WRITE_CALL_LOG Allows an application to write (but not read) the user’s call log data.
ADD_VOICEMAIL Allows an application to add voicemails into the system.
USE_SIP Allows an application to use SIP service.
PROCESS_OUTGOING_CALLS Allows an application to see the number being dialed during an outgoing call with the option to redirect the call to a different number or

abort the call altogether.
BODY_SENSORS Allows applications to discover and pair bluetooth devices.
SEND_SMS Allows an application to send SMS messages.
RECEIVE_SMS Allows an application to receive SMS messages.
READ_SMS Allows an application to read SMS messages.
RECEIVE_WAP_PUSH Allows an application to receive WAP push messages.
RECEIVE_MMS Allows an application to monitor incoming MMS messages.
READ_EXTERNAL_STORAGE Allows an application to read from external storage.
WRITE_EXTERNAL_STORAGE Allows an application to write to external storage.
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Table 10
Severity Level Artifacts.

Severity
Level

Description

Critical Confirmed security vulnerability that should be solved (except
for testing code)

Warning AndroBugs Framework is not sure if this is a security
vulnerability. Developers need to manually confirm.

Notice Low priority issue or AndroBugs Framework tries to let you
know some additional information.

Info No security issue detected.
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