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Abstract: Non-orthogonal multiple access (NOMA) has emerged as a promising technology that
allows for multiplexing several users over limited time-frequency resources. Among existing NOMA
methods, sparse code multiple access (SCMA) is especially attractive; not only for its coding gain
using suitable codebook design methodologies, but also for the guarantee of optimal detection using
message passing algorithm (MPA). Despite SCMA’s benefits, the bit error rate (BER) performance
of SCMA systems is known to degrade due to nonlinear power amplifiers at the transmitter. To
mitigate this degradation, two types of detectors have recently emerged, namely, the Bussgang-
based approaches and the reproducing kernel Hilbert space (RKHS)-based approaches. This paper
presents analytical results on the error-floor of the Bussgang-based MPA, and compares it with a
universally optimal RKHS-based MPA using random Fourier features (RFF). Although the Bussgang-
based MPA is computationally simpler, it attains a higher BER floor compared to its RKHS-based
counterpart. This error floor and the BER’s performance gap are quantified analytically and validated
via computer simulations.

Keywords: PA nonlinearity; Bussgang-based approach; SCMA; RKHS

1. Introduction

Next-generation communication systems must be capable of providing several users/
devices with appropriate service levels for the industrial internet of things (IIoT) and
Industry 4.0 [1]. In the context of multiple-access techniques for these ecosystems, non-
orthogonal multiple access (NOMA) has emerged as a promising solution that has the
potential to support several users over a finite number of temporal/spectral resources.
NOMA-based approaches are broadly categorized into the following types [1,2]: (a) power
domain NOMA (PD-NOMA), and (b) code domain NOMA. PD-NOMA uses superposition
coding to overlap multiple users and detects corresponding user symbols on the receiver
side by successive interference cancellation (SIC) or message passing algorithms (MPAs).
However, PD-NOMA is known to support a limited number of users due to inter-layer error
propagation, and its reliance on power diversity [3–5]. Apart from PD-NOMA, specific
code-domain NOMA-based approaches, like sparse code multiple access (SCMA) have
recently been found to be particularly promising [6–9], as they not only allow for potential
coding/shaping gains through codebook design, but also enable near-optimal detection
using MPAs. Besides, SCMA is also known for its robustness to error propagation.

However, transmit-side power amplifier (PA) nonlinearities have been found to de-
grade the performance of generic SCMA systems. From Bussgang’s theorem [10], transmit-
side PA nonlinearity is known to add an independent equivalent distortion noise term
that lowers the overall signal-to-noise ratio. Two types of competing MPA-based detection
methods exist to mitigate this degradation: (a) Bussgang decomposition-based MPA detec-
tors [11] and (b) random Fourier feature (RFF)-based detectors [12]. While decomposition-
based approaches achieve commendable performance under a limited implementation
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budget, the RFF based approaches offer benefits like universal approximation and gen-
eralization across various types of nonlinear PA characteristics. However, RFF-based
approaches have slightly more computational overhead, and in certain hardware limited
IIoT ecosystems, the implementation complexity of algorithms outweighs the error-floor
reached subject to the achievement of a minimum level of quality of service (QoS) [13–15].
Therefore, it is compelling to compare and derive analytical insights/comparisons on the
error floors of the Bussgang-based MPA methods and to decide on the suitability of a
detector for a given bit error rate (BER)-based on the QoS. Several works in the literature
have studied the nonlinearity effect not only in SCMA but also in other environments, such
as [16], where a Bussgang-based receiver design was proposed for nonlinear PD-NOMA.
Moreover, in [12], a nonlinear SCMA system model was studied, and a RFF-based solution
was proposed to improve BER performance as equivalent to that obtained in the presence
of a linear AWGN channel, whereas an iterative method based on clipping noise was pro-
posed in [11]. Additionally, in [17], RFF-KLMS based algorithm was proposed to mitigate
nonlinearity in MIMO-VLC channels.

Contributions: In this paper, we present rigorous analytical studies and insights on
the optimality of the Bussgang-based MPA for downlink SCMA with PA impairments.
From our analysis, the Bussgang-based MPA detector is found to reach a non-negligible
BER floor compared to the universally optimal RFF-based MPA, and the analytical results
are presented to quantify the BER floor. Next, these results are validated using computer
simulations under different fading distributions. The quantification of this error floor could
potentially allow for switching between detection methods in hardware-constrained IIoT
environments, where meeting a specific QoS constraint with minimal computations is of
paramount importance.

2. System Model

In this section, we describe the system model considered. We consider a downlink
SCMA scenario, in which the users’ bitstreams (considered binary, independent and iden-
tically distributed) are grouped and mapped to respective codewords from a codebook{

x(j) ∈ C(j)
}J

j=1
, where each codeword, x(j) ∈ CV . Furthermore,the number of codewords

in each codebook is denoted by Card[Cu] = M, with M denoting the modulation order,
and Card[·] denoting the number of vectors in a codebook. In this paper, we consider
a downlink SCMA system as in ([2] Equation (12.3)), where the users’ codewords are
overlapped and the superposition, x, is broadcast through the channel h. At the receiver,
the received vector, y, is used for MPA-based detection. This is in contrast with the possible
uplink scenario presented in ([2] Equation (12.1)) where the users’ codewords could arrive
asynchronously. For this hypothetical case, there is indeed a possibility of interference
between the codewords that could impair their sparsity/algebraic-structure; however, this
issue does not arise for downlink SCMA.

For V non-interfering resources, the observation at the receiver, y ∈ CV , is given
as [2], ([12] Equation (12.3)):

y = diag(h) f (
J

∑
j=1

x(j)

︸ ︷︷ ︸
X

) + n, (1)

where f (·) denotes the PA nonlinearity, x denotes the instantaneous superposition of the
users’ codewords, diag(·) is a diagonal matrix that contains elements of (·) in its diagonal,
and h ∈ CV is a vector of channel gains sampled according to a probability density function
(PDF) p(h). The contribution in this work is not constrained by prior statistical assumptions
on h. Furthermore, the complex additive white Gaussian noise (AWGN) vector is given
by n = [n1, n2, · · · , nV ]

T , with each ni ∼ p(n). Without sacrificing generality, we consider
AM-AM Rapp nonlinearity for the PA model, f (x), which is expressed as follows [18]:
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f (x) =
x(

1 +
∣∣∣ x

xsat

∣∣∣2p
) 1

2p
,

(2)

where p denotes the parameter that controls the severity of the nonlinearity, and xsat is
the PA saturation voltage. It is noted that the RFF-based detectors’ performance is not
dependent on the nonlinear PA characteristics or their knowledge at the receiver, and
existing works show their generalization across different PA characteristics [12].

The components of the system model are pictorially depicted in Figures 1–3. The transmit-
ter model described mathematically in (1) is shown pictorially in Figure 1. Figure 2 pictorially
depicts the overlap of the codewords from each users’ dictionary. Finally, the dependence on
the user-resources and the variable-nodes is shown by a Tanner graph in Figure 3.

+ + + + +

Multiplexed codeword

Nonlinearity

       Rayleigh 

       Channelf(.) AWGN

Bussgang

Decoder

Received
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RFF

Figure 1. Depiction of the System Model for SCMA.
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Figure 2. Depiction of the overlapping of codewords for different users.
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Figure 3. Depiction of the Tanner Graph.

3. Bussgang Decomposition-Based MPA

In this section, we elaborate on the Bussgang decomposition-based MPA detector. The
MPA detector iteratively exchanges the log(·) of the conditional likelihood as messages
across the function nodes, indexed as j = 1, 2, · · · , V, and the variable nodes, indexed as
k = 1, 2, · · · , J. Also, for the resulting Tanner graph of the function nodes and variable
nodes ([2] Section 12.1.1.3), the graph neighborhood of node k is denoted as Bk. In this
regard, we invoke the Bussgang theorem [10], and re-express (1) as:

y = αdiag(h)x + v + n, (3)

where α denotes a correlation-coefficient and v denotes an independent distortion term
with variance σ2

v . Using this equivalent form, we obtain the following expression for the
conditional PDF, p(y[k]|x):

p(y[k]|x) = 1
2πσ2

n
exp

−
∣∣∣∣∣y[k]− αh[k] ∑

∀j∈Bk

x[k]

∣∣∣∣∣
2

σ2
n + σ2

v

. (4)

Generally, classical MPA-based detection propagates the log(·) of the conditional PDF
across the function nodes, j, and variable nodes, k ([2] p. 377). For AWGN channels, the
conditional PDF of y[k] given x is provided below:

log p(y[k]|x) = − log
(

2πσ2
n

)
−

∣∣∣∣∣y[k]− αh[k] ∑
∀j∈Bk

x[k]

∣∣∣∣∣
2

σ2
v + σ2

n
.

(5)

The parameters α and σ2
v are estimated using the available pilots and the channel

estimates h from (1) as follows:

α =
E
[
yTdiag(h)x

]
E
[
‖diag(h)x‖2

] ,

σ2
v = (1− α)2E

[
‖diag(h)x‖2

]
.

(6)
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For the log-max MPA approaches over AWGN channels, the messages, mjk, are essen-
tially given by the log likelihood log[p(y[k]|x)]. Considering the Bussgang representation
of (1) in (3), mjk is explicitly written as:

mjk =

−
∣∣∣∣∣y[k]− αh[k] ∑

∀j∈Bk

x[k]

∣∣∣∣∣
2

σ2
n + σ2

v
. (7)

The difference between the value of this message and its corresponding ideal value is
expressed as follows:

∆mjk =

∣∣∣∣∣y[k]− h[k] ∑
∀j∈Bk

x[k]

∣∣∣∣∣
2(

σ2
n + σ2

v

)
︸ ︷︷ ︸

P

−
∣∣∣∣∣y[k]− αh[k] ∑

∀j∈Bk

x[k]

∣∣∣∣∣
2

σ2
n︸ ︷︷ ︸

Q
σ2

n(σ
2
n + σ2

v )
. (8)

If the appropriate expression for the Kullback–Leibler divergence between Gaussian
PDFs having zero mean and variances σ2

n and σ2
n + σ2

d is invoked, the difference between

mjk and its corresponding ideal value, E
[
∆mjk

]
(with α = 1 and σ2

v = 0), is given by [19]:

E
[
∆mjk

]
=

1
2

log

[
σ2

n + (1− α)2σ2
h σ2

x + σ2
n

σ2
n

]
+

σ2
n

2
(

σ2
n + (1− α)2σ2

h σ2
x

) − 1
2

, (9)

where

σ2
h = E

[
h2[k]

]
,

σ2
x = E

( ∑
∀j∈Bk

x[k]

)2
.

(10)

Next, we directly link the converged log likelihood ratio for the ideal linear channel to
the generalized signal-to-noise ratio (GSNR) [20], ref. [21] achieved at convergence, SNR*,
which is in turn a function of ψp(h) (the PDF of the channel gain) [20]:

BERLinear = ψp(h)(SNR∗). (11)

From the expression for the message error derived in (9), the BER of the proposed
Bussgang detector, BERBussgang, is approximately expressed as:

BERBussgang = ψp(h)(SNR∗) + ψ′p(h)(SNR∗)×E
[
∆mjk

]
, (12)

where the E
[
∆mjk

]
is derived in (9). The following insights are drawn from the above

analytical result:

• Notably, (12) quantifies the gap between the BER of the proposed approach and
that of a universally optimal MPA (the RFF-based MPA in [12]). As mentioned
before, this quantification helps when trading off computational complexity with BER
performance subject to achieving a given BER-based level of QoS.

• It is further noted that the above deviation is independent of the fading distribution.
In this context, it is indeed worth mentioning that the ideal BER, ψp(h)(SNR∗), is
mostly an integral of a Q-function over the concerned PDF p(h) [2]. However, when
ψp(h)(SNR∗) (and hence its derivative ψ′p(h)) are known, the optimality gap is found
to be independent of the underlying distribution.
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• It is possible to further improve the error approximation in (12) as follows:

BERBussgang =
∞

∑
l=0

ψ
(l)
p(h)(SNR∗)

l!
E
[
∆ml

jk

]
, (13)

where ψ
(l)
p(h)(·) represents the lth derivative of ψp(h)(·). To simplify, we note from (7)

that P ,Q ∼ Exp
[
σ2

n
(
σ2

n + σ2
v
)]

are even powers of normal random variables with

average energy σ2
n
(
σ2

n + σ2
v
)
. Therefore, we obtain the following for E

[
∆ml

jk

]
:

E
[
∆ml

jk

]
=

l

∑
s=0

(
l
s

)
E
[
P sQl−s

]
. (14)

From ([22] p. 546), this is simplified as:

E
[
∆ml

jk

]
=

l

∑
s=0

min[s,(l−s)]

∑
u=0

(
l
s

)
2s![2(l − s)!]

(
ασ2

h σ2
x
)2u

2l [(s− u)!][(l − s− u)!]2u!
, (15)

which yields the final expression:

BERBussgang =
∞

∑
l=0

ψ
(l)
p(h)(SNR∗)

l!
E
[
∆ml

jk

]
. (16)

A summary of the proposed Bussgang-based MPA is provided in Algorithm 1.

Algorithm 1 Bussgang based MPA.
1: Initialization:

Ikj = p
(
xj
)

according to a uniform distribution.
2: Initialization:

Ijk := 1
2πσ2

n
exp

−
∣∣∣∣∣y[k]−αh[k] ∑

∀j∈Bk

x[k]

∣∣∣∣∣
2

σ2
v+σ2

n


α =

E[yTdiag(h)x]
E
[
‖diag(h)x‖2

] ,

σ2
v = (1− α)2E

[
‖diag(h)x‖2

]
.

3: Initialize the maximum number of iterations, ITER.
4: while c < ITER do

Ijk := log
(

p
(
xj
))

+ ∑
j∈Bk

Ikj.

Ikj : = max
∀xj∈Cj ,k∈Bj

log(p(y[k]|x)) + ∑
k∈Bj

Ijk

c := c + 1
end while

5: Detect user-symbols as per ([2] Equation (12.12)) using the steady-state message-values
Ijk and codebook Cj

4. Simulations

In this section, we present the simulation results to validate the Bussgang decomposition-
based MPA. Without sacrificing generality, a simplistic codebook from [23] is considered
in our simulations. We set p = 1 and xsat to be equal to the maximum dynamic range of
x. Furthermore, the BER simulations are performed over 107 bits, and 15 MPA iterations
are used. The simulation results for a Rayleigh channel are depicted in Figure 4. The
simulation parameters are summarized in Table 1.
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SNR (dB)
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R Bussgang MPA [137 Pilots]

Bussgang MPA [165 Pilots]

Bussgang MPA [220 Pilots]

Bussgang MPA [440 Pilots]

Bussgang MPA [880 Pilots]

RFF-based MPA [137 Pilots]

RFF-based MPA [165 Pilots]

RFF-based MPA [220 Pilots]

RFF-based MPA [440 Pilots]

RFF-based MPA [880 Pilots]

Figure 4. BER vs. SNR comparison of the Bussgang-based detector with RFF-based detector for a
Rayleigh Channel by varying the number of pilots.

Table 1. Simulation Parameters.

Codebook Section II.A [23]

Modulation OOK

Value of p 1

Kernel-width assignment Silverman’s rule [24]

Number of MPA iterations 15

Number of transmitted bits 107

Parameter values for Rayleigh distribution σ2
h = 1

Parameter values for the Nakagami-m distribution Shape: m = 0.5,
Spread parameter: 1

nG 110

In Figure 4, saturation is observed in Bussgang-based MPA’s BER performance. In
addition, we observe no significant change in Bussgang-based MPA’s BER floor when the
number of pilots is increased from 137 to 880. However, for the RFF-based MPA detection
in [12], its BER performance is found to improve as the number of pilots increases, and
the saturation due to the BER floor is completely invisible at 880 pilots. Furthermore, the
analytical expression for the BER of the Bussgang-based detector derived in (12) is validated
in Figure 5, which illustrates close agreement between the analytical BER (denoted by
[A]) and the simulated BER (denoted by [S]). Figure 6 shows a similar validation of the
analytical result derived in (12) assuming a Nakagami-m distributed h, with m = 0.5. Since
the mode of the Nakagami-m distribution (with m = 0.5) is zero, we observe degraded
BER performance for Nakagami-m fading as compared to the BER performance for the
Rayleigh channel presented in Figure 5. However, due to the distribution-independent
quantification of the performance gap presented in (12), a close match is observed between
the simulated BER and the analytical BER for the Bussgang-based detector in Figure 6.
This quantification of the BER floor helps when predetermining the viability of using
a lightweight Bussgang-based MPA (which has a complexity of O(TKMd f ), where d f
denotes the free distance) over a complex RFF-based detector (which has a complexity of
O(TKMd f + n2

G), where nG denotes the number of RFFs) subject to achieving a BER-based
level of QoS.
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Figure 5. BER vs. SNR validation for the Bussgang-based detector for a Rayleigh channel.
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Figure 6. BER vs. SNR validation for the Bussgang-based detector for a Nakagami-m channel with
m = 0.5.

5. Conclusions

In this paper, a low-complexity detector, the Bussgang-based MPA, was derived, and
its BER performance was quantified. The proposed detector was found to present a BER
floor comparable to that of existing RFF-based approaches. The BER floor was quantified
analytically relative to the optimal RFF-based MPA without specific assumptions about the
nature of the PA nonlinearity or the fading distribution. Additionally, the analytical results
were validated by computer simulations considering different channel distributions. The
detector is attractive despite its error floor due to its simplicity and suitability for hardware-
limited IIoT systems, wherein achieving a certain level of QoS with low computational cost
outweighs the requirement of obtaining a universally optimal BER performance.
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The following abbreviations are used in this manuscript:
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