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Abstract

To improve the robustness of video communications over IP networks against packet losses, numerous IPTV and broadcasting
standards have adopted the 2D application-layer forward error correction (FEC) method presented in Pro-MPEG COP3. This
method uses a two-dimensional encoding matrix in which redundant checksums for each row and each column of the data matrix are
generated and transmitted with the data packets. The approach has been recently extended and applied to layered video streaming.
But despite its wide adoption and importance, a formal analysis of the correction performance of the Pro-MPEG COP3’s 2D FEC
method is still lacking. In this paper, we formulate and solve the problem using an abstract mathematical framework, which can
be used also for some natural extensions of this method. We derive tight bounds on the residual packet loss rate as a function
of the 2D FEC matrix dimensions, and the packet loss rate assuming that the losses are independently and randomly distributed.
We then provide simple approximations on these bounds for low packet loss rates. The analysis leads to the observation that the
addition of a single checksum packet to the Pro-MPEG COP3 method would lead to a significant reduction in residual packet loss
rate. The expressions derived are validated experimentally using Monte Carlo simulations. We also apply the results to the case of
packet losses occurring in bursts. Finally, we study the impact of the matrix dimensions on the performance of the 2D FEC method,
leading to valuable recommendations to system designers.

Keywords: Forward error correction (FEC), 2D FEC, dual FEC, 2-D Parity FEC, Pro-MPEG COP3, SMPTE 2022-1, SMPTE
2022-5, video transmission, residual packet loss rate

1. Introduction

During the last decade or so, video services have started
migrating from circuit-switched (e.g. point-to-point coax) to
packet-switched networks in both wireline and wireless infras-
tructures [1, 2]. This ongoing transition to IP systems enables
broadcasters and service providers to reduce their costs, and
use their networks more efficiently [3–5]. It also permits to
achieve higher operational flexibility and density using either
software-based or cloud infrastructures [6–9]. To support all
these efforts, the Society of Motion Picture and Television En-
gineers (SMPTE) has developed the SMPTE ST 2110 Suite
of Standards [10], and a family of related standards known as
SMPTE ST 2022 [11–17] specifying how to send digital au-
diovisual content over IP networks. While the former stan-
dards address issues such as synchronization, traffic shaping
and network delivery timing, the latter ones define the encap-
sulation of both compressed and uncompressed video data into
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RTP/UDP/IP streams. SMPTE ST 2022 has undoubtedly been
the most prominent family of standards enabling the transition
of video broadcasting systems to IP networks. To deal with the
transmission errors and losses inherent to packet-switched net-
works, these standards propose forward error correction (FEC)
methods in ST 2022-1 [11] and ST 2022-5 [15]. The former
standard defines the 2D (row/column) FEC method, which will
be referred to as 2D FEC in this paper, based on the Pro-MPEG
code of practice 3 release 2 (COP3) [18]. This method is illus-
trated in Fig. 1. It arranges IP video packets into logical rows
and columns, and appends one redundant FEC packet to each
row and each column. As long as a single packet is lost or
damaged in a given row (or column), it can be perfectly recov-
ered from the remaining packets of that row (or column). The
latter standard 2022-5 expands on ST 2022-1 to allow larger
row/column FEC configurations to support higher bitrate me-
dia transport.

Although several application-layer FEC (AL-FEC) methods
have been proposed, the one presented in Pro-MPEG COP3 has
been widely adopted and deployed due to its very low com-
putational complexity with respect to both generating the re-
dundant FEC packets as well as recovering the lost data pack-
ets [19]. Unlike other state-of-the-art error-correcting codes,
such as Raptor or RaptorQ [20], a FEC packet is simply the
exclusive or (XOR) of all the data packets of the associated
row or column. Recovering a lost packet only requires the
XOR computation of the packets of the related row (or col-
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umn). This 2D AL-FEC method has been adopted in a num-
ber of IPTV and video broadcasting standards, such as the
DVB standard for IPTV (ETSI TS 102 034 [21, 22]), and other
proposals of various organizations (e.g., ATIS, ETSI, ITU-T,
Open IPTV Forum/HbbTV Association [23]). More recently, it
has been adopted in the next-generation media transport stan-
dard MPEG Media Transport (MMT) developed as a part of
ISO/IEC 23008 [24, 25], and in IETF to protect RTP pack-
ets [26]. It has also been recommended as part of the highly
popular WebRTC [27, 28] real-time communication framework
for browsers and mobile applications.

The Pro-MPEG COP3’s AL-FEC method has been recently
extended and applied to layered video streaming. An excel-
lent survey reviews the various layer-aware FEC (LA-FEC)
methods in this new context [29]. In this set-up, one of the
main problems is the fact that the enhancement layers (ELs)
become useless when the base layers (BLs) are lost. To address
this problem, an enhanced Pro-MPEG COP3 method to protect
two-layered video streams has been proposed [19]. Instead of
having independent 2D FEC-protected data matrices for both
layers, the enhancement layer (EL) matrices are composed of
shuffled packets of the base layer (BL) to increase the robust-
ness of this latter layer. The Pro-MPEG COP3 method has also
been extended to offer unequal protection by grouping packets
according to their importance, or organizing them into matri-
ces of different sizes [30]. This led to complex optimization
problems which were approximated by using simulated anneal-
ing [31] and tabu search [32]. Finally, XOR-based and diagonal
XOR-based AL-FEC methods were recently suggested to im-
prove tolerance to burst errors compared to Pro-MPEG COP3
and its proposed extensions [33, 34].

Considering the wide adoption and the importance of Pro-
MPEG COP3’s AL-FEC method, evaluating its performance
is crucial. It is straightforward to evaluate its overhead, code
rate, and latency. However, determining analytically its residual
packet loss rate (RPLR) after the recovery of the lost packets, as
a function of the packet loss rate (PLR) and matrix dimensions,
represents a very challenging problem. In the literature, RPLR
has been measured empirically in different application contexts
in its original [35, 36], and extended forms [19, 30–34]. To
gain insight on the impact of the FEC matrix dimensions on the
correction performance, the work of Westerlund [36] is partic-
ularly interesting. The author integrated the AL-FEC method
into an existing video streaming application, and tested the im-
plementation with several matrix dimensions in both simulated
and real-world wireless conditions.

Unfortunately, a formal and extensive analysis of the correc-
tion performance of Pro-MPEG COP3’s AL-FEC method, as a
function of the dimensions of the matrix, is still lacking. To the
best of our knowledge, the only attempt to derive such math-
ematical expressions is the work of Battisti et al. [37]. The
authors proposed an approximation equation for RPLR but, al-
though the approximation is rather accurate for high PLR val-
ues, it is inaccurate for low ones.

In this paper, we present the mathematical tools required to
formally and rigorously evaluate the residual packet loss rate of
the Pro-MPEG COP3 AL-FEC method. We analyse and com-

pare the performance of various FEC matrix configurations, and
derive these results as functions of the matrix dimensions with
the sole assumption that the packet losses are independently and
randomly distributed. More specifically, the contributions of
this work are as follows:

• We formulate and solve the problem using a mathemati-
cal framework permitting not only to solve the problem of
interest but also similar ones (e.g. if the lowest-rightmost
packet of the matrix were present, improving significantly
the error correction capability but departing therefore from
the standard).

• We derive tight theoretical lower and upper bounds on
RPLR as a function of PLR and matrix dimensions. Sim-
ple approximations on these bounds are also given for low
PLR values.

• We validate these expressions experimentally using Monte
Carlo simulations.

• We compare the performance of various matrix dimen-
sions and shapes (square versus rectangular) for broad
ranges of PLR.

• We finally show how these bounds on RPLR can be used
to analyse bursts of packet losses under the Gilbert model.

This study can be extremely useful to system designers to
determine the appropriate matrix dimensions under packet loss,
overhead, and latency constraints. Furthermore, since recent
standards mentioned earlier offer various FEC strategies, which
include Pro-MPEG COP3’s AL-FEC method, it is important
to provide mathematical tools comparing its performance with
newer methods. This will allow the selection of the best FEC
strategy among those available based on various criteria be-
yond error protection alone. For instance, in low-cost low-
energy devices such as those found in the multimedia Internet of
things (M-IoT) applications [38], Pro-MPEG COP3’s AL-FEC
method may be preferred to other ones due to its implementa-
tion simplicity and low computational complexity.

It is important to note that, although we assume herein that
packet losses are independently and randomly distributed rather
than occurring in burst, the study is valuable for several rea-
sons. Firstly, some networks really exhibit independently and
randomly distributed errors. This is actually for these kinds of
losses that 1D row FEC is used. As an example, Lemonnier
studied the delivery of video packets with 2D FEC in a fixed
Internet scenario with a uniform distribution of packet loss er-
rors [39]. Secondly, although bursts of lost packets may oc-
cur (e.g. in wireless networks), their impact can, sometimes,
be mitigated by using packet interleaving in conjunction with
FEC [3, 21, 40]. This approach randomly shuffles packets be-
fore any processing. It introduces additional processing delays
which are not desirable but some services may tolerate them.
Thus, a balance between the expected network performance and
FEC/interleaving strategies is required to provide the best FEC
protection while meeting the user requirements in terms of de-
lay [3]. Thirdly, some aspects of our study may be extended to
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evaluate the performance of recently proposed methods where
FEC matrices are comprised of nonconsecutive (shuffled) pack-
ets. This is the case in [30] where packets are arranged in m
matrices of sizes Di × Li, 1 ≤ i ≤ m, based on their importance.
Finally, the proposed mathematical framework and results can
serve as a basis and be extended to evaluate the residual packet
loss rate of the Pro-MPEG COP3 AL-FEC approach under burst
errors, especially under the classical Gilbert model. This paper
is a first step in that direction.

The paper is organized as follows. In Section 2, we present
the 2D FEC as proposed in Pro-MPEG COP3. We describe
the relevant performance metrics for 1D and 2D FEC in Sec-
tion 3. In Section 4, we introduce the theoretical tools to solve
the difficult problem of evaluating the 2D FEC residual packet
loss rate. We derive RPLR simple but accurate approximations
for low PLR values for both 1D and 2D FEC in Section 5. In
Section 6, we consider the problem of estimating the residual
packet loss rate under the classical Gilbert model of error bursts.
The bounds derived for the random error model are essential to
analyse this latter problem. Finally, we present and analyse the
experimental results in Section 7, and conclude this paper and
suggest future works in Section 8.

2. Overview of Pro-MPEG COP3 2D FEC

In this section, we present an overview of the 2D FEC
method proposed in Pro-MPEG COP3 [18]. We first show how
the method organizes the data packets, and adds redundant in-
formation to deal with transmission losses. Then, we describe
the configurations of packet losses leading to deadlocks, i.e.
cases where packets cannot be recovered. We finally present
some statistics on the types of deadlock configurations to jus-
tify the importance of a rigorous approach to evaluate the per-
formance of the method.

2.1. Organization of packets in Pro-MPEG COP3

The Pro-MPEG COP3 correction codes are erasure codes op-
erating at the application layer [32]. At that layer, networks
behave like packet erasure channels where packets are either
perfectly received, or lost but their locations are nevertheless
known. Events leading to packet losses include the packet dis-
cards at intermediate routers (e.g., due to network congestion),
the transmission timeouts (e.g., when a packet is delayed too
long to be of interest), or the rejections of corrupted packets
(e.g. when a received packet contains bit errors that lower lay-
ers cannot correct).

Erasure codes add redundant information to the communica-
tion to better protect the data. They are used in several situa-
tions: (i) when the PLR is high, retransmissions are inefficient
since they would occur too frequently, leading to a reduced sys-
tem throughput (ii) when the communication is unidirectional
(e.g. broadcast), no return channel is available to request re-
transmissions, and (iii) when the round-trip time (RTT) delay
is too high to be acceptable in a real-time application [41].
Because these codes are paramount to avoid losing data, the
amount of added redundancy can be substantial.

The FEC method proposed in Pro-MPEG COP3 is a two-
dimensional encoding using redundant checksums to recover
lost packets. In this paper, this technique is referred to as 2D
FEC, but it has been presented under different names in the lit-
erature: 2D FEC [42], dual FEC [18], and 2-D Parity FEC [43].

As described in the standard [18], the real-time transport pro-
tocol (RTP) packets transmitting the video data are grouped into
a two-dimensional D×L data matrix to which D+L extra check-
sum packets, called FEC packets, are added: one for each row
and one for each column as illustrated in Fig. 1. These check-
sums are simply the bitwise exclusive OR (XOR) of the packets
on the corresponding row or column. To ensure that all packets
are of the same length when performing the operation, padding
is used when needed.
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Figure 1: Pro-MPEG COP3 2D FEC matrix showing the logical grouping of
RTP data packets into D rows and L columns. Typical values described in this
standard encompass data matrices of dimensions 4×25, 5×20, and 10×10 –
excluding the extra FEC packets. These matrices are referred to as D×L data
matrices to describe the configuration of data packets but they contain in fact
(D + 1) × (L + 1) − 1 elements due to the presence of FEC packets and the
absence of the lowest-rightmost packet. In this paper, they are referred to as
n × m matrices (or full matrices).

The 2D FEC method enhances the robustness of video pack-
ets against losses at the cost of increasing the transmission over-
head and latency. Although a two-dimensional arrangement can
provide a better robustness, a one-dimensional arrangement is
also proposed in Pro-MPEG COP3. In such a case, the FEC
packets associated with the columns are generated and trans-
mitted. This choice provides a better robustness against bursts
of lost packets compared to the choice of using the FEC pack-
ets associated with the rows only. However, this latter choice
would reduce the latency, though.

2.2. Recoverable and non-recoverable configurations

To illustrate how lost packets can be recovered using Fig. 1,
suppose that RTP packets 2, L+1, L+2and (D−1)L+1 (shown in
red dashed rectangles) have been lost. Fortunately, these pack-
ets can be recovered in this particular case. RTP 2 is recovered
from the XOR of the other packets in the first row, including
row FEC 1. Similarly, RTP L+2 is recovered from the newly
recovered RTP 2 and the other packets of column 2, RTP L+1
from RTP L+2 and the other packets of row 2, and finally RTP
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(D−1)L+1 from the other packets of row D. Naturally, this is
not the only way to recover them.

However, if RTP 1 were also lost in the previous example,
only RTP (D− 1)L + 1 could have been recovered, and it would
have been impossible to recover the remaining lost packets. In-
deed, the 2×2-submatrix defined by the RTP 1, RTP 2, RTP L+1
and RTP L+2 packets has two lost packets in each of its rows
and columns. This prevents the recovery of any of these pack-
ets. Although, such a rectangular packet loss pattern always
leads to a situation where these packets cannot be recovered,
more complex patterns leading to the same result exist. These
patterns are referred to as deadlock configurations. For the spe-
cific case of rectangular loss patterns, these inter-blocking con-
figurations are referred to as 4-cycle deadlock configurations.
In general, we will observe 2c-cycle deadlocks for c ≥ 2. This
terminology is derived from the classical graph theory concepts
used in this paper [44]. This terminology would be clearer in
Section 4 with the examples presented in Fig. 2.

2.3. Percentage of deadlock configurations
To determine the robustness of the 2D FEC method against

packet losses, the number of recoverable configurations has to
be established, for any given number of lost packets k. These
configurations are the only ones, which do not lead to a dead-
lock, among all the possible configurations of k losses. As pre-
sented in Table 1, it is obvious that the percentage of deadlock
configurations (i.e. percentage of configurations containing at
least one deadlock) increases as the number of losses increases.
Furthermore, the proportion of complex deadlock configura-
tions with cycles with more than 4 nodes also increases as the
number of losses increases. For instance, in a 10 × 10 data
matrix, 4.7% of all the 8-loss configurations have at least one
deadlock configuration preventing the full recovery of the trans-
mitted packets. Among these configurations, 7% have a simple
deadlock configuration composed of a 6- or 8-cycle. This value
increases to 19% for 12-loss configurations. In this case, 6-, 8-,
10-, and 12-cycle are considered.

Table 1: Percentage of deadlock configurations with respect to all possible con-
figurations for a D × L = 10 × 10 data matrix

Nb of losses Deadlocks Among those deadlocks
with single 2c-cycles, c > 2

6 1.23% 2.3%
8 4.7% 7%
10 12.7% 13%
12 27.6% 19%

This means that with high packet loss rates, relying only on
the number of deadlock configurations with at least 4-cycle is
not sufficient to accurately estimate the resulting residual packet
loss rate. It is therefore important to characterize all the dead-
lock configurations for any number of lost packets in a FEC
matrix. As shown in the next sections, determining the residual
packet loss rate as a function of packet loss rate is a challeng-
ing problem. Its difficulty is exacerbated by the fact that the
lowest-rightmost packet of the matrix is intrinsically lost.

3. 1D and 2D FEC Performance Metrics

In this section, the classical performance metrics used to
evaluate the 1D and 2D FEC methods are presented. More im-
portantly, analytic expressions for each of them are derived.

To simplify the notations henceforward, the variables n =

D + 1 and m = L + 1 will be used rather than D and L. Hence,
the full dimension of the entire FEC matrix of Fig. 1 is n × m.

The first criterion is the transmission overhead defined as

OverheadFEC , FEC packets/data packets

i.e., the ratio of the number of added checksum (FEC) pack-
ets to the number of data (useful) packets. In communication
theory, a related concept is the code rate defined as

CodeRate , data packets/sent packets

i.e., the ratio of useful information. Note that the total number
of sent packets comprises both the data and the FEC packets.
These first two metrics are strictly related to each other since
CodeRate = 1/(1 + OverheadFEC).

As one can expect, a higher overhead would lead to a higher
robustness against losses. To measure this second criterion, the
residual packet loss rate of an error-correcting method is de-
fined as the expectation of the ratio of the number of unrecov-
ered packets to the total number of sent packets. This metric has
been chosen to evaluate the performance of the FEC method –
as chosen by Battisti et al. [37].

Throughout this paper, it is important to distinguish lost
packets from unrecovered ones after the FEC method has been
used. The residual packet loss rate is defined as

RPLR = E
[
unrecovered
sent packets

]
(1)

where the mathematical expectation E[·] is evaluated according
to a given loss distribution model. Typically, independently and
randomly distributed losses, or burst errors are considered. The
RPLR criterion can therefore be expressed as

RPLR =
∑

k

E
[
unrecovered

m × n − 1

∣∣∣∣∣k losses
]

Pr[k losses]. (2)

The last metric is the latency defined as the number of
buffered packets before being able to process all packets [36].
It is denoted LatencyFEC. The latency is only present at the re-
ceiver since the transmitter can send each packet as it becomes
available. Obviously, this metric is important for real-time and
near real-time communication systems.

3.1. Evaluation of 1D FEC Performance Metrics

In general, the 1D FEC method can be implemented as 1D
column FEC, or as 1D row FEC [43]. In the former case, a
FEC packet, shown as Col FEC in Fig. 1, is computed for each
column. This approach is particularly effective for bursts of lost
packets. In the latter case, a FEC packet, shown as Row FEC in
Fig. 1, is computed for each row. This approach is effective for
random packet losses, and has a lower latency.
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As mentioned earlier, Pro-MPEG COP3 only considers the
1D column FEC method. However, since the 1D FEC structure
is very similar for both the row and the column FEC methods,
except for the latency metric, only the 1D column FEC method
will be mentioned henceforward. Hence, the overhead, the code
rate and the latency [36] of the 1D FEC method are given by

Overhead1DFEC = 1/(n − 1)
CodeRate1DFEC = (n − 1)/n

Latency1DFEC =

m for 1D row FEC.
(m − 1)n for 1D column FEC.

The latency metric is expressed in terms of packets, and re-
lates to the time it takes to process them, assuming that they
arrive at a constant rate. For the row 1D FEC method, the re-
ceiver must wait until all the row data packets, and the FEC
packet have arrived before it starts to process the data. Simi-
larly, for the column 1D FEC method, the receiver must wait
until the last column has arrived.

The 1D FEC method can recover only one packet. By con-
sidering all the cases with at least two lost packets, the residual
packet loss rate can be computed from Eq. 2 as follows

RPLR1D =

n∑
i=2

i
n

(
n
i

)
ρi(1 − ρ)n−i

= ρ

n−1∑
i=1

(
n − 1

i

)
ρi(1 − ρ)n−1−i

= ρ(1 − (1 − ρ)n−1) (3)

where ρ is the packet loss rate (PLR).

3.2. Evaluation of 2D FEC Performance Metrics
The 2D FEC method is effective for the random as well as

the burst packet loss models. The overhead, the code rate and
the latency metrics for this method are given by

Overhead2DFEC =
n + m − 2

(n − 1) × (m − 1)

CodeRate2DFEC =
(n − 1) × (m − 1)

n × m − 1
Latency2DFEC = n × m − 1.

For a given matrix overall size, a simple argument based on
the derivative and the extrema computations can show that the
overhead is minimized when the matrix is as square as possible.
Simply compare 11 × 11 matrices with 20% overhead and 6 ×
21 matrices with 25%. On the other hand, larger is the square
matrix lower is its overhead but higher is its propagation delay
– simply compare 11 × 11 matrices with 20% overhead and
21×21 matrices with 10%, whilst their latency are 120 and 440
packets, respectively.

Deriving an accurate mathematical expression for the resid-
ual rate RPLR2D is quite challenging. To the best of our knowl-
edge, no such expression has been published before. Battisti et
al. derived some approximations for straightforward cases [37].
However, their approximations only hold for high PLR val-
ues. In the next section, accurate lower and upper bounds for
RPLR2D are given for both low and high packet loss rates.

4. Theoretical Bounds of RPLR2D for the Random Model

To evaluate the robustness of the 2D FEC method, differen-
tiating configurations with packet losses that can be recovered
from the ones that cannot is essential. Straightforward lower
and upper bounds on its robustness can be obtained by evaluat-
ing the probability of deadlock configurations for a given num-
ber of lost packets. In the worst pessimistic case, all the missing
packets can be assumed to be lost if a deadlock happens. In the
best optimistic case, only three packets can be assumed to be
unrecovered – this is the minimal size of a deadlock configura-
tion. The main contribution of the paper is the formal analysis
determining the probability that a deadlock occurs for a given
number of independent and randomly distributed packet losses.

4.1. The Random Packet Loss Model
Assume that the packet losses are independently and ran-

domly distributed in an n × m matrix. As mentioned in the in-
troduction, such errors actually occur in some networks, while
packet interleaving can sometimes be used to obtain such be-
haviour in others. More importantly, we will show later in the
paper that the results derived for this case can be applied to the
more complex case of packet losses occurring in bursts. With
this assumption, the probability distribution of the number of
lost or erroneous packets En,m

ρ is given by

Pr[En,m
ρ = k] =

(
nm−1

k

)
ρk(1 − ρ)(nm−1−k) (4)

where the packet loss rate ρ is the probability that any single
packet is lost or damaged during its transmission. Note that
since the lowest-rightmost packet is not part of the 2D FEC
scheme, there are only nm − 1 transmitted packets.

The next step is to evaluate the probability that a FEC ma-
trix having lost exactly k packets does not contain any deadlock
and can be in fact fully recovered. In order to determine such a
probability, the recoverable configurations have to be character-
ized and enumerated. If their number is denoted Fk(n,m), this
probability can be expressed as

Pr[No deadlock|En,m
ρ = k] =

Fk(n,m)(
nm−1

k

) . (5)

Once this probability has been determined, the residual packet
loss rate RPLR2D can be derived from Eq. 2, using the chain
rule, to obtain

RPLR2D =
∑

k

(
E

[
unrecovered

nm − 1

∣∣∣∣∣Deadlocks ∧ En,m
ρ = k

]
× Pr[Deadlocks|En,m

ρ = k] × Pr[En,m
ρ = k]

)
. (6)

4.2. Enumerating the Recoverable Configurations
To ease the evaluation of Fk(n,m), assume in a first step that

the FEC matrix is a full n × m matrix whose lowest-rightmost
packet is also transmitted. Conceptually, this extra packet
should correspond to the checksum of the row (or, equivalently,
the column) FEC packets. Later on, this assumption will be
dropped to correspond to the Pro-MPEG COP3 specification.
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The n × m FEC matrix M can be used to define a labelled
bipartite graph GM = (R,C, E) whose disjoint sets of la-
belled red nodes R = {r1, r2, · · · , rn} and labelled cyan nodes
C = {c1, c2, · · · , cm} represent its rows and its columns, re-
spectively. Assuming that M[x, y] = ⊥ if the packet in the
xth row and yth column of the matrix has been lost during its
transmission, the edges in E represent these packets as follows:
E = {(ri, c j)|(∃ri ∈ R)(∃c j ∈ C)[M[i, j] = ⊥]}. Thus, any edge
of E connects one node of R (a row) and one node of C (a col-
umn). By construction, the degree of a node (i.e., the number of
incident edges) represents the number of lost packets in the cor-
responding row or column. Elementary graph theory concepts
are used in this section. Readers are referred to any classical
reference on graph theory such as the seminal book of Bondy
and Murty [44] for more details.

Figure 2 shows an example of an 8 × 8 matrix that can
be recovered (Fig. 2(a)), and one with a deadlock that cannot
(Fig. 2(b)). It also shows their corresponding bipartite graphs.

The lost packets can be recovered in many cases. If there
is a row or a column missing only one packet, this packet can
be recovered as the checksum of the remaining packets. This
approach can be applied iteratively until the matrix is fully re-
covered (as in Fig. 2(a)), or a deadlock has been found (as in
Fig. 2(b)). Any deadlock configuration must have at least two
losses in each of its rows and columns.

Figure 2: FEC matrices and their bipartite encoding: (a) a recoverable config-
uration and (b) a deadlock. In the former case, the matrix can be recovered
as follows. In the first iteration, the rows 2, 3, 4, and 8 (or, similarly columns
1, 2, 3, 7 and 8) can be recovered in parallel. In the second iteration, all the
remaining columns (or rows) can be recovered in parallel.

Henceforward, the problem of enumerating all the recover-
able configurations for a given matrix topology and a given
number of lost packets will be reformulated as a classical graph
theory enumeration problem. The first step is to characterize
these configurations.

Lemma 1. An n × m FEC matrix M can be recovered iff the
corresponding bipartite graph GM is a bipartite tree (or a forest
of disjoint trees) i.e., if it does not contain any cycle.

Proof. If GM is a non-trivial bipartite tree with a least one edge
(or a forest of such trees), M must have at least two rows or
columns, or at least one row and one column having only one
lost packet1. These packets can be recovered and the resulting
new graph associated to the new matrix still represents a forest
of bipartite trees having at least one edge less in total. Thus, all
the lost packets in the matrixM can be recovered iteratively.

Now, if GM is not a bipartite tree (or a forest of bi-
partite trees), it must then have a cycle of even length2.
Let (ri1 , c j1 , ri2 , c j2 , · · · , ril , c jl , ri1 ) be such a cycle of minimal
length, which implies that ris , rit and cis , cit , ∀s , t. This is
a subset of l rows and l columns with at least two losses in each
of them. Such a configuration cannot be recovered.

Corollary 1. For any n ×m FEC matrixM, if there is an x × y
submatrix M′ with at least x + y lost packets, there must be a
deadlock inM.

It is straightforward to prove this corollary. If the subgraph
GM′ has at least x + y edges, it has to have a cycle since it
contains only x + y nodes3. Hence, following Lemma 1, it must
contain a deadlock. This result gives an upper bound on the
maximum number of packets that can be recovered.

Figure 3: Bipartite forests – without cycles: (a) five edges, five non-degenerate
trees with one edge, and a total of seven trees – single nodes are degenerate
trees, (b) five edges, two non-degenerate trees, and a total of seven trees (c) five
edges, one non-degenerate tree, and a total of seven trees.

Once the recoverable configurations have been properly char-
acterized as distinct forests of bipartite trees, the next step is to
determine their number. Let F ∗k (n,m) denote the number of
distinct bipartite forests defined by two labelled sets of n and m
nodes, respectively, and k unrestricted edges – i.e., without the
implicit edge related to the missing lowest-rightmost packet of
the FEC matrices. At one end of the spectrum, the k edges can
define k disjoint non-degenerate trees. At the other end of the
spectrum, these k edges can define one single connected tree,
as illustrated in Fig. 3. Thus, F ∗k (n,m) = 0, if k ≥ n + m. This

1Any tree having at least one edge must have at least two nodes with degree
one (a.k.a. leaf nodes) – [44], Corollary 2.2.

2By definition, an acyclic graph is a tree and a bipartite graph cannot have a
cycle of odd length – [44], Theorem 1.2.

3In general, an acyclic graph (i.e., a tree) of n nodes can only have n − 1
edges – [44], Theorem 2.2.
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follows readily from Corollary 1. If the single nodes are con-
sidered as degenerate trees without any edge, the total number
of trees is constant in all the cases shown in Fig. 3. In general,
these k edges can be partitioned to define t disjoint trees with
respectively n1, · · · , nt nodes of one set, m1, · · · ,mt nodes of
the other set, and k1, · · · , kt edges4. Since the trees are disjoint,∑

ni = n,
∑

mi = m and ni + mi = ki + 1, for all i. The total
number of edges

∑
ki = k is therefore equal to n + m − t, ex-

plaining the fact that the number of trees is constant for a given
number of edges. Thus, the number of distinct bipartite forests
F ∗k (n,m) with k edges corresponds to the number Tn+m−k(n,m)
of distinct bipartite forests with n + m − k disjoint trees, which
is given by the following result:

Theorem 1. ([45], p. 32) The number of forests composed of t
bipartite trees on p labelled red nodes and q labelled cyan nodes
is given by

Tt(p, q) =

t∑
h=0

(−1)h

h!
p!

(p − h)!ph

q!
(q − h)!qh

[
∑

a+b=t−h
a,b≥0

[p(h + b) + q(h + a) − (h + a)(h + b)]×

(
p − h

a

)(
q − h

b

)
pq−1−bqp−1−a

]
.

This result would be sufficient to get the probability given in
Eq. 5, if the FEC matrices were complete n × m matrices.

Unfortunately, more tools have to be used to deal with the
classical FEC matrices. A rooted tree is a tree with a special
node that has been defined as the root of the tree. A similar
result for rooted forests is given by

Theorem 2. ([45], Eq. 4.7) The number of forests composed of
r red and s cyan rooted bipartite trees on p labelled red nodes
and q labelled cyan nodes is given by

LR(p, q, r, s) =

(
p
r

)(
q
s

)[
ps + qr − rs

]
pq−s−1qp−r−1.

As explained earlier, the number of edges in these forests of
r + s trees composed of p + q nodes is given by p + q − (r + s).

An obvious corollary of this lemma can be stated as follows

Corollary 2. The number of forests composed of bipartite trees
rooted at some fixed r red and s cyan roots on p labelled red
nodes and q labelled cyan nodes is given by

LR∗(p, q, r, s) = [ps + qr − rs]pq−s−1qp−r−1.

Now is the time to drop the assumption that the FEC ma-
trix is a full matrix with the extra lowest-rightmost packet.
Let Fk(n,m) denote the number of recoverable configurations
for a classical FEC matrix of the SMPTE 2022-1/5 standards,
i.e., the number of distinct bipartite forests defined by two la-
belled sets of n and m nodes, respectively, and k unrestricted

4In the case of a degenerate tree, ki = 0.

edges plus the implicit edge corresponding to the missing
lowest-rightmost packet of the matrix. Obviously, Fk(n,m) <
F ∗k+1(n,m). The recoverable configurations with k lost packets
plus the extra implicit one is a subset of all the potential recov-
erable configurations with k + 1 lost packets for the full matrix.
As for the unrestricted F ∗k+1(n,m), Fk(n,m) = 0, if k ≥ n+m−1.

Figure 4: The forest is formed of the tree having the implicit edge (the dashed
line joining the square nodes) with some a + 1 red nodes and b + 1 cyan nodes,
and the remaining trees with the other nodes.

If the trivial upper bound on Fk(n,m) may be sufficient in
some cases, an exact formula can be derived with the tools used
so far. Thus, Fk(n,m) can be expressed as

Fk(n,m) =

k∑
a=0

k−a∑
b=0

(
n − 1

a

)(
m − 1

b

)[
LR∗(a + 1, b + 1, 1, 1)

× F ∗k−a−b(n − 1 − a,m − 1 − b)
]
. (7)

As shown in Fig. 4, the forest of bipartite trees can be decom-
posed into (i) the tree having the implicit edge with p = a + 1
red nodes, and q = b+1 cyan nodes, and therefore a+b explicit
edges, and (ii) the other trees with the remaining n − a − 1 red
nodes, and m − b − 1 cyan nodes, and the k − a − b explicit
edges. In the former case, Corollary 2 can be used to determine
the number of these trees. They can be formed by connecting
a subtree rooted at the red node rn (thus, r = 1) and a sub-
tree rooted at the cyan node cm (thus, s = 1) with the implicit
edge. In the latter case, the number of potential remaining trees
is given by F ∗k−a−b(n − 1 − a,m − 1 − b), i.e. the number of dis-
tinct bipartite forests defined by two labelled sets of n−1−a and
m − 1 − b nodes, respectively, and k − a − b unrestricted edges.
Hence, the formula just sums up all the potential partitions of
the nodes, for any possible values of a and b. Unfortunately, no
closed-form formula can be derived for this summation.

4.3. Simple Deadlock Configurations

Knowing the probability of having a deadlock configuration
with a given number of losses is not sufficient. In many cases,
the underlying structures of these configurations have to be de-
termined. In this section, some lower bounds on the number
of deadlock configurations with some simple structures are pre-
sented. Examples of such configurations are 4-cycles (i.e., two
rows and two columns forming a rectangle) as shown in Fig. 5,
and complete K2,3 bipartite graphs (i.e., two rows and three
columns forming two adjacent rectangles) as shown in Fig. 6 –
or the symmetric K3,2 graphs. These lower bounds can be used
either to fill Table 1 and justify the exhaustive approach used in
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this paper, or to give better approximations of lower bounds on
the residual packet loss rate in the next section.

The simplest deadlock configurations can be associated to bi-
partite graphs with a single of 2c-cycle. As mentioned in the
introduction, many prior empirical analyses focused only on
deadlock configurations with 4 interblocking losses, i.e., with
a 4-cycle. It would be useful to find the number of such sim-
ple configurations. Austin [46] has presented such a result for
generic bipartite graphs. This approach has to be adapted to
deal with bipartite graphs with the presence of the implicit edge.

Figure 5: The four cases for the 2c-cycle with respect to the implicit edge
corresponding to the lowest-rightmost corner of the FEC matrix: (a) the cycle
includes the implicit edge – bg5a(p, q, c) cases, (b) the cycle is incident to the
implicit edge – bg5b(p, q, c) cases, (c) the cycle and the implicit edge are in two
different connected components – bg5c(p, q, c) cases, and finally (d) the cycle
and the implicit edge are in the same connected component (but not covered by
the first two cases) – bg5d(p, q, c) cases.

In order to determine the number of labelled connected bi-
partite graphs on p red nodes and q cyan nodes with one cycle
of length 2c, knowing there is an implicit edge connecting the
two given (squared) nodes, the following approach can be used

• Select the c red , and the c cyan nodes for the cycle and
determine the number of potential cycles.

• Determine the number of labelled bipartite forests rooted
on these 2c nodes of the cycle, or on the nodes of the im-
plicit edge with the remaining nodes – Corollary 2.

If the implicit edge is part of the 2c-cycle (i.e., Fig. 5 (a)),
there are only c rooted red nodes and c rooted cyan nodes. In
this case, the number of labelled connected bipartite graphs on
p ≥ c red nodes and q ≥ c cyan nodes with one cycle of length
2c, which is denoted bg5a(p, q, c), is given by

bg5a(p, q, c) =

(
p − 1
c − 1

)(
q − 1
c − 1

)
(c − 1)!(c − 1)!LR∗(p, q, c, c)

=
p!q![c(p + q − c)]pq−c−2qp−c−2

(p − c)!(q − c)!
. (8)

Given the selected nodes of the 2c-cycle, the number of
rooted forests is given by LR∗(p, q, c, c). These forests are com-
posed of (p + q) − 2c edges. On the other hand, the 2c-cycle
composed of the selected roots has obviously 2c − 1 edges.
Thus, the number of edges in these connected components is
(p + q − 2c) + (2c − 1) = p + q − 1.

Similarly, if the implicit edge is incident to the 2c-cycle (i.e.,
Fig. 5 (b)) , the number of labelled connected bipartite graphs
on p ≥ c red nodes and q ≥ c + 1 cyan nodes with one 2c-cycle,
which is denoted bg5b(p, q, c), is given by,

bg5b(p, q, c) =

(
p − 1
c − 1

)(
q − 1

c

)
c!(c − 1)!

2
LR∗(p, q, c, c + 1)

=
p!q![c(p + q − c − 1) + p]pq−c−3qp−c−2

2(p − c)!(q − 1 − c)!
. (9)

There are only c rooted red nodes and but c + 1 rooted cyan
nodes, as shown in Fig. 5 (b). The symmetric case, which is
denoted bg5bS (p, q, c), has to be considered. In both cases, the
number of edges in these connected components is p + q − 1.

Now, if the implicit edge is not connected to the cycle of
length 2c (i.e., Fig. 5 (c)), the number of labelled disconnected
bipartite graphs on p ≥ c + 1 red nodes and q ≥ c + 1 cyan
nodes with one connected component containing the cycle of
length 2c and another one composed of a tree containing the
implicit edge, which is denoted bg5c(p, q, c), is given by

bg5c(p, q, c) =

(
p − 1

c

)(
q − 1

c

)
c!(c − 1)!

2
LR∗(p, q, c + 1, c + 1)

=
p!q![(c + 1)(p + q − c − 1)]pq−c−3qp−c−3

2c(p − 1 − c)!(q − 1 − c)!
. (10)

There are c + 1 rooted red nodes and c + 1 rooted cyan nodes
(i.e., the nodes of the cycle plus the ones of the implicit edge),
as shown in Fig. 5 (c). The number of edges in these non con-
nected components is p + q − 2.

To conclude this first part of the analysis, the final configu-
rations to be considered are shown in Fig. 5 (d). These config-
urations correspond to connected bipartite graphs composed of
a cycle of length 2c, and the implicit edge – assuming that the
implicit edge is used to connect the trees. In these cases, the
implicit edge does not belong to or is incident to the cycle (as
in the first two cases). Their number is denoted bg5d(p, q, c).
These configurations can be constructed as follows. The set
of red nodes is partitioned into a set of a nodes associated to
the implicit edge, and a set of the remaining p−1−a node as-
sociated to the 2c-cycle. The set of cyan nodes is partitioned
similarly. Once the nodes are split and formed a connected
component containing the implicit edge, and one containing the
cycle – similarly as in Fig. 4, these two components have to be
connected by connecting either the red node rn with any of the
q−b−1 opposite cyan nodes, or similarly the cyan node cm with
any of the p−a−1 opposite red nodes of the other component.
These configurations can therefore be enumerated as follows

bg5d(p, q, c) =

p−c−1∑
a=0

q−c−1∑
b=0

(
p − 1

a

)(
q − 1

b

)
LR∗(a + 1, b + 1, 1, 1)

×
c!(c − 1)!

2
× LR(p − 1 − a, q − 1 − b, c, c)

×(p − a − 1 + q − b − 1). (11)

The number of edges in these connected components is p+q−1.
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With the above results, the number of simple (but large)
deadlock configurations with 5, 7 or 9 interblocking losses –
thus, with the missing lowest-rightmost packet – can be deter-
mined with Eq. 8. Similarly, the number of deadlock configu-
rations with one cycle of length 6, 8 or 10 can be determined
with Eqs. 9, 10, and 11. These equations have been used to fill
Table 1 in the introduction and show the importance of consid-
ering all the deadlock configurations to obtain accurate evalua-
tion of the performance of the FEC technique.

Figure 6: The four cases of a complete K2,3 bipartite graph with respect to the
implicit edge corresponding to the lowest-rightmost corner of the FEC matrix.

To conclude this section, the last cases needed in the com-
ing section to establish more accurate bounds on the effective
packet loss rates are composed of configurations with three
nodes fully connected to two nodes (i.e., a K2,3 or K3,2 bipartite
subgraph) as presented in Fig. 6. There are strong relationships
between these cases and the ones presented in Fig. 5. For ex-
ample, the number of labelled connected bipartite graphs on p
red nodes and q cyan nodes with a K2,3 blocking configuration
with the implicit edge (i.e., Fig. 6 (a)) is given by 2

c!(c−1)! ×Eq. 9.
The correcting factor corresponds to the fact that there is only
one way to connect K2,3. The other cases are treated similarly.

4.4. Bounds on the Residual Packet Loss Rate
There are two diametrically opposed approaches to deal with

packet losses. At one end of the spectrum, if there are still some
missing packets after the correcting phase of the FEC method,
one drastic approach is to discard all the packets associated to
the transmitted matrix. A more realistic one would simply con-
sider the unrecovered packets of the transmitted matrix. Unfor-
tunately, the expected number of these packets is very hard to
estimate in general. In the worst case, none of the loss pack-
ets can be recovered. In the best one, only three packets can-
not be recovered – this corresponds to the minimal deadlock
configuration with the lowest-rightmost missing packet. Thus,
looking back at Eq. 6, some bounds on the residual packet loss
rate RPLR2D can be derived. Once the probability of having
a deadlock given k errors, and the probability of having k er-
rors have been expanded with Eq. 5 and Eq. 4, respectively, the
pessimistic upper bound RPLRUB

2D is given by

RPLRUB
2D =

nm−1∑
k=3

k
nm−1

1 − Fk(n,m)(
nm−1

k

)  (nm−1
k

)
ρk(1 − ρ)nm−1−k. (12)

This bound discards totally the error correction capability of
the FEC method. It assumes that none of the k lost packets can
be recovered.

On the other hand, the optimistic lower bound RPLRLB
2D is

given by

RPLRLB
2D =

nm−1∑
k=3

3
nm−1

1 − Fk(n,m)(
nm−1

k

)  (nm−1
k

)
ρk(1 − ρ)nm−1−k. (13)

This bound assumes the presence of the simplest unrecoverable
configuration possible with only three lost packets, i.e, a 4-cycle
deadlock involving the bottom-rightmost missing packet.

However, the number of deadlock configurations with small
numbers of unrecovered packets can be derived from the equa-
tions given in the previous section. For example, the only dead-
lock configurations with three unrecovered losses are described
in Fig. 5(a), while the ones with five unrecovered losses are
described in generalizing Fig. 5(a) to have a 6-cycle with the
implicit edge, i.e. by picking two extra red nodes and two ex-
tra cyan nodes instead of only one, and connecting them with
the nodes rn and cm, and the K2,3 complete graph in Fig. 6(a)
with the K3,2 symmetric case. On the other hand, the dead-
lock configurations with four unrecovered losses are described
in Fig. 5(b-c), while the ones with six unrecovered losses are
described in generalizing Fig. 5(b-d) to have a 6-cycle, and the
complete K2,3 graph in Fig. 6(b-d). Above six losses, the enu-
meration is too complex. For example, there can be two inter-
locking components with four losses.

Improved lower RPLRILB
2D and upper RPLRIUB

2D bounds can
be derived by isolating the special cases with few unrecovered
packets. First, notice that Fk(n,m) = 0, if k ≥ n + m − 1.
The summations can therefore be split into two. Then, for
k ≤ n + m − 2, the probability of having a deadlock with k
packet losses 1 − Fk(n,m)/

(
nm−1

k

)
can be decomposed into dis-

joint cases of having only i ≤ k unrecovered packets out of the
k losses. The probabilities of these cases are denoted pn,m

i,k . Un-
fortunately, these probabilities can only be defined for i ≤ 6.
The probability pn,m

7+,k simply denotes the probability of having
at least seven unrecovered packets. This probability is given by
1 −

∑6
i=3 pn,m

i,k . Thus, the bounds can be refined as follows

n+m−2∑
k=3

 6∑
i=3

i
nm − 1

pn,m
i,k +

β

nm − 1
pn,m

7+,k

 (nm − 1
k

)
ρk(1 − ρ)nm−1−k

+

nm−1∑
k=n+m−1

β

nm − 1

(
nm − 1

k

)
ρk(1 − ρ)nm−1−k.

The parameter β is either equal to seven for the lower bound, or
to k for the upper bound.

For instance, the probability pn,m
3,k of having three unrecovered

losses is given by the configurations in Fig. 5(a). Thus,

pn,m
3,k =

1(
nm−1

k

) min{k,n}∑
p=1

min{k,m}∑
q=1

(
n − 1
p − 1

)(
m − 1
q − 1

)
×

bg5a(p, q, 2) × F ∗k−(p+q−1)(n − p,m − q).

This probability depends on the number of configurations ob-
tained by selecting p − 1 red , and q − 1 cyan nodes to build a
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connected component with a 4-cycle (with the implicit edge),
which have p + q − 1 edges (or losses). The number of these
components is given by the expression bg5a(p, q, 2). Then, the
remaining k − (p + q− 1) edges connect the remaining nodes to
form a bipartite forest. The number of forests is given by the ex-
pression F ∗k−(p+q−1)(n − p,m − q). Thus, multiplying these two
numbers give the number of bipartite graphs with a 4-cycle for
the given p − 1 red , and q − 1 cyan nodes.

Next, the probability p4,k is given by

pn,m
4,k =

1(
nm−1

k

) min{k,n}∑
p=1

min{k,m}∑
q=1

(
n − 1
p − 1

)(
m − 1
q − 1

)
×[

(bg5b(p, q, 2) + bg5bS (p, q, 2) + bg5d(p, q, 2)) ×
F ∗k−(p+q−1)(n − p,m − q) +

bg5c(p, q, 2) × F ∗k−(p+q−2)(n − p,m − q)
]
.

Since the configurations described in Fig. 5 (b) and (d) are com-
posed of p+q−1 edges, and the ones described in Fig. 5 (c) are
composed of only p + q − 2 edges, they have to be treated sep-
arately. Otherwise, this probability is defined as the previous
one. The probabilities pn,m

5,k and pn,m
6,k can be obtained similarly.

5. RPLR Approximations for the Random Model

Approximations of the residual packet loss rates RPLR1D and
RPLR2D can be derived for low packet loss rates. These bounds
can be useful to design FEC-based systems by providing simple
yet accurate performance expressions for various FEC configu-
rations. Intuitively, the leading term of the summation defining
any of these bounds dominates the remaining of the summa-
tion, if the packet loss rate ρ is small enough. Hence, they can
be approximated by expressions of the form αργ, for some fixed
constants α, γ ≥ 1, depending on the minimum size of nonre-
coverable configurations, and the parameters of the FEC meth-
ods. Such approximations yield linear relationships of slope γ
between log(RPLR) and log ρ.

5.1. Approximation for RPLR1D

The one-dimensional case is first considered to show how the
approximations can be obtained. The second line of Eq. 3 can
be rewritten as follows – with the same convention as before
where n = D + 1 – by extracting the first term of the summation

(n − 1)ρ2(1 − ρ)n−2 + ρ

n−1∑
i=2

(
n−1

i

)
ρi(1 − ρ)n−1−i.

If ρ is small enough (e.g., ρ = ε
n−2 , for a fixed constant ε < 1),

the first term tends toward5 e−ε(n − 1)ρ2. On the other hand,
since (

n−1
i

)
ρi(1 − ρ)n−1−i(

n−1
i+1

)
ρi+1(1 − ρ)n−2−i

=

[
i + 1

n − 1 − i

][
1 − ρ
ρ

]
> 2, for i ≥ 1,

5From elementary calculus, 1−1/x
e ≤

(
1 − 1

x

)x
≤ 1

e , for any x > 1. Thus,(
1 − ε

n−2

)ε
× 1

eε ≤
(
1− 1

(n−2)/ε

)n−2
ε ×ε

≤ 1
eε . Finally, knowing that (1−x)α ≈ 1−αx,

for x < 1 and αx � 1, (1− ε
n−2 )ε ≈ 1− ε2

n−2 , implying that the left-hand side of
the inequality converges toward 1/eε .

the series converges faster than the geometric series
∑

i=1 2−i,
which tends toward 2 × 2−1 i.e. twice its first term. Thus,
RPLR1D can be approximated by 2 × e−ε(n − 1)ρ2.

If even smaller probabilities (e.g., ρ = 1
nc , for c > 1) were

considered, the first term would become even more predomi-
nant. Using the same approach, the first term converges simply
to (n − 1)ρ2, whilst the remaining of the series is bounded by
1 + 1

nc−1 times the first term, since the ratio of two consecutive
terms is at least nc−1. Hence, the residual rate RPLR1D can be
approximated by

δ1d
ρ (n − 1)ρ2 for low PLR values,

where the constant δ1d
ρ = 2e−ε , in the former case, and δ1d

ρ =

1 + 1
nc−1 (or simply 1), in the latter one.

5.2. Approximations for RPLR2D

For the two-dimensional case, the pessimistic upper bound
RPLRUB

2D given by Eq. 12 is given by

ρ

nm−2∑
k=2

(
nm−2

k

)
ρk(1 − ρ)nm−2−k

(
1 − Fk+1(n,m)

(nm−1
k+1 )

)
. (14)

Since the number of deadlock configurations defined by three
lost packets is

(
n−1

1

)(
m−1

1

)
, i.e, all the opposite corners to the

lowest-rightmost corner, F3(n,m) =
(

nm−1
3

)
− (n − 1)(m − 1),

and the first term of Eq. 14 is given by

ρ ×

(
nm − 2

2

)
ρ2(1 − ρ)nm−4 ×

(n − 1)(m − 1)(
nm−1

3

) =

3(1 − ρ)nm−4
[
(n − 1)(m − 1)

nm − 1

]
ρ3.

As seen earlier, if ρ is small enough, the first term tends toward
3e−ε (n−1)(m−1)

nm−1 ρ3 (if ρ = ε
nm−4 , for ε < 1), or even 3 (n−1)(m−1)

nm−1 ρ3

(if ρ = 1
(nm)c , for c > 1).

The last step is to bound the convergence of the summation.
Without a good approximation of the number of recoverable
configurations Fk(n,m), it is hard to show that it converges
rapidly. However, it is simple to validate empirically that the
ratio of any two consecutive terms of Eq. 14 is greater than 2, if
ρ = 0.25

nm−1 . Similarly, it is greater than (nm)c−1, if ρ = 0.25
(nm)c . As

in the one-dimensional case, the upper bound converges toward
δ2d
ρ

(n−1)(m−1)
nm−1 ρ3, where δ2d

ρ = 2 × 3e−ε in the former case, and
δ2d
ρ = 3

(
1 + 1

(nm)c−1

)
in the latter one.

Remark that the leading term of Eq. 13 defining the lower
bound RPLRLB

2D is the same as the one defining the upper bound
RPLRUB

2D . Hence, the lower bound is at least 3e−ε (n−1)(m−1)
nm−1 ρ3, or

3 (n−1)(m−1)
nm−1 ρ3, depending on how small ρ is. Thus, for low PLR

values, the bounds for packet loss rates can be written as

RPLRUB
2D ≈ RPLRLB

2D ≈ δ
2d
ρ

(n−1)(m−1)
nm−1 ρ3.

The impact of the matrix dimensions on both the upper and the
lower approximations corresponds simply to the code rate of
the given FEC configuration. Such bounds can be easily used
to analyse large FEC configurations for which the exact expec-
tation bounds or simulation cannot be done simply due to the
magnitude of the numbers involved.
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5.3. Approximation for RPLRFull
2D of improved system

At this point, it is interesting to come back on the Pro-MPEG
COP3’s AL-FEC for which the lowest-rightmost packet of the
matrix is not transmitted. Due to this fact, three lost packets
are sufficient to have a deadlock configuration, which involves
a data packet and the FEC packets on its row and column. If the
lowest-rightmost packet of the FEC matrix were included, this
minimal number would increase to four. The extra FEC packet
would correspond to the XOR of all data packets. By follow-
ing the same approach used in the previous cases, the leading
terms of adapted Eq. 12 and 13 defining the upper and the lower
residual packet loss rates for the enhanced FEC method could
be approximated by e−ε(n−1)(m−1)ρ4 (if ρ = ε

nm−4 , for ε < 1),
or simply (n − 1)(m − 1)ρ4 (if ρ = 1

(nm)c , for c > 1).
Similarly, the summation defining the pessimistic upper

bound converges as fast. The same factors can be used to mul-
tiply the first term. Hence, the main differences on these equa-
tions are (i) the summations start at k = 4, (ii) the number
of recoverable configurations with four lost packets is

(
n
2

)(
m
2

)
,

and obviously (iii) the number of unrestricted trees is used to
determine the probability of deadlock configurations. Adding
this extra packet to the Pro-MPEG COP3 matrix has a tremen-
dous impact on the performance. For example, the bounds
on the residual packet loss rates of this method tend toward
e−ε(n − 1)(m − 1)ρ4 The RPLR is thus reduced by a factor pro-
portional to (nmρ). In this case, the dimensions of the FEC
matrices would have a significant impact.

6. Theoretical Bounds of RPLR2D for the Burst Model

Although a thorough performance analysis of the 2D FEC
method under bursts of packet losses is beyond the scope of this
paper, this subsection presents an overview of the challenges it
entails as well as some directions to solve this highly complex
problem. However, the main results derived in Section 4 for
random packet losses can be reused in this context. First, in
order to study burst packet losses, an appropriate burst model
reflecting the behaviour of the network of interest must be se-
lected. Many models have been proposed in the literature. They
include the two-state Markov chain model, also known as the
Simple Gilbert model, the Gilbert model and the Gilbert-Elliot
model [47]. As illustrated in Fig. 7, these models are defined
by two-state machines with a good state (G) and a bad state
(B), and the probabilities of transitioning between them. How-
ever, their main differences come from the assumptions made
on the packet losses happening in these states. In the Simple
Gilbert model, the packets are never lost in the good state, and
always lost in the bad one. In the Gilbert model, the packets
are only lost uniformly and independently with a given proba-
bility in the bad state, whilst in the Gilbert-Elliot model, they
can be lost in both states. Characterizing these different models
is rather challenging, especially the last most generic one.

Another important problem is the specification of the param-
eters characterizing the network performance. For instance,
Díaz et al. [19] have performed some experiments following
the criteria specified in the DVB-IP Phase 1 Handbook (ETSI

G B

p q
α β

1− β

1− α

Figure 7: The generic Gilbert-Elliot burst model. In the Good state, the packet
losses are independently and randomly distributed with probability p. In the
Bad state, the packet losses are independently and randomly distributed with
probability q – obviously greater than p. Conceptually, the transitions between
these states happen just between the packet slots.

TS 102 542-3-2) [48]. In their work, the selection of an appli-
cation context forces some specific constraints in terms of de-
lay, burst model, PLR range, etc. A mixed model considering
independent and uniformly distributed losses with PLRs rang-
ing from 10−3 to 10−6, and bursts of losses have been studied.
Their burst model follows the repetitive electrical impulse noise
(REIN) model with a duration of 8 ms, implying that the bursts
have a fixed length. This can be seen as the generic Gilbert-
Elliot model where q = 1 and the transitions from State B to
State G happen deterministically after a fixed amount of time.
Assuming that bursts are rare events, it is simple to set a lower
bound on the number of columns of the 2D FEC matrices. The
only remaining parameter to set is the number of rows of that
matrix. As it will be seen in Section 7.2, it depends on the max-
imum tolerable latency, and the overall overhead looked for.

Nevertheless, the bounds derived in Section 4 are essential
to analyse the performance of the Gilbert model. According to
this model, the packet losses are independently and randomly
distributed with probability q in the bad state. The average
burst length µB can be easily estimated. Starting in State B,
the state machine will first leave that state at the (t + 1)th transi-
tion with probability βt(1 − β). Thus, the average µB is given
by

∑
t≥0 tβt(1 − β) =

β
1−β

6. This is independent of the size
of the 2D FEC matrix, since it characterizes the network be-
haviour. More interestingly, the probability that the length of a
burst is greater than or equal to cµB, for some constant c ≥ 2,
is given by

∑
t≥cµB

βt(1 − β) = (1 − β)
[∑

t≥0 β
t −

∑cµB−1
t=0 βt

]
=

1 − (1 − βcµB ) = βcµB . As β tends toward one, the value of
ββ/(1−β) converges rapidly toward 1

e
7. Hence, this probability is

about 1/ec. These are elementary results in stochastic process /

Markov chain [49].
Now, assuming that having more than one burst in the se-

lected 2D FEC n × m matrix is a rare event8, a matrix with at
least m > cµB columns would have a small residual packet loss
rate of at most

∑nm−1
t=m+2

t
nm−1β

t(1 − β), under the Simple Gilbert
model where all the packets are lost in State B. This is the

6For ρ , 1,
∑n−1

i=0 iρi = (ρ − nρn + (n − 1)ρn+1)/(1 − ρ)2. Also,
∑n−1

i=0 ρ
i =

(1 − ρn)/(1 − ρ). Both sums have simple limits as n goes to infinity.
7This can be shown by proving that the limit of β

1−β ln β is equal to −1 as β
tends toward one (by the L’Hospital rule).

8Following the requirements of [48], Díaz et al. [19] have targeted a mean
time between unrecovered FEC errors of four hours. Since the errors in this
context are due to the occurrence of several bursts of packet losses in a matrix,
these events are clearly very rare.
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case since only bursts of m + 2 or more packet losses will cre-
ate a deadlock. More interestingly, the burst of potential packet
losses in State B would spread over consecutive rows, under the
Gilbert model. Assuming that the burst is of length at most cµB,
by setting n′ as d cµB

m e+1, the submatrix n′×m should contain all
the potential packet losses of that burst. In such a case, Eqs 12
and 13 give the bounds on the residual packet loss rate based on
the packet loss rate q. In fact, these bounds have to be corrected
by a factor of n′

n , if only one burst is present, as the remaining
packets of the matrix are not lost. This should give a worst-case
scenario for these bounds. Technically, the submatrix may or
may not include the last row of the FEC matrix. If it does not,
the error correction capability is even higher as seen with the
full 2D FEC method.

The probability of having only one burst in the FEC matrix
can be easily estimated. The average time between two visits
to State B is simply given by the average time µG spent during
a visit to State G. As seen earlier, this is given by µG = α

1−α .
Similarly, the probability that the time between two visits is
smaller than µG/c is given by

∑µG/c−1
t=0 αt(1 − α) = 1 − (αµG )1/c,

which converges towards 1 − 1
e1/c , as α tends toward one.

To conclude this section, consider the following setup to il-
lustrate how to address the problem for the Gilbert model where
α = 9999

10000 and β = 9
10 (thus, an average burst length of 9). In

such a case, a burst of potential losses is greater than 90 only
with probability of about 1/e10. This means that if m is about
30, the potential losses would be spread only in four consecu-
tive rows of the 2D FEC n × m matrix. Thus, Eqs 12 and 13
with m = 30 and n′ = 4 can be used to estimate the RPLR
with respect to the parameter q in the range 10−2 to 10−3. As
expected, the RPLR for the n′ × m submatrix would be in the
range 10−6 to 10−9 and the RPLR for the entire n × m matrix,
after adjustment, in the range

(
n′
n

)
× 10−6 to

(
n′
n

)
× 10−9. Note

that if n = 8, the matrix would have more than one burst with
a probability around 1 − 1

e8×30/9999 ≈ 0.024. In these cases, the
higher bounds obtained for an entire matrix affected by random
packet losses with probability q can be used given that the pre-
sented adjustments are applied.

7. Experimental Results

The theoretical bounds derived for the residual packet loss
rate RPLR2D and their approximations are experimentally val-
idated for a wide range of packet loss rates with Monte Carlo
simulations in Section 7.1.

The next step is to evaluate the impacts of the FEC matrix
dimensions on RPLR2D. In Fig. 10, 1D and 2D FEC configu-
rations having the same code rate (or overhead) are compared
to validate and quantify the advantages of the 2D approach. In
Fig. 11, similar performance evaluations with different strate-
gies to transmit a given amount of data packets are done. The
objective of these analyses is to determine how to select the
most adequate configurations of the 2D FEC method.

Finally, in Section 7.3, the bounds and their approximations
proposed in this paper are compared with the results presented
in the literature.

7.1. Validation of the Theoretical Bounds

An optimistic lower bound and a pessimistic upper bound on
the residual packet loss rate RPLR2D have been derived from
Eq. 6, and refined to obtain tighter bounds by enumerating the
deadlock configurations with at most six packet losses. In this
section, these bounds are compared to the values observed in
Monte Carlo simulations. In these experiments, the typical
matrix dimensions as presented in Pro-MPEG COP 3 [18] are
used, i.e., 10 × 10, and 4 × 25 data matrices. Continuing to re-
fer to matrices by their full dimensions, the dimensions of these
matrices are in fact 11 × 11, and 5 × 26, respectively.

The Monte Carlo experiments emulate the transmission of
packets over a packet erasure channel where independently and
randomly distributed packets are lost with probability from ρ =

10−3 to 10−1. The correction process of the FEC methods are
then used to recover the packet losses of the received matrices.
The effective RPLR2D is computed using Eq. 1 for each of the
received matrices. The average of these values is used as an
estimate of the overall performance of the FEC methods.

To obtain significant results, it is important to determine the
number of the experiments to simulate in terms of the original
packet loss rate ρ. Assuming that ρ is relatively small (e.g.,
ρ = 10−3), the probability of having three packet losses in an
11 × 11 matrix is about 2.5 × 10−4. On the other hand, the
probability of having a deadlock configuration with only three
packet losses is about 3.6 × 10−4. Therefore, the overall prob-
ability of such a rare event (i.e., three errors and a deadlock) is
only 9 × 10−8. This probability is reduced to 10−8, 9 × 10−10,
and 4 × 10−11, for four, five and six packet losses, respectively.
According to classical Monte Carlo technique theory [50], es-
timating rare Bernoulli events with 10%-accuracy would need
a large number of experiments – at least (19.6)2

p , where p is the
success probability of a single Bernoulli event. Therefore, at
least 4 × 1011 experiments would be needed to observe dead-
locks caused by five packet losses. Hence, the strategy that has
been adopted for the simulations presented in the coming sec-
tions is either to fix the number of experiments to say 106, for
high values of packet loss rates, or to (19.6)2

p , where p is the
probability of the rare events that have to be observed – i.e., the
deadlock configurations with some given packet losses.

Figures 8 and 9 present the derived theoretical bounds for
various 2D FEC matrix dimensions with the corresponding val-
ues obtained from the Monte Carlo simulations. Observe that
the simulation values are always within or overlapping with the
bounds derived in this paper. This is more visible at high PLR
values (see Fig. 8) where the upper and lower bounds are clearly
distinct. As the packet loss rate decreases, the results of the
simulations tend toward the lower bounds. This can be easily
explained as the number of packet losses involved in the dead-
lock configurations tends rapidly toward three, which is used in
the optimist lower bounds.

Figure 8 clearly shows that the improved bounds are signif-
icantly better (tighter) than the original ones at high PLR val-
ues. As the packet loss rate decreases, the theoretical upper and
lower bounds, their δ2d

ρ ρ
3-approximation derived in Section 5

and the Monte Carlo simulations converge to become one as
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(a) 2D FEC RPLR bounds versus simulations for n×m = 11×11.
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(b) 2D FEC RPLR bounds versus simulations for n×m = 5×26.

Figure 8: 2D FEC effectiveness: The optimist and pessimist bounds on
the RPLR RPLRLB

2D and RPLRUB
2D versus the improved bounds RPLRILB

2D and
RPLRIUB

2D compared to Monte Carlo simulations in different configurations at
high PLRs.

seen in Fig. 9. Similar observations have been made with other
FEC configuration sizes. Hence, the theoretical bounds derived
in this paper are in full agreement with the experimental results.

7.2. Performance Comparisons of the FEC Configurations

The bounds derived in Section 4, and the related approxima-
tions obtained in Section 5 can be used to guide the selection
of the adequate FEC parameters to be used in a given network
set-up. As already mentioned, three criteria are particularly im-
portant: (i) the residual packet loss rate, (ii) the transmission
overhead (or, equivalently, the code rate of the FEC correcting
code), and, finally, (iii) the overall latency of the communica-
tion.

The crucial question for service providers is therefore to de-
termine the most appropriate 2D FEC matrix dimensions to be
used according to their network parameters, and their ultimate
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Figure 9: 2D FEC theoretical RPLR bounds compared to simulations for 11×11
matrices.

goals. Assuming that the packet losses are independently and
randomly distributed with probability ρ, the approximations of
the lower and the upper bounds of the residual packet loss rate
can be used to estimate these parameters. If the packet loss
rate ρ is of the order of 1/4nm, the residual packet loss rate
is given by δ2d (n−1)(m−1)

nm−1 ρ3, whilst the latency is proportional to
nm. The coefficient (n−1)(m−1)

nm−1 simply corresponds to the code
rate of the selected error correcting code. If the packet loss rate
is much smaller than 1/4nm, the approximation still holds. On
the other hand, if the rate is much greater, the approximation
is not valid anymore, and the explicit bounds should be used.
However, these bounds would be less and less tight as the ex-
pected number of packet losses per matrix becomes significant.
These cases should be avoided however. Note that in practice,
PLRs from 10−3 to 10−6 are often considered [19, 48].

As the first scenario, consider a network with a packet loss
rate ρ ≈ 2×10−3, i.e., 1 packet loss out of 500 packets. If 4nm ≈
500, the approximation of the RPLR is δ2d (n−1)(m−1)

nm−1 ×(2×10−3)3.
The overall size of the matrix should be selected to ensure that
only very few packet losses occur. Hence, both n and m could
be equal to 11, or a more asymmetric matrix could also be used
where n is equal to 5 and m is equal to 25, for example. In
the former case, the overhead is exactly 20%. In the latter one,
the overhead is about 34%. Clearly, the latency is roughly the
same in both cases. In Figure 10, the RPLR of these two con-
figurations are presented as well as the packet loss rate of the
1D FEC method with n = 6, i.e. with the same overhead as
the square matrix, and the packet loss rate if no error correction
code is used. The 1D FEC and 2D FEC methods have a linear
slope of 2 (as the bound behaves as log δ1d

ρ n + 2 log ρ) and 3
(as the bound behaves as log δ2d

ρ + 3 log ρ), respectively. This
represents a significant improvement upon transmissions with-
out any correction mechanism. As clearly seen in the figure,
the 2D FEC correcting codes outperform the simple 1D FEC
correcting code by a factor of 10−3. On the other hand, both 2D
FEC configurations behave similarly with respect to the RPLR.
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Figure 10: Bounds for ρ = 0.0005, 0.002, 0.005, and 0.01. The bold probability
corresponds to the estimated parameter of the network. The other probabilities
are used to show the resilience of the selected configurations. In these cases,
the improved lower and upper bounds of the residual packet loss rate coincide
in the logarithmic scale set-up.

In such a case, the square configuration minimizing the over-
head by a factor of 40% should be selected, without any impact
on the overall latency.

At this point, there are two questions. Can the overall latency
be reduced? This can be done by reducing the total size of the
2D FEC matrix. Can the code overhead be reduced? This can
be done by augmenting the size of the square matrix. These two
objectives are clearly conflicting.

Consider first the objective of reducing the overall latency of
the first scenario, whilst keeping the packet loss rate constant.
In Figure 11, the selected 11 × 11 FEC matrix is compared to
the smaller 7×7 matrix, which has an overhead of 33.3%. Since
the original packet loss rate is still assumed to be 2×10−3, there
should be fewer packet losses in the smaller matrix. Ultimately,
the RPLR would be smaller, as observed in the figure. But the
gain is very marginal compared to the augmentation of the over-
head. In order to transmit one million data packets, 1.2 million
packets have to be sent with the 11 × 11 matrix, whilst 1.3 mil-
lion packets is needed with the 7 × 7 matrix. Even if the RPLR
is about 2.17 × 10−8 in the former case, and only 1.85 × 10−8

in the latter case, the gain is marginal. Such gain is further de-
creased as the PLR is reduced. More packets would have to
be sent with the smaller matrix anyhow. Hence, the choice be-
tween the larger matrix and the smaller one should be mainly
driven by the equilibrium between the expected latency, and the
overall acceptable overhead in the network.

Now consider the objective of reducing the code overhead
to maximize the use of the network. In the same figure, the se-
lected 11×11 FEC matrix is compared to the larger 25×25 ma-
trix, which has an overhead of 8.3%. Obviously, there should be
more packet losses in this larger matrix. Ultimately, the RPLR
would be larger, as observed in the figure. But the loss is very
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Figure 11: Bounds for ρ = 0.0005, 0.002, 0.005, and 0.01. Alternatives either
to reduce the overall latency, or the overhead with respect to the selected 11×11
matrix.

marginal compared to the reduction of the overhead. Using the
same example, only 1.083 million packets have to be sent. Even
if the RPLR is about 3.14×10−8, the loss is marginal. The same
conclusion can therefore be made. The expected latency and the
acceptable overall overhead should determine the selection of
the 2D FEC configurations – without forgiving that for a given
overall size of the matrix, the square one should be picked.

In the next scenario, the initial PLR is 100 times smaller, i.e.,
1 packet out of 50 000. If 4nm ≈ 50 000, the approximation
of the RPLR is given by δ2d (n−1)(m−1)

nm−1 × (2 × 10−5)3. As deter-
mined in the first scenario, a very large square matrix such as
the 100×100 matrix, which has an overhead of 2.02%, would be
the selected configuration simply based on the RPLR approxi-
mations. Such a configuration would have a very large expected
latency. A smaller 30 × 30 matrix configuration would reduce
the latency by a factor of eleven, whilst augmenting the over-
head by a factor of three to 6.9%. On the other hand, a larger
200 × 200 matrix would reduce by half the overhead to 1%.

Naturally, deriving the bounds as in the first scenario is im-
possible. The number of configurations to be considered is
simply too important. A solution to this problem is to restrict
the summations in Equation 14 to configurations with at most
twenty errors, for example. For the targeted packet loss rate
ρ = 0.00002, the probabilities of having more than twenty
errors are about 10−20, 10−32, and 10−53 for the 200 × 200,
100×100, and 30×30 matrices, respectively. For ρ = 0.00005,
these probabilities should increase to 10−13, 10−24, and 10−46.
Bounding the summations do not have any significant impact,
at least for the two smallest matrices. Anyhow, increasing the
latency by a factor of four to reduce the overhead from 2% to
1% is probably not worth it. In any case, the RPLR should not
play a significant role in the decision (see Fig. 12).
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Figure 12: Bounds for ρ = 0.000005, 0.00002, 0.00005 and 0.0001. Alterna-
tives either to reduce the overall latency, or the overhead with respect to the
selected 100 × 100 matrix. In order to reduce the computation time, the sum-
mations have been computed for at most twenty occurring packet losses.

7.3. Comparison with Prior Analysis from Literature

Once the theoretical bounds and their approximations
have been validated with Monte Carlo simulations, the fi-
nal step is to compare them with the analysis presented
by Battisti et al. [37], which is summarized here. Con-
sidering any packet pi, j, they proposed to approximate the
RPLR as Pr[pi, j is not recoverable] = Pr[pi, j has been lost] ×
Pr[pi, j is locked], since these two probabilities are independent
in the random error model.

The authors enumerated four disjoint cases where the sin-
gle packet pi, j in a n × m matrix is not locked. Knowing
that Pr[pi, j is locked] = 1 − Pr[pi, j is not locked], this gives
an upper bound on the probability that the packet is unrecov-
erable. First, assume that row i or column j (or both) does
not have other packet losses. This happens with probability
(1 − ρ)n−1 + (1 − ρ)m−1 − (1 − ρ)n+m−2. Next, assume there are
exactly one extra packet loss in both row i and column j, and
at least one of them can be readily recovered. This has a prob-
ability (n − 1)ρ(1 − ρ)n−2 × (m − 1)ρ(1 − ρ)m−2 × [(1 − ρ)n−1 +

(1 − ρ)m−1 − (1 − ρ)n−m−3] – correcting the original equation
presented in [37]. Finally, assume there are exactly one extra
packet loss in row i, which can be readily recovered, and at
least two extra packet losses in column j. This has a probability
(m − 1)ρ(1 − ρ)m−2

[∑n−1
k=2

(
n−1

k

)
ρk(1 − ρ)n−1−k

]
(1 − ρ)n−1 – cor-

recting the original equation. The last case is symmetric to the
previous one by switching row i and column j. Notice there is
no special attention to the missing lowest-rightmost packet.

In Fig. 13, the bounds derived in this paper are compared
with the result of Battisti et al. for a wide range of PLR val-
ues. Their simple approximation is relatively accurate for high
packet loss rates where 4 − cycle deadlocks involving packets
other than the lowest-rightmost packet dominate. However, for
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Figure 13: Comparing the bounds derived in this paper with the (corrected) ap-
proximation presented by Battisti et al. [37] and the full 2D FEC matrix system
of Section 5.3 for n × m = 11 × 11. Note that, at this scale, the improved lower
and upper bounds overlap visually.

packet loss rates smaller than 0.1, it is totally inaccurate. In
fact, their approximation behaves more like the enhanced full
2D FEC matrix system introduced in Section 5.3. This is not
surprising since it ignores the impact of the missing lowest-
rightmost packet and only considers deadlock configurations
with four packet losses. In contrast, the comprehensive anal-
ysis presented in this paper is accurate for all PLR values as
proved by Monte Carlo simulations.

8. Conclusion

In this work, we rigorously tackle the problem of determin-
ing the residual packet loss rate of the two-dimensional FEC
method as a function of the matrix dimensions and the packet
loss rates. The approach is based on a comprehensive character-
isation and enumeration of deadlock configurations. It allows
us to derive, for the random error model, tight lower and upper
bounds for residual packet loss rates as well as simple approxi-
mations on these bounds for low packet loss rate values.

We show that the derived bounds and approximations are in
full agreement with the Monte Carlo simulations. We further
compare the performance of various matrix dimensions and
shapes having the same code rates as well as the same num-
ber of data packets. We observe that for low packet loss rate
values, the matrix dimension has but a marginal impact on the
residual packet loss rates. Therefore, a higher overhead does
not translate into a noticeable robustness improvement. At high
packet loss rate values, the matrix dimensions play a more sig-
nificant role. Our analysis shows that (i) a higher overhead has
certain noticeable advantages, and (ii) for a given overhead, sig-
nificantly smaller matrices reduce the residual packet loss rates
and the latency.

The powerful framework that has been developed can be used
to solve similar problems, such as analysing the performance
of: 1) systems in which errors occur in bursts under the Gilbert
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model, and 2) an enhanced version of the Pro-MPEG COP3
AL-FEC standard using the extra lowest-rightmost packet of
the matrix to send the checksum of all the data packets. An un-
expected result of this analysis is that the addition of this single
packet to the 2D FEC method led to a significant reduction of
the residual packet loss rate for low PLR values.

Future work will analyse the overall quality of experience for
video communications, which is a very complex multi-faceted
problem. It requires setting a range of realistic applicative pa-
rameters (video codec and bit rate, packet size, random and/or
burst error model, etc.) and selecting an appropriate quality of
experience metric to discriminate between low bit rate (lower
visual quality) videos with fewer lost packets and high bit rate
(higher visual quality) ones with more lost packets. The tools
developed in this paper to evaluate the performance of the 1D
and 2D FEC for a given bit rate would be essential to evaluate
such a metric for various video communications scenarios.
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