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ABSTRACT With the increasing usage of smartphones in banks, medical services and m-commerce, and
the uploading of applications from unofficial sources, security has become a major concern for smartphone
users. Malicious apps can steal passwords, leak details, and generally cause havoc with users’ accounts.
Current anti-virus programs rely on static signatures that need to be changed periodically and cannot identify
zero-day malware. The Android permission system is the central security mechanism that regulates the
execution of application tasks. Although recent advances in research have provided various approaches and
detection methods for finding malware apps, the available literature lacks a full analysis of this subject.
We fill this gap by: 1) Systematically and automatically building a large dataset of malware and benign
apps, which we have made available to the community. Our dataset has around 16K apps and 118 features.
2) We offer a novel approach for automatically identifying permission usage patterns, which are groupings
of permissions that developers frequently utilise together. The approach combines SOM and K-means
clustering algorithms to classify permissions according to app usage categories. The results demonstrate that
the proposed methodology is able to detect most of the consistent and coherent permission usage patterns
across a wide variety of application categories. To assess our strategy, we add the identified patterns as
features to our dataset and then apply an SVM classifier for malware detection. Our results indicate that the
identified patterns improve the performance of the classifier.

INDEX TERMS Android permissions, android malware, empirical study, supervised and unsupervised
machine learning, self organizing map (SOM).

I. INTRODUCTION
User statistics show that Android is the most widely used
operating system (OS) on mobile devices and is expected to
remain the most popular OS until 2023 [29]. Smartphones
have been a key target for application developers who wish
to exploit them for malicious purposes. Malicious tech is one
of the biggest challenges with any software platform, and
Android is no exception. Android apps can pose severe threats
for Android users. According to Gartner, by the end of 2020,
mobile applications were downloaded over 493 million times
per day, generating more than $198 billion in revenue and
making them popular computing tools for users worldwide.
Such huge numbers are mostly driven by the Google Android
mobile OS,which has an impressive smartphonemarket share
of 82.8% [13]. This is mainly because it is open source
and has a massive collection of applications in the official
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Android app store aswell as in third-partyAndroid app stores.
However, their popularity comes at a cost: Android apps are
also a vehicle for spreading vulnerabilities. A key security
mechanism of Android is its permission system, which
controls the privileges of applications. Under this system,
apps must request access to particular permissions in order
to perform certain functionalities. Moreover, the mechanism
requires that app developers declare which sensitive resources
will be used by their applications. Users have to agree with
the requests when installing/running the applications. This
constrains a given application to the resources it can request
at run-time. Android has established a set of best practices
designed to help developers properly define and operate
permissions inside their source code. Unfortunately, there is
no integrated security mechanism to guarantee that the apps
only ask for the permissions they need. Moreover, developers
do not always adhere to best practices guidelines [17],
which makes the applications more sensitive to security
issues.
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In this paper, we explore the use of 103 permissions
for around 16K apps on the Android market. First,
we investigate permission use for apps in different cate-
gories. Then we present a novel methodology for mining
permission usage patterns, which we refer to as SOM+K-
means. A permission use pattern is defined as a group
of permissions utilised together in apps. Our strategy is
based on a comparison of how permissions are used
together and their correlation to apps across different
categories. The patterns’ permissions are dispersed over
several use cohesion levels/layers. Each level indicates the
frequency of co-usage of a set of permissions, while the
distribution across various levels illustrates the degree of
co-usage.

Our approach utilises a form of SOM+K-means, which
is a commonly used clustering technique. SOM+K-means
will identify probable permission usage patterns based on an
investigation of its usage frequency and consistency across
a number of apps within different categories. Utility permis-
sions may be used by apps belonging to several categories.
As a result, the logic behind distributing permissions in a
pattern based on different levels of use cohesiveness is to
distinguish between themost and least particular permissions.
Additionally, our methodology is also designed to be used
to find patterns associated with specific permissions that
are of interest to a developer. SOM+K-means provides a
pattern-recognition engine to aid developers in examining
various permission usage patterns. So, we investigate the
permission use for different categories of apps. Furthermore,
we assess the scalability of SOM+K-means as well as the
generalizability of the detected usage patterns to possible
malware detection using Support Vector Machine (SVM).
Our findings reveal that, across a wide range of apps
in different categories, the detected usage patterns via
SOM+K-means improve the malware detection model’s
effectiveness. The following is a brief summary of the paper’s
significant contributions:

1) Using an adapted combination of deep learning and
the K-means clustering algorithm, we provide a
novel strategy for mining deep-layer permission usage
patterns.

2) We create and mine a big dataset of over 16K
Android applications from the Google Play Store,
investigating around 46 categories and studying their
use of 103 permissions.

3) We assess our approach’s efficacy by examining
the coherence and generalizability of the identified
patterns. The results reveal that our method was able to
discover a greater number of usage patterns at various
degrees of usage cohesiveness.

The remainder of this paper is structured as follow: We
begin with a brief background in Section II. In Section III,
we describe the data gathering procedure and the study’s
objectives. Section IV details our strategy. Section VI
summarises the related work. Finally, Section VII concludes
and outlines future work.

II. BACKGROUND
A. ANDROID SECURITY
Android’s security is reflected in the application’s deploy-
ment and execution. A digital certificate is required to
sign Android apps for them to be installed on the mobile
device. Android uses a separate process for each application
to run. When an application is installed, it is given a
unique and permanent user ID [25]. An application can’t
directly access another application’s data over this boundary.
Furthermore, Android provides a wide range of permissions
for securing private data. To keep up with the demands of
the development cycle, many developers employ permissions
without considering their security implications, increasing
the danger of security and privacy leaks.

B. PERMISSION SYSTEM
In a pessimistic scenario, all Android applications are
considered to be implicitly buggy or malicious. The apps run
in a process with a restricted user ID and are able to access
their own files only by default. If a given application requires
information or resources outside its sandbox, the permission
must be explicitly requested. Permission may be granted
automatically by the system, or the system may request
the user to grant permission. Each Android application
defines an XML-formatted file (Android Manifest.xml),
which, along with other metadata such as minimal OS version
requirements, contains the permission declarations to which
it is requesting access [9]. The required permission attributes
are used to declare permissions in the manifest, which is
supplemented by a common namespace. For Google-defined
permissions, this is usuallyAndroid.permission. Applications
can demand self-declared permissions, while component
permissions are identified by their tag names.

The Android manifestation includes entries automatically
generated by the developer environment. However, some
fields must be inserted manually, particularly those relating
to permission declarations [5].

Android’s permissions are classified into four levels of
protection, as follows:
• Normal (lower-risk permission, which grants demand-
ing applications access to isolated application level
features).

• Dangerous (higher-risk permission, which grants a
demanding application access to control the device or
private user data).

• Signature (permission is granted only if the declaring
application and requesting application have been done
with the same certificate).

• SignatureOrSystem (A permission that the system only
allows to apps that are in the Android system image
or are signed with the same certificate as the app that
declared the permission).

At runtime, Android apps enforce permissions, but at
install time, the user must accept permissions. When a new
application is installed by users in Android (regardless of how
the application is obtained), the application prompts users
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TABLE 1. Level of permission protection [8].

to accept or deny the permissions requested. On Android
5.1 or earlier devices, application permissions are all
required or all denied, which means that users have no
choice. They can either accept all permissions or refuse the
application altogether. In the latter case, they cannot use the
application at all, because they did not agree with certain
permissions.

Since version 6.0 of Android, however, users are able to
grant permissions while running applications. This means
that permission is no longer required to be granted during the
initial installation of an application. Version 6.0 (update) has
provided users with improved functionality and control over
their applications. It gives them the possibility to revoke app
permissions at any time and one by one via the application’s
setting interface. For instance, a user might choose to grant a
particular mode of transport application access to the location
of their device, while rejecting access to their contact list or
SMS services. Tables 1 and 2 describe permission protection
levels, including dangerous permissions.

C. CLUSTERING MODEL
1) SELF-ORGANIZING MAP
SOM [21] is an unsupervised learning network architec-
ture in the area of machine learning. It is able to map
high-dimensional data onto a two-dimensional space usually
defined as a map. The map is given as the set of nodes
within the input space field. This mapping indicates the
similarity between the input patterns as the proximity to the
map. It offers an understandable methodology to capture and
classify the permissions of Android apps. Each SOM node
is associated with a weight vector that has the same size
as the input vector. The learning algorithm repeats over the
input vectors and adjusts the weight vectors in accordance
with what the algorithm pulls in. For each input vector,
the equivalent weight vector is chosen and manipulated
to be more like the original. Further, the neighbours of
the best-matched weight vector are also modified using
a learning algorithm. This helps ensure convergence over
several iterations.

In 2000, Bengio et al. [6] proposed using SOM for data
clustering in order to achieve better results and reduce
computing time. In 2013, Abaei et al. [1] reported that SOM
can be utilized instead of K-means for data clustering.

TABLE 2. Dangerous permissions and their related groups in
Android 6.0 [8].

TABLE 3. New or changed permission groups in Android 8 (marked
with (*)) and 9 [8].

In recent years, study and implementation in similar fields has
shown that SOM and K-means can be merged to construct a
better tool for data clustering [38].
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2) CLUSTERING ANALYSIS BY K-MEANS METHOD
K-means is the simplest of the clustering algorithms.
It employs squared error as its criterion [20]. K-means begins
with a random initial partition and continues to reassign
patterns to clusters on the basis of the similarities between
the cluster centres and the pattern(s) until the convergence
criteria are met. Patterns would not be reassigned from one
cluster to another, as the squared error would then cease to
decrease dramatically after a number of iterations.

3) SILHOUETTE INDEX
Silhouette index [31] is a highly useful indicator of cluster
validity. It refers to methods for the interpretation and
evaluation of consistency within clusters of data. The
technique provides a sense of how well each object is
categorised by displaying a clear picture of how successfully
each element is classified. The silhouette value is used
to determine how close an entity is to its own cluster in
relation to other clusters (separation). The silhouette varies
in accuracy from (−1) to (+1), where a high value means
that the object is well-suited to its own cluster and is poorly
matched to neighbouring clusters.

III. STUDY OBJECTIVES AND DATA COLLECTION
Our motivation for this empirical study stems from: i) the
absence of a built-in verification system to ensure that no
unnecessary permissions are requested, which reduces the
attack surface and makes the applications more exposed
to security issues; and ii) the poor results of the Google
Play Protect1 system. Indeed, a recent evaluation of the best
antivirus software for Androids, performed at the software
testing laboratory AV-Test,2 has reported that the Play Protect
system detected 76.4% of threats in September 2020.3

Our main goals are the following: (1) To clarify the
permission system use in different categories of Android
applications, and (2) to investigate the potential risk for these
applications to be harmful. In order to achieve our goals,
we started by collecting our dataset and labeled the data
with respect to the dangerousness of the required permission
and the harmfulness risk of the application. In the following,
we describe how we built the dataset used in our study.

A. DATA COLLECTION
For our data collection, we used the AndroZoo repository,
which contained over 14,560,903 apps at the time we
accessed it. The AndroZoo repository proposes data on the
APKs it archived in a main CSV file containing important
information for each application, including hash keys (such
as sha256, sha1, md5), size information (for APKs andDEX),
date of binary, package name, version code and market place,
as well as information about how well the app fared on the

1www.android.com/play-protect/
2www.av-test.org/en/about-the-institute/
3https://www.av-test.org/en/antivirus/mobile-devices/android/september-

2020/google-play-protect-21.6-203809/

FIGURE 1. Overview of building the dataset.

VirusTotal website (number of antiviruses that flag the app as
a malware, scan date).4

In this section we explain the procedure that we followed
to create our two datasets. Figure 1 illustrates the overview
of collecting and building the data. The starting point
was downloading the information file for the AndroZoo
repository, targeting the apps from Google Play Store from
2019 and 2020. Then we randomly selected our 16K samples.
Each app fromAndroZoo has its info (i.e., sha256, sha1, md5,
apk size, dex size, dex date, pkg name, vercodevt detection,
vt scan date, markets). Next, we deployed the information
from the AndroZoo for each app to download its APK file
and HTML page. However, a significant number of those
apps were removed from the Google Play Store for policy5

reasons. This prompted us to search for it on mirror sites.
In finding the desired mirror site, however, we faced

several issues, including language and difficulties down-
loading the html page automatically (no pattern used).
To address these issues, we conducted extensive research and
experiments to download the HTML pages automatically.
By the end of this step, we had collected APK files and their
HTML pages. The experimental dataset numbered 15,894
samples and 103 features (permissions). Clustering is an
unsupervised process, so there is no need to know the class
label of the samples. However, in order to check the efficiency
and consistency of the clustering model, we need to know
the class labels of the experimental cases, i.e., we must
differentiate between ‘‘benign’’ and ‘‘malware’’ so that we
can distinguish malware.

1) FEATURE EXTRACTION
We used the info related to the 15,894 samples to download
their APK files from the AndroZoo repository. We then used
these files as input to Apktool6 (reverse engineer tool) and
obtain the manifest file. Next, we modified AndroVul [28].
We employed the info related to those 15,894 to download
their apk files from the AndroZoo repository, after which

4More information here https://AndroZoo.uni.lu/lists
5https://play.google.com/about/developer-content-policy/
6https://ibotpeaches.github.io/Apktool/

VOLUME 10, 2022 24243



Z. Namrud et al.: Deep-Layer Clustering to Identify Permission Usage Patterns of Android App Categories

Algorithm 1: Feature Extraction
Input : Android Applications, (Apk files & HTML

pages & AndroZoo info ) Dataset D
Output: A CSV file contains encoded feature vectors

for each App in the dataset
1 for (allf ∈ D) do
2 APKfile← Open(f)
3 manifestFile← ApkToolAPKfile
4 Permissionslist ←

Get_Distinct_Permissions(manifestFile)
5 Metadatalist ← Get_Distinct_Metadata(HTMLFile)
6 for (each_permissions ∈ Permissions) do
7 if permissions ∈ Permissionslist then
8 Vector(Permissions)← 1
9 end if
10 else
11 Vector(Permissions)← 0
12 end if
13 end for
14 end for
15 CSV(file)←

Append(CSV(file),Concat(Vector(AndroZoo_info),
Vector(Metadata),Vector(Permission)))

16 return (CSV(file))

the apk files were used as input to reverse-engineer and
obtain the manifest file. To do so, we accessed Apktool,
and then modified AndroVul [28] to extract all the relevant
features, including 103 permissions in the manifest file.
In the meantime, HTML pages were deployed to parse
metadata and extract the desired features, such as category,
rate, date of update, number of downloads, etc. This step
resulted in a dataset that contains around 16K samples in
a CSV file, including 118 features from different sources.
Table 4 explains the dataset contents. Currently, there are
103 features (permissions) for the learning system. Algo-
rithm 1 explains the procedure for extracting and mapping
the features in our dataset. We labeled the permission list
to distinguish between Dangerous, Normal, and Signature
permissions according to the protection level reported in
the Android documentation. We also used different tags to
distinguish between permissions giving access to hardware
and those giving access to user information in order to
investigate the differences in terms of permission use between
different categories of applications.

2) APPLICATIONS CATEGORIES
When a developer releases an application on Google Play
Store, he/she is required to specify the category for the
application’s release. Currently, Google Play Store has
around 46 categories. The distribution is shown in the
dataset in Table 5. Applications are sorted within each
category depending on a range of factors, such as ratings,
reviews, downloads, country of origin, etc. We have done an

TABLE 4. The dataset contents.

exhaustive analysis and found that the number of malwares is
not standardised across all categories. Certain categories such
as education, entertainment, games, and tools are particularly
vulnerable to malware, while others such as Word, comics,
and events are slightly safer from security threats. In our
research, we purposefully look for ways to better leverage this
knowledge.

IV. PROPOSED APPROACH
In this section, we introduce our approach and the method-
ology based on mining permission usage patterns of apps
from different categories. Before delving into the algorithm,
we present a brief background, an overview of our method,
and a description of our experiments for investigating the
identified permission usage patterns. Figure 2 shows the
overview of the procedure of producing inferred pattern.

A. APPROACH OVERVIEW
Our technique begins with a collection of apps and a diverse
range of permission schemes collected from their apk files.
The output is a collection of permission usage patterns, each
of which is a collection of apps arranged into distinct layers
based on their frequency of co-use. We define a pattern of app
co-usage as a collection of applications that are frequently
used in conjunction with each other. A pattern is a collection
of permissions that are dispersed over many usage cohesion
layers. A cohesion layer reflects the frequency of co-use
between apps. Indeed, similar permission usage patterns may
exist across specific apps, and those apps are more typically
classified as belonging to the same category. As a result,
we are looking for an approach that can record co-usage
relationships between permission usage patterns and app
categories at various levels.

1) OUR APPROACH IS AS FOLLOWS
The input dataset is analysed to identify the various permis-
sions that are unique to each app. Every application in the
dataset is assigned a usage vector that contains information
about used permissions. We aggregate the apps that are
most commonly co-used by permissions using the K-means
clustering algorithm based on the SOM deep learning cluster.
Permissions that are not consistently used across apps in a
category are segregated and treated as noisy data.
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TABLE 5. The distribution of Benign & Malware App Categories in the dataset.

FIGURE 2. Overview of the procedure of producing inferred pattern.

B. DEEP-LAYER CLUSTERING
Our study aims to investigate the use of permissions,
especially dangerous ones, in Android applications and their
prediction potential for risk (malware). More specifically,
we seek to understand and identify the weaknesses of
the Android permission model. Although the various tech-
niques of analysis and data mining are certainly applicable,
we build a cluster model that combines the clustering
of SOM and K-means centered on the silhouette index,
which is a cluster validity measure. The model inherits

SOM’s advantage (unsupervised deep learning) and K-means
clustering is applied to the SOM results, addressing one
of the drawbacks (nodes with questionable clustering
boundaries) of SOM. Furthermore, the findings do not
always yield a simple clustering due to the number of
initial nodes and the order of cases. The silhouette index
is used by the model to assess the validity of various
clustering outcomes. As previously mentioned, we suggested
a two-stage strategy clustering approach to improve grouping
accuracy.
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SOM is a technique for mapping high-dimensional data to
a low-dimensional space for easy understanding.

1) Weight values are initialised with random numbers.
2) Every neuron calculates the squared Euclidean distance

between the vector being processed and its weight
vector, which is a measure of the difference between
the input pattern and the neuron’s output.

3) The winning unit is the one that best approximates the
input (the best matching unit). This formula is used for
distance calculation, as follows:

Dist =

√√√√ i=n∑
i=0

(Vi−Wi)2 (1)

where V is the current input vector andW is the node’s
weight vector. We take a set of inputs and measure
the absolute difference between them and the neuron.
Then we square the difference and sum the results. The
winner will be the node that yields the smallest square
root.

4) A topological neighborhood of excitable neurons
appears around the winning node. The topological
neighborhood model looks like this:

Tj, I (x) = exp (−S2j, I (x)/2σ 2) (2)

where Sj, I is the lateral distance between two neurons
(j&I ), I (x) is the winning neuron, and σ is the
neighborhood size. The neighbourhood radius in an
SOMmust reduce over time and must be accomplished
using an exponential formula. All excited neurons
change their weight vectors values to align with the
input patterns. The weight vectors of the winning unit
are shifted closer to the input, andwe change the weight
vectors of the units in its neighbourhood, but to a
smaller degree. The farther the unit is from the best
matching unit, the less it is changed. The weight update
formula used in this work is given below:

1Wj, i = η(t) ∗ Tj, I (x)(t) ∗ (xi− wj, I ) (3)

where η(t) is the learning rate, Tj, I (x)(t) is the
topological neighborhood, t is an epoch, i is neuron, j is
another neuron, and I (x) is best matching unit; Hence,
this denotes the winning neuron.

The K-means algorithm is used in the second stage for
cluster analysis by assigning the correct number of (K) clus-
ters. The goal is to identify the distinct pattern in the data to
find the smallest possible difference between the attributes
in the same classes. We propose integrating the SOM and
K-means approaches into the SOM+K-means architecture,
as shown in Figure 3. K-means is very commonly used in
machine learning. In our study, the K-means algorithm is
used to obtain the best clustering results. The key idea is to
identify K centroids, one for each cluster. The basic K-means
algorithm randomly selects the centroid from the application
list. After that, each item is placed according to its centroid

FIGURE 3. Architecture of the SOM-Kmeans model.

in a dataset. The K-means clustering partitions a dataset by
reducing the total cost function of the squares.

J =
k∑
j=1

x∑
i=1

‖Xi(j) − Cj‖2 (4)

where ‖Xi(j) − Ci‖2 is a chosen distance measure between
an application Xi(j) and the cluster center, and Cj is a
measure of the distance between applications and their cluster
centroids [11]. We separate the applications into K clusters,
so the application will be allocated to the one which is
the smallest distance between K clusters. As a result, our
SOM4+K-means builds the clusters based on improving
overall average value of the silhouette index (the closer
to 1, the better). Thus, we aim to increase the overall
average silhouette. In order to help the SOM+K-means
model succeed in its search, we tuned the K parameter in
the K-means to gain a more qualitative interpretation of the
acquired data. In so doing, we noted that (K = 250) led
to an overall average silhouette of 99.4% and 250 clusters.
Each resulting cluster was saved as an CSV file, including
identified permission usage patterns, apps, and their info from
the main dataset.

C. CLUSTERS ANALYSIS
This process generates clusters of permissions that are
constantly used in conjunction with one another, as well as
several noisy points that are omitted. We extract the use
vectors of each generated cluster using logical disjunction
in a single use vector. Each produced cluster’s vector
contains the name of the cluster, some statistical info,
the permission usage pattern, and the number of apps per
category. Algorithm 2 briefly explains the process of the
produced results that were saved on one CSV file. This file
will be exploited as a starting point to obtain the rest of the
findings.

V. EMPIRICAL STUDY
We describe the findings from our study of the proposed
methodology of SOM+K-means in this section. Our aim
is to determine whether SOM+K-means can recognise
usage patterns of applications that are 1) coherent enough
to provide useful information for the relevant apps, and
2) generalizable for permission usage patterns. To do so,
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Algorithm 2: Clusters Analysis
Input : Clusteri, i = 1, 2, · · · , 250, all Clusters.
Output: CSVfile.

1 for app ∈ Categoryapps do
2 cati = group_category(app)
3 Clusteri =

get_All_info(Clusteri) ⊕ pattern_permissionsClusteri
4 CSV(file)←

Append(CSV(file),Concat(VectorCluster(i) )
5 return (CSV(file))
6 end for

we investigate the correlation between the resulting clusters
and the permission usage patterns. We also investigate
the permission patterns deployed to calculate the potential
malware vector to train Support Vector Machine (SVM) and
validate the enhancement of malicious application detection.
For each experiment in this area, we present the study issues,
the method used to address them, and the resulting findings.

A. ANALYSIS OF COHESION
As an initial experiment, we assessed the cohesion of the
cluster’s quality identified by SOM+K-means for various
matrices, including the silhouette index metric, the Pattern
Usage Cohesion (PUC) metric, and the Category Cohe-
sion (CC) metric. We intend to answer the following research
question:

RQ1. What is the quality of each resulting pattern and the
correlation between its apps?

1) ANALYTICAL TECHNIQUE
Firstly, the similarity between an object and its own cluster
has to be measured. Thus, we utilise a cohesiveness metric,
namely the silhouette index metric. The silhouette value
ranges between [-1,1], with a high value indicating that the
object has a high affinity for its own cluster but a low affinity
for neighbouring clusters. The silhouette index is calculated
as follows:

For data point i ∈ Ci (data point i in the cluster Ci),
where d(i, j) is the distance between data points i and j in
the cluster Ci. We are able to interpret a(i) as an indicator of
how successfully i is assigned to its cluster (The better the
assignment, the lower the value).

a(i) =
1

|Ci| − 1

∑
j∈Ci,i 6=j

d(i, j) (5)

We then define the mean dissimilarity b(i) of point i to
some cluster Ck as the mean of the distance between i to all
points in Ck (where Ck 6= Ci). For each data point i ∈ Ci.

b(i) = mink 6=i
1
|Ck |

∑
j∈Ck

d(i, j) (6)

We now define a silhouette (value) of one data point i

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, if |Ci| > 1 (7)

Thus, the s(i) over all the data in the entire dataset provides a
measure for the data’s clustering accuracy.

Next, we must determine whether the identified patterns
are sufficiently coherent to reveal informative co-usage links
between individual apps. As a result, we use a metric
for cohesiveness called Pattern Usage Cohesion (PUC),
to quantify the cohesion of the detected patterns. PUC
was originally utilised for the cohesive utilisation that
was inspired by Perepletchikov et al. [30]. It assesses the
uniformity of co-use of an ensemble of entities, which in our
context corresponds to a number of applications in the form
of a used permission model. The range of PUC values is [0,1].
The greater the PUC number, the stronger the usage cohesion,
i.e., a usage pattern shows optimal usage cohesion (PUC=1)
if all permission patterns are always utilised together. If p
is a pattern of permission usage, then its PUC is defined as
follows:

PUCp =

∑
pp ratio_used_apps(p, pp)

|perm(p)|
∈ [0, 1] (8)

where pp denotes a permission that contains the pattern p, and
the ratio_used_apps(p, pp) means the ratio of permissions
that include the pattern. p and are used by each app. The
perm(p) defines the set of all permissions that are used in the
pattern p.

The last metric, Category Cohesion (CC), measures the
ratio of apps that belong to the same category in each cluster.
The CC confidence interval is [0,1]. The higher the CC
number, the stronger the CC for each category Cat(i) in the
same cluster. Thus:

CCCi = maxcati
|Apps(Cati,Ci)|
|Apps(Ci)|

(9)

where the ratio of used Apps(Cati,Ci) denotes the number
of app clusters (Ci) that belong to the same category, and
Apps(Ci) denotes the total apps in the cluster (Ci).
The analysis results of the three quality matrices are

presented in the following subsection.

2) RESULTS FOR RQ1
The cohesion of the three quality matrices is calculated based
on the results of overall average silhouette. Table 6 reports
the silhouette cohesionmatrixmeasuring the quality cohesion
for each cluster. From the table, we observe that an average
silhouette score is (98.1%) and standard deviation value
is (0.1). These values are realistic, because our clustering is
based on the silhouette index, which is already high. Further,
these values reflect the co-usage relationships of the apps’
patterns, making them more cohesive.

The PUC outcomes also provide evidence that
SOM+K-means exhibits consistent cohesion with regard
to the identified usage patterns. We found that at least
50% of the applications are used together with high PUC.
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TABLE 6. SOM-Kmeans average cohesiveness and summary of inferred
usage patterns.

A noteworthy number of the apps have 100% PUC. For
example, an average PUC would be 60% and a standard
deviation value (0.2). As well, the category cohesion matrix
carried out the qualitative aspect of the obtained results.
From it, we observe that an average 40% of the clusters
contain apps that belong to the same categories. Indeed, it is
worth mentioning that we observed a trade-off between usage
cohesion of detected patterns and their distributed categories
of apps.

Next, to acquire a better understanding of the correlation
of the findings between cohesion matrices with respect to
the silhouette matrix, we calculated the distance between
the silhouette matrix and each PUC and CC matrix. This
resulted in two new matrices: (distance_Sil_PUC) and
(distance_Sil_CC).

Figure 4 shows the correlation between the cohesion
matrices on each axis. As can be seen, the correlation
ranges from −1 to +1. Values closer to zero mean that the
two cohesion matrices show no linear trend. The closer to
1 the correlation is, the stronger their correlation; in other
words, as one increases, so does the other. Thus, the closer
to 1, the stronger the relationship is. A correlation closer
to −1 indicates similarity, However, rather than both rising,
one variable will drop as the other increases. The diagonals
are all 1 (light), since the squares relate each variable to
themselves. Our motivation here is to study the correlation
between the cohesion matrices in order to see the relation
between them and possibly to discard some of them. Based on
this motivation, we investigated the correlation between the
PUC and CC matrices, and that between (distance_Sil_PUC)
and (distance_Sil_CC). Figure 4a provides the correlation
between the PUC and CC matrices, while Figure 4b
shows the correlation between (distance_Sil_PUC) and (dis-
tance_Sil_CC). It worth noting that both correlations yield
very close results. As well, Figure 5 shows the correlation
between the clusters and cohesion matrices. We observe that
the correlation result is not sufficiently close to be useless
and not far enough away to be independent. Hence, it is
important to consider all cohesion matrices. The presence
of correlation implies the absence of a linear relationship
that demonstrates the quality. From this, we can assume
that cohesion matrices assess inferred patterns from various
perspectives.

B. PRODUCED INFERRED PATTERN
The purpose of this study is to determine the reliability of the
permission usage patterns detected using SOM+K-means.
We seek to answer the following research question:

RQ2. How far does the concept of cohesive matrices go in
obtaining representative permission usage patterns?

FIGURE 4. The correlation between the quality matrices.

1) ANALYTICAL TECHNIQUE
To address our second research question (RQ2), we study
whether the patterns are representative of the permission
usage by applying two selective thresholds to maintain a high
level of usage cohesion.

First Selective Threshold: Based on PUCmatrix, we calcu-
late themedian for the inferred patterns in our case (Median=
0.42). Our motivation for applying this threshold concept is
as follows: We believe that the median for the PUC matrix is
far enough away to include a valuable pattern. In other words,
the median covers the patterns that have sufficient quality and
generate a sufficient number of patterns. Thus, the median
is considered the threshold, and the second cut follows this
criterion. This step resulted in representative permission
usage patterns, such that the representative permission usage
pattern ≥ Median.

Second Selective Threshold: To perform this step for each
cluster, we only consider apps that belong to the same
category and have the highest value. Thus, based on the app
categories (AppsCati ) and Category Cohesion (CC) matrix,
we calculate the number of (AppsCati ) in each cluster (Ci)..
Then we calculate the average for the (AppsCati ) matrix. Our
motivation is to apply the average as the threshold. In so
doing, we observe that the average is not particularly high
when compared with total apps per cluster. This observation

24248 VOLUME 10, 2022



Z. Namrud et al.: Deep-Layer Clustering to Identify Permission Usage Patterns of Android App Categories

FIGURE 5. Overview of the quality matrices cohesion.

leads us to remove some clusters, even though this may badly
impact our study.

As well, the average is not sufficiently small to be not
representative enough; so, based on this motivation, the
average was chosen as the first threshold. According to
this criterion, the first cut was applied, leaving 58 clusters
remaining. After this, each cluster was assigned to the more
representative app category. In other words, we selected the
category with the highest percentage of apps to represent
the cluster’s pattern, as follows. Category pattern = Max
(AppsCati ) ∈ (Ci). In this step, we are logically motivated.

2) RESULTS FOR RQ2
The obtained results are as follows. The analysis study pro-
vides 30 representative permission usage patterns, including
12 different categories. Some of the categories have more
than one pattern. This step resulted in a dataset of inferred
patterns. Figure 6 shows the statistical distribution for the
cohesion matrices and provides additional information about
selective criteria.

C. PATTERN GENERALISATION EVALUATION
In this study, our objective is to evaluate whether the
representative permission usage patterns identified with
SOM+K-means can be generalizable in terms of being able
to identify malicious and benign apps, which would then
validate our work. Our goal is to address the following
research question.

RQ3. To which extent are the discovered permission
usage patterns consistent enough to increase the ability to
distinguish between malware and benign apps?

FIGURE 6. PUC & Category cohesion results of the identified permissions
usage patterns.

1) ANALYTICAL TECHNIQUE
To answer RQ3, we look at whether the discovered patterns
will be sufficiently consistent to aid in the differentiation
of malicious and benign applications, and thus evaluate
their generalizability. We address RQ3 through the following
experiment: The inferred patterns are used as references to
calculate the distance between each pattern’s category Pcati
in the inferred pattern dataset with patterns for the same
category in the main dataset Pmaincati . We called this new set
potential malware (PM). Hence, PMi =mini|Pcati−Pmaincati |.
Our motivation here is to validate representative permission
usage patterns and provide evidence of their quality.

Algorithm 3 explains the procedure to calculate potential
malware (PM ). As input 1, Patternsi is the inferred pattern
category, and Apps refer to all apps in our dataset. After the
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variables are initialized in Line 3, we filter the apps based
on their categories. Then the app permissions were compared
with inferred patterns, as shown in Line 9. We count the
differences and store it in pmi. If the cati has many inferred
patterns, we select min pmi., which means that the pattern
has more similarities than the others. The chosen result is
then stored in PM , as shown in Line 18. Next, Line 19 is
reinitialized to the variables, after which we repeat all the
procedures for all the apps. In the end, each app will be
mapped with integer values in PM , as follows:

If the value in PM equals zero, the app’s pattern is equal
to one of the inferred patterns with respect to its category.
Otherwise, we count the differences between the app’s pattern
and category’s inferred patterns. The value with the smallest
difference is then assigned to the category.

PMapp→

{
0, ifIdenticalPattern
min, otherwise

Algorithm 3: A Potential Malware(PM )
Input : Patternsi, i = 1, 2, · · · , n, where set of

Patterns.
Apps = [app, app2, . . . , appm]

1 pi is a permission.
Output: PM list.

2 PM = [ ]
3 count = 0, min = ∞, pmi = 0
4 for app ∈ Apps do
5 cati = get_category(app) Fgetting all apps for same

category
6 pattern_cati = get_category(cati) Fgetting the

pattern for each category
7 for p ∈ pattern_cati do
8 for perm ∈ app.permissions do
9 if perm /∈ p.permissions then
10 count = count + 1
11 end if
12 end for
13 if min < count then
14 min = count
15 pmi = min
16 end if
17 end for
18 PM .append(pmi)
19 count = 0, min = ∞, pmi = 0 reinitialize the

variables
20 end for

Study 1: We labelled our dataset based on vt_detection
features as benign and malware by applying the Derbin [4]
standard, which considers apps with 0& 1 flag as benign and
apps with ≥ 2 as malware, as shown below.

App→

{
Benign, ifvt_detection < 2
Malware, ifvt_detection ≥ 2

Next, the machine learning classifier Support Vector
Machine (SVM) was selected, as it has been successfully
used in many research-related works. Therefore, in this study,
the SVM method will be used to classify and distinguish
between benign and malware apps. Also, we aim to validate
our inferred patterns in this study. The SVMmodel is applied
as follows:

1) SVM model were fed with the permissions as features.
2) The cross validation is applied 80% in the training

phase and 20% in the testing phase.
3) The hyper parameters C& Gamma are tuned in the

training phase to fit our data.
4) The model is tested using 20% cross-validation.
Study 2: In this study, we addMP to the dataset as a feature

and deploy the same hyper parameters C & Gamma from
Study 1. Thus, we apply the same model with respect to C&
Gamma hyper parameters in order to observe the results under
the same conditions.

To assess our model, we used three performance param-
eters: Accuracy, F1, and AUC. These parameters are fre-
quently used in machine learning to evaluate performance
models.

To assess our model, we used three performance param-
eters: Accuracy, F1, and AUC. These parameters are
well-known in machine learning to evaluate the performance
models.

1) This denotes the percentage of correctly classified
apps: (TP+ TN )/(TP+ TN + FP+ FN ) [7].

2) F1-Measure: This indicates a performance indica-
tor that takes into account both the precision and
recall of the obtained classification: 2 ∗ (Recall ∗
Precision)/(Recall + Precision) [7].

3) Area under ROCCurve (AUC): This is a measure of the
predictive power of the classifier that basically informs
us how much the model is capable of distinguishing
between classes (benign apps vs malware).

2) RESULTS FOR RQ3
In Study 2, the training phase results were significantly
higher than those in the testing phase, causing overfitting
in the model. Thus, we solve the overfitting using the
random oversampling technique. Random oversampling is
the simplest strategy for balancing a dataset’s imbalanced
nature. It balances out the data by duplicating minority class
samples. The overfitting was solved and the performance in
the training phase was almost the same as that in the testing
phase.

The obtained results are as follows.
Table 7 summarizes the results of the SVM classifier both

without using the MP as a feature and including the MP as
a feature. We observe that there are improvements in terms
of distinguishing between malware and benign apps when
we added the potential malware feature. Hence, adding the
detected patterns is more informative and creates a notable
change in the performance of the model. More specifically,
the results from the experiment confirm the above-mentioned

24250 VOLUME 10, 2022



Z. Namrud et al.: Deep-Layer Clustering to Identify Permission Usage Patterns of Android App Categories

TABLE 7. Comparison between two models (with and without MP).

findings. We believe that our approach can be achieved and
will succeed at improving Android security for developers
and users. The adaptation of our variant SOM+K-means
method is one of the most important contributions of this
work for mining permission usage patterns.

VI. RELATED WORK
A. RESEARCH RELATED TO DATASET GENERATION
Numerous repositories have been proposed over the years
for the study of mobile apps. Recently, the AndroZoo7

dataset was released, which includes over 13 million Android
apps from Google Play, other stores, and app repositories.
The aim of AndroZoo is to build robust app collections
for software engineering research. F-Droid2 is a repository
of free open-source Android apps that have been used
in an impressive number of studies. Even more recently,
Geiger et al. [14] made available a graph-based database
with information (e.g., metadata and commit/code history)
on 8,431 open-source Android apps located on GitHub
and the Google Play Store. Also notable, although slightly
older, is Krutz et al.’s study [22]], with a public dataset
centered on the lifecycle of 1,179Android apps fromF-Droid.
Arp et al. [4] established the well-known DREBIN dataset,
which is comprised of 131,611 applications of benign and
malicious software. Samples were obtained in the August
2010 to October 2012 time-frame. To find out whether an
application is malicious or benign, each sample was sent to
the VirusTotal service to examine the output of ten common
antivirus scanners (AntiVir, AVG, BitDefender, ClamAV,
ESET, FSecure, Kaspersky, McAfee, Panda, and Sophos).
Any application that was scanned by at least two scanners
was detected as malicious.

Li et al. [24] built a dataset of 1,497 apps pairs, where one
application piggybacks another that may contain malicious
payloads. Their work was based on AndroZoo. Using
VirusTotal’s results, they flagged the relevant malware apps.
F. Wei et al. [34] prepared a dataset containing 24,650 sam-
ples dating from 2010 to 2016 that labeled Android malware.
The samples were collected from several sources, including
Google Play, VirusShare, and security companies of third-
parties. VirusTotal was used to flag their apps. Zhou and
Jiang [40] managed to collect around 1,200 malware samples
in August 2010 and manually analyzed the malware samples.
Wang H et al.built a dataset of 9,133 malware samples and
set a threshold of 20 to indicate suspicious applications based
on the number of VirusTotal8 engines recorded.

7https://androzoo.uni.lu/
8https://www.virustotal.com/gui/

1) SIZE AND COVERAGE
Apart from AMD dataset [34], the great majority of datasets
currently available are limited and obsolete. For example,
MalGenome [40] and Drebin [4] are two of the most popular
datasets. Their production was done five years ago, and only
a limited number of samples are included. The literature also
reports that the Drebin dataset has a replication issue [18].
The AMD dataset, which contains a large number of malware
samples, was developed in 2016. It includes several samples
that overlap with the MalGenome and Drebin projects, since
it gathered samples from a broad range of sources, including
previously collected malware datasets.

2) METHODS USED TO FLAG THE GROUND TRUTH
The rest of the three datasets heavily depend on VirusTotal
for accuracy in labelling the ground truth. It is worth noting
that various thresholds are utilized on VirusTotal to label
malware samples. For example, Drebin was developed based
on the findings of ten well-known engines on VirusTotal.
At least two of the ten engines found one type of malicious
activity in the original sample and flagged it as a malware.
As a threshold, one engine was employed in the Piggybacking
dataset, while AMD made use of 28 different engines
(which, at that time, represented over 50% of the engines).
Furthermore, despite the fact that VirusTotal is commonly
used in academia and industry, it contains very little
exclusivity.

3) APP METADATA
After looking into the issue, we assert that, to the best
of our knowledge, no other studies have focused on
metadata (e.g., app description, app ratings, etc.) relevant
to malware in their samples. Furthermore, because previous
works [15], [27] have suggested incorporating app metadata
for malicious/anomaly detection, we believe it is critical to
build a malware dataset containing all of the app metadata to
enable malware detection evaluation.

B. PERMISSIONS BASED STUDY
The permission system has attracted considerable research
interest. Several studies have been conducted recently to
investigate how permissions are used in Android apps
and whether or not they can help identify malware apps.
In [10], Felt et al.conducted a survey of 100 paid apps and
856 free apps from the Android Market. They identified
the most requested permissions and observed that both free
and paid apps make requests for at least one dangerous
permission. Additionally, they created a tool that is able
to detect whether an app requests more permissions than
necessary, noting that one-third of the examined applications
were over-privileged. In [5], Barrera et al. conducted a
survey of the 1,100 most popular applications downloaded
in 2009. They discovered that only a small portion of the
specified permissions are actively used by developers. In [35],
Wei et al. investigated the evolution of permissions in the
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Android ecosystem, finding that dangerous permissions often
outnumber other permission types in all Android.Meanwhile,
in [23], Krutz et al. also carried out a study on app per-
missions. They discovered that more experienced developers
are more likely to make permission-based modifications, and
that permissions are usually introduced earlier in an app’s
lifetime.

In [12], the authors selected 188,389 applications from the
official Android market and studied the different requested
permission combinations made by them. The authors iden-
tified more than 30 common patterns of permission requests
and found that low-reputation applications often diverge from
the permission request pattern observed in high-reputation
applications.

Other research has focused on defining risk signal as a
way to identify malware applications. In [32], Sarma et al.
proposed a set of risk signals by analyzing the permission
patterns in apps taken from the Android Market within a
dataset of 121 malicious apps. in [41], Zhou et al. developed
a system for detecting malicious applications in official and
alternative Android markets.

In [33], the authors performed an empirical research of
574 open-source Android app GitHub repositories. They
examined the incidence of four distinct sorts of permission-
related concerns throughout the duration of the apps’
lifetimes. Their findings indicate that permission-related
difficulties are a common occurrence in Android applica-
tions. In [2], authors have conducted for the last five years’
versions of the top Android apps to examine the Android
platform’s permissions mechanism. Additionally, the paper
addresses Android’s user-permissions model, which defines
how applications manage sensitive data and resources.
In [37], the authors introducedMPDroid, It is a new technique
that combines static analysis and collaborative filtering to
determine the minimum permissions required for an Android
application based on its description and API usage. MPDroid
begins by utilising collaborative filtering to determine the
app’s basic minimal permissions. Then, using static analysis,
the final minimal permissions required by an app are
determined. Finally, it assesses the danger of over privilege
by analysing the app’s excess privileges, i.e., the rights sought
by the programme that are not essential. Experiments are
run on 16,343 popular Google Play applications. In [36], the
authors manually annotated 2,254 app descriptions from the
Google Play Store to include 26 permissions classified into
ten categories. They used two natural language processing
approaches to enhance our annotated dataset in order to
acquire additional permission semantics. In [3], the authors
proposed a multi-criteria decision-making-based (MCDM)
mobile malware detection system that evaluated Android
mobile applications using a risk-based fuzzy analytical
hierarchy process (AHP) method. The study focuses on
static analysis, which employs permission-based features to
evaluate the approach used by mobile malware detection
systems. Risk analysis is used to raise the mobile user’s
awareness when accepting any permission request that carries

a high risk level. 10,000 samples were collected from Drebin
and AndroZoo for the assessment. The findings indicate a
high rate of accuracy of 90.54%. In [19], the authors devised
a method for identifying Android harmful applications called
fine-grained dangerous permission (FDP), which collects
characteristics that more accurately describe the difference
between malicious and benign applications. Among these
features, for the first time, a fine-grained feature for harmful
permissions issued to components is offered. We examine
1700 benign and 1600 malicious apps and show that FDP has
a 94.5% TP rate.

Our approach is similar to [2], [33], [36], [37] in terms
of permission-related concerns, we dissimilar in terms of
the dataset (including the size, features, and the number
of permissions), using machine learning, and considering
the categories’apps in their studies. In our present work,
we expand on the existing research. We also investigate
similar properties and propose new ones, which we define as
application sustainability and malware risk.

C. CATEGORY BASED STUDY
Apps in Android app stores are classified into vari-
ous categories, such as Health&Fitness, News&Magazine,
Books&References,Music&Audio, etc. Each category has its
own set of functionalities, which means that applications in
the same category have similar functionalities. Permissions
are one of these features. Several state-of-the-art studies
make a link between the apps’ requested permissions and the
features that are standard in its category. Some researchers
proposed using category-based machine learning classifiers
to improve the efficiency of classification models in identify-
ing malicious applications within a certain category.

In [16], as a feature, the authors used the category of
applications named by Google Play. Their results reveal that
by using machine learning technology to detect malicious
malware, they used the applications’ permissions at app-
level. Further, they found that adding the application category
feature improves detection efficiency and accuracy. In [26],
the target consists of both static and dynamic analyses. The
static analysis is focused on source code, user permissions
and signatures, while the dynamic analysis is based on the
behavior of applications in running time. A machine learning
algorithm known as OKNN is then used to determine which
category an application belongs to. The size of the dataset
in that study is 3,600 apps. In [39] Yuan et al. presented
an automated method for categorising Android apps. They
conducted experiments with 13,005 applications composed
of 18 categories with Naive Bayes. More specifically, in their
approach, the malware application publisher can choose an
application category at random in order to avoid detection by
the application market. As a consequence, a method that can
automatically categorize multiple types of apps can be useful
for organizing the Android Market as well as identifying
malicious applications. Studies show that the addition of
an application category will greatly increase the efficiency
and accuracy of the detection when using machine leaning
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TABLE 8. Comparison between various state-of-art solutions.

technology to detect malicious apps [16]. Thus, application
category is important for Android malware detection. Several
works involved category-based investigations, but for differ-
ent purposes. The onemost related to our workwas conducted
by Sarma et al. [32]. Thus, application category is important
for Android malware detection.

Several works involved category-based investigations, but
for different purposes. The one most related to our work
was conducted by Sarma et al. [32]. Their approach is most
similar to ours, in that it is also focused on permission use
through categories. However, it has a different purpose, with
Sarma et al. [32] focusing on the similarities between app
permission usage and their categories to distinguish between
malware and benign entities. We, on the other hand, are
more concerned with the overall app permission usage and
in finding requested permission patterns among different
categories. Moreover, our work takes into account a different
level of granularity than previous works whose approaches
infer malware app usage permissions at the category level.

Nonetheless, to improveAndroid security, Sarma et al. [32]
investigated the feasibility of using the permissions that an
app requires, the category of the app, and the permissions that
other apps of the same category require. They created their
158,062-app dataset in February 2011. The malware dataset
consists of 121 apps obtained from the Contagio Malware
Dump. Some related work used category as a feature [16]
in their training model to improve performance, whereas in
our case, we are more interested in exploring possible use
permissions patterns across whole categories of applications.
Previous approaches assumed that the necessary permissions
were selected by the developer in advance and that he/she
chooses an application category at random in order to avoid
detection by the application market [39]. Without using this
assumption, our study will meaningfully supplement other
research. Indeed, our approach may be used as a preliminary
step to infer sets of permissions that are consistently used
together, such that existing approaches could be used to learn
how to improve the ability to distinguish between benign
and malware within the patterns’ permissions and category
apps. Our novel findings focus on producing usage patterns
of permissions for various categories and on providing
in-depth analysis of pattern cohesion and the impact of
patterns on malware detection. Table 8 shows the comparison

between various state-of-art solutions that study the Android
permissions system in different purposes.

VII. CONCLUSION
With the exponential growth in the number of smartphones
being used in services such as banks, hospitals, and
m-commerce, smartphone security has become a major
concern. The use of unofficial sources to upload applications
is likewise concerning. Malicious apps can be used to steal
passwords, leak information, and build windows into phones.
Existing anti-virus software relies on static signatures that
must be modified on a regular basis and are incapable
of detecting zero-day malware. The Android permission
scheme is the core Android security framework that governs
application task execution. Despite recent advancements in
research that have provided a variety of approaches and
detection methods for locating malware applications, the
available literature lacks a comprehensive examination of
the topic. We addressed this deficiency in this work by
investigating all the larger issues, resulting in two main
achievements. 1) We created a huge dataset of malware
and benign apps in a systematic and automated manner and
made it accessible to the community. 2) We conducted a
preliminary analytical analysis of various forms of Android
permissions and their potential associations with malicious
intents, as well as users’ impressions of the nature of the
applications that use them.

Our research examined 118 separate features, 103 of
which are permissions, on approximately 16K apps. Further,
we proposed tentative findings on the ties between the use
of Android permissions tagged as unsafe by the permission
scheme. Additionally, we introduced a model that combines
a self-organizing map (SOM) and K-means clustering.
Based on a clustering validity test, we built the resultant
SOM+K-means using permissions as features. Our overall
achieved purpose was to describe pictures or patterns of how
applications in a particular category behave by optimizing our
model.
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