
0733-8724 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JLT.2022.3160379, Journal of
Lightwave Technology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

1 

  

Abstract— Machine learning (ML) is more and more used to 

address the challenges of managing the physical layer of 

increasingly heterogeneous and complex optical networks. In this 

tutorial, we illustrate how simple and more sophisticated 

machine learning methods can be used in lightpath quality of 

transmission (QoT) estimation and forecast tasks. We also 

discuss data processing strategies with the aim to determine 

relevant features to feed the ML classifiers and predictors. We 

then introduce a preliminary study on the application of transfer 

learning to try to overcome the scarcity of field data.   

 
Index Terms— Optical fiber communication, machine learning 

(ML), artificial neural networks, quality of transmission, support 

vector machine, performance prediction, forecasting, recurrent 

neural networks, long short-term memory, gated recurrent unit, 

transfer learning 

 

I. INTRODUCTION 

HE continuous increase in Internet traffic in recent years 

has been greatly due to an influx of new technologies and 

applications (5G, video, cloud computing, etc.). Telecom 

operators are coping with this by deploying wavelength-

division multiplexing (WDM) optical transmission systems 

that have ever-greater speeds, capacity, and flexibility. 

However, this increase in traffic accentuates the impact of 

performance degradation and network failures and with it, the 

need for flexible, autonomous network management [1]. To 

this effect, DSP-based coherent transceivers provide 

performance monitoring data and leverage machine learning 

(ML) for quality of transmission (QoT) estimation of 

lightpaths in complex and heterogeneous optical networks. 

ML is a branch of artificial intelligence that allows a system 

to learn by itself by using monitored historical data, how it can 

work to solve a specific problem. ML has recently been 

explored for applications at both the physical and network 

layer of optical networks. In this paper, we present an 

overview on ML applications in optical communications, with 

a focus on lightpath QoT estimation and lightpath QoT 

forecast. The main question here is to be able to identify 

among all the ML techniques the one that is most suitable for 

estimating and forecasting lightpath QoT.  
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The paper is organized as follows. Section II provides the 

main motivations behind the use of ML in optical 

communications. Section III presents an overview of some 

preliminary ML concepts, mainly those used in the following 

sections. It also summarizes the applications of ML in optical 

communications. Sections IV and V describe the ML 

applications for lightpath QoT estimation and lightpath QoT 

forecasting, respectively. Section VI summarizes the 

conclusions of this tutorial and highlights possible future work 

using ML for QoT estimation and prediction in optical 

communications.  

II. COGNITIVE OPTICAL NETWORKING 

With the emergence of bandwidth-hungry applications, such 

as 5G and Internet of Things (IoT), optical networks need to 

be more dynamic and autonomous. Current core networks are 

composed of high-capacity optical links (up to 80 x 100 Gb/s) 

between nodes equipped with a wavelength selective switch 

(WSS)-based reconfigurable optical add-drop multiplexers 

(ROADMs) for channel add-drop and routing. This 

wavelength-division multiplexing technique brings about a 

flexible structure offering multiple lightpath configurations to 

meet the ever-increasing demand for capacity. In addition, 

these lightpath configurations include different modulation 

formats, symbol rates, coding schemes, etc. However, despite 

this, network agility is still not fully exploited due to the 

complexity of tasks such as lightpath provisioning and 

rerouting, network reconfiguration and failure management, in 

the absence of fast and accurate tools in the network 

management system. 

In this context, cognition has been introduced in optical 

networks as a way to efficiently control resources while 

achieving signal quality requirements [2]. As shown in Fig. 1, 

a cognitive optical network can be seen as a software-defined 

network (SDN) in which the network nodes are programmed 

by an SDN controller working in conjunction with a cognitive 

decision process. The cognitive processes use models fed by 

monitored performance on the network to make future 

decisions in an automated fashion and to act on the network 

through software adaptable elements. Coherent transceivers, 

can be considered as powerful performance monitors. Their 

integrated performance monitoring capability allows several 

system and link parameters to be dynamically monitored and 

leveraged by the control plane, in complement to the 

conventional power monitors. Coherent transceivers are also
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powerful software-defined optical devices. With their digital 

signal processing (DSP) capability, they can compensate for 

propagation effects electronically. The most recent flexible 

transceivers based on multidimensional formats and 

constellation shaping can also modify or adapt channel 

bandwidth and bit rate, making them efficient software 

adaptable elements, together with ROADMs, for enabling 

cognitive optical networking.  

III. MACHINE LEARNING IN OPTICAL COMMUNICATIONS 

ML is resulting from contributions in several research areas: 

computer sciences, mathematics, economics, neurosciences, 

control theory, etc. It has recently become an enabler to build 

cognitive optical networks, thanks to increased data 

availability and computing capabilities. ML is grouped into 

three families of ML techniques:  

• Supervised learning: all database information, including 

labels and features, is known. These techniques are used 

for classification problems, such as detection tasks, or for 

regression problems such as risk assessment or forecasting 

tasks. Common supervised learning techniques are K-

nearest neighbors (KNN), random forest (RF), support 

vector machine (SVM), neural networks (NN) and case-

based reasoning (CBR).  

• Unsupervised learning: in this group, the labels are not 

defined. It is used primarily for clustering, density 

estimation and dimensionality reduction. The areas of 

application include medical tasks, pattern recognition, 

facial recognition, text mining etc. The most widely used 

algorithms are k-mean partitioning, expectation 

maximization (EM), principal component analysis (PCA). 

• Reinforcement learning (RL): it is a reward-based 

approach. In this group, an agent learns to make decisions 

in a complex environment through rewards. One common 

algorithm used in RL is Q-learning. 

Machine learning in optical communications has become a 

hot research topic in the last years. A good overview of the 

applications of ML algorithms in the physical and network 

layers can be found in [3]. In the physical layer, the ML use 

cases fall into 5 categories [3]: 

• Lightpath QoT estimation: this consists of classifying the 

QoT of a lightpath before its establishment in the network, 

using supervised ML trained with synthetic or field data, as 

a potentially faster method (compared to analytical 

models) to assess the bit error rate (BER), signal-to-noise 

ratio (SNR) and optical signal-to-noise ratio (OSNR). This 

also consists of forecasting the QoT of deployed lightpaths 

using supervised learning methods trained with historical 

QoT data, for proactive maintenance and channel margin 

optimization purposes. 

• Optical amplifier control or the control of channel power 

excursions in optical line systems using supervised, 

unsupervised and reinforcement learning methods. 

• Modulation format recognition in coherent digital receivers 

using supervised and unsupervised learning. 

• Nonlinearity mitigation in coherent optical systems using 

supervised and unsupervised methods. 

• Optical performance monitoring which aims at estimating 

transmission system parameters from a mapping between 

the lightpath parameters and the properties of the received 

signal using supervised ML methods.  

In the network layer, ML use cases can be divided into 4 

categories [3]: 

• Traffic prediction and virtual topology redesign tasks to 

allow proactive traffic rerouting and network configuration 

using supervised and unsupervised learning algorithms. 

• Failure management: this includes failure detection, failure 

localization and failure root cause methods based on 

supervised learning to determine appropriate restoration, 

traffic reconfiguration or field interventions.  

• Traffic flow classification for efficient resource allocation 

and traffic priority management using supervised and 

unsupervised learning methods. 

• Path computation using supervised and unsupervised 

learning fed with service demand and network status 

information for selecting appropriate paths and available 

network resources that meet the desired quality of service 

(QoS) without affecting existing services provisioned in 

the network. 

 
Fig. 1 Cognitive optical network. 

EDFA: Erbium-Doped Fiber Amplifier; ROADM: Reconfigurable Optical Add-Drop Multiplexer; WSS: Wavelength Selective Switch 
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In this paper, we focus on signal quality estimation tasks 

which deal with QoT estimation of unestablished lightpaths 

and short-term QoT forecast of established lightpaths. These 

two specific tasks - which aim at fast connection provisioning 

and proactive network management, respectively - can be 

handled by supervised learning approaches. 

First, let’s consider QoT estimation before lightpath 

establishment. Lightpath QoT can be defined by different 

metrics, such as the BER, SNR and OSNR). The accurate 

estimation of lightpath QoT involves a precise assessment of 

the linear and nonlinear interference (NLI) noise 

contributions. When using analytical models, these metrics are 

calculated as a function of system and link parameters. 

Analytical models achieved this with methods such as the 

split-step Fourier method or the Gaussian noise with the 

assumption that the parameters used are accurate.  

In the additive white Gaussian noise (AWGN) model 

proposed in [4-6], the nonlinear OSNR is calculated from the 

channel power, the amplified spontaneous emission (ASE) 

noise power and the nonlinear interference (NLI) noise power. 

These ASE and NLI noise power depend on variables that 

describe the status of particular lightpaths and require 

computing steps before acquiring the final QoT metric of 

interest. Equations (1), (2) and (3), as detailed in [4-6], show 

how these parameters are used to estimate the nonlinear 

OSNR. 

 

𝑂𝑆𝑁𝑅𝑁𝐿 =  𝑃𝑇𝑋 (𝑃𝐴𝑆𝐸 + 𝑃𝑁𝐿𝐼)⁄   (1) 

𝑃𝐴𝑆𝐸 =  𝑁𝑆𝐹(𝐴𝑆 − 1)ℎ𝜇𝐵𝑁  (2) 

𝑃𝑁𝐿𝐼 = 8 𝑁𝑆𝛾2𝐿𝑒𝑓𝑓𝑃𝑇𝑋
3 𝐵𝑁 log(𝜋2𝛽𝐿𝑒𝑓𝑓𝑁𝑐ℎ

2 𝑅𝑆
2) (27𝜋𝛽𝑅𝑆

3)⁄  (3) 

where PTX is the average channel power, Nch is the number 

of channels, RS is the channel baud rate and µ is the channel 

frequency. These are the WDM channel’s parameters. The 

noise figure F and the gain AS are the Erbium-doped fiber 

(EDFA) amplifier parameters. The noise bandwidth BN is 

generally assumed to be 0.1 nm (12.5 GHz at 1550 nm). The 

link parameters are the effective length Leff, the number of 

spans NS, as well as the dispersion coefficient ß and 

nonlinearity coefficient γ of the optical fiber.  

The basic AWGN analytical model, or the generalized 

OSNR (GOSNR) model proposed later on, can be used to 

estimate the QoT of candidate lightpaths [4-9]. These 

analytical formulations, well known for their applications in 

the GNPy tool proposed in [10] and in the data generation 

algorithm implemented in the cognitive QoT tool described in 

[11], can provide accurate QoT estimations in simple 

deployment scenarios where all the channel, system and link 

parameters are known. The problem becomes more complex 

in production networks which are very heterogenous (fiber 

types, transmission systems, outside plants, etc.). Equipment 

inventory and network topology data are often incomplete or 

not up-to-date. Elastic networks carrying channels of different 

formats and bandwidth, and open line (or disaggregated) 

systems composed of components from different vendors 

make things even more complex. In other words, 

heterogeneity and flexibility in the physical layer of optical 

networks make it a challenge to perform the analytical 

computation of the QoT of lightpaths. In such a context, can 

ML be used in lightpath QoT estimation and provide guidance 

for complex routing and resource allocation tasks in 

heterogeneous optical networks? Section IV deals with this 

problem. 

 Second, let’s consider QoT forecast of deployed lightpaths. 

Predicting lightpath QoT can be a simple task in stable 

environments where system and link parameters remain 

constant over time. However, system performance can 

fluctuate over time due to temperature effects, aging or 

malfunction. Optical fiber is not only an excellent 

transmission medium but also a powerful distributed sensing 

device whose transmission characteristics can be affected by 

environmental conditions (temperature and wind effects, cable 

handling and bending effects, vibrations, etc.). In such 

dynamic and complex environments that cannot be handled by 

analytical models, predicting lightpath QoT can become a 

much more challenging task where ML can potentially be 

useful. In this case, the objective of QoT forecasting is to 

detect performance degradations early enough to trigger 

changes in the parameters (modulation format, symbol rate, 

optical power, etc.) of programmable transceivers, proactive 

maintenance or network reconfiguration before transmission 

errors occur. Section V deals with this problem. 

IV. MACHINE LEARNING FOR LIGHTPATH QOT ESTIMATION 

ML-based QoT estimation of candidate lightpaths prior to 

their establishment can help overcome the heavy computation 

time and parameter uncertainty in analytical models. ML-

based QoT estimation models can learn from labeled data and 

predict the QoT of unestablished lightpaths. 

Fig. 2 presents a cognitive lightpath QoT estimation tool 

using four classifiers based on K-nearest neighbors (KNN), 

support vector machine (SVM), random forest (RF) and neural 

networks (NN) techniques, as proposed in [11-12]. KNN and 

RF classifiers use a majority vote concept to determine the 

class labels of new records. SVM aims at maximizing the 

distance between hyperplane and support vectors while NN 

use interconnected processing units (neurons) for 

classification.  

Fig. 2 shows the lightpath classification process. Classifiers 

based on supervised learning require labeled data (i.e., records 

of both “good QoT” and “poor QoT” types) for training. It is 

very difficult to get poor QoT data in a production network. 

Therefore, synthetic or lab data must be used to train the QoT 

estimators. In [11-12], synthetic data were generated with a 

MATLAB tool using the AWGN model, which estimates the 

BER for combinations of parameters describing different 

lightpaths of different optical link configurations.  

The constructed knowledge base (KB) was then split into 

training and test datasets. Then four classifiers were trained 

with the training data: 

• KNN classifier determines class labels through majority 

vote among K nearest neighbors. It is considered a “lazy  
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learner” because it requires that most computation be done 

during the testing to determine the class of the new record. 

This can be expensive for large datasets. The training 

dataset is split into 5 subsets (folds) for training and 

validation (5-fold cross validation). The model is 

iteratively fitted 5 times, each time training the data on 4 of 

the folds and evaluating on the 5th fold (called the 

validation data). 

• SVM aims at maximizing the distance between 

hyperplane and support vectors. In the SVM model, 

kernel functions are used as parameters and help to 

determine the shape of the hyperplane and decision 

boundary. In nonlinear SVM, a Gaussian radial basis 

function kernel is used, the parameters C and gamma are 

computed to optimize the classification model: 

o C makes it possible to control the influence of each 

support vector;  

o Gamma is linked to the Gaussian kernel whereby a 

large value leads to high bias and low variance, and 

vice-versa. 

• RF uses majority voting amongst random decision forests 

to classify new records. Among others, the 

hyperparameters that can be tuned are the number of 

decision trees in the forest (estimators), which affects the 

model variance for more generalized results, but also the 

training time. The maximum number of leaf nodes which 

helps restricts the growth of the trees and the maximum 

depth of individual trees which defines the longest path 

between the root node and the leaf node. 

• NN is a sophisticated classifier which uses interconnected 

processing units (neurons) for classification. The 

hyperparameters considered in this technique are the 

optimizer, the activation and the loss functions, the 

learning rate, the number and size of hidden layers, the 

number of neurons, etc.  

The methodology used to build the models with the four 

aforementioned techniques consisted in a training and 

optimization step. For the KNN model, a 5-fold cross-

validation method was used with the Euclidean distance to 

determine the best K nearest neighbors necessary for the 

classification of new lightpaths. The parameters C and gamma 

were computed using 5-fold cross-validation, as in the KNN 

training; and a Gaussian radial basis function kernel was used 

to consider the nonlinearity aspect of the SVM classifier when 

no linear classification of the data is possible. For the RF 

algorithm, the number of estimators was the parameter used to 

optimize the built model. For the NN, the number of epochs, 

the learning rate as well as the number of hidden layers and 

neurons were the hyperparameters tuned to optimize the 

model. 

The classification accuracy was used to assess the 

classifiers’ performance. Also, confusion matrices provided a 

good view of classification errors and made it possible to 

compute other metrics useful when working with imbalanced 

datasets.  

 

A. QoT Estimation: Do We Need Machine Learning? 

Analytical QoT estimators are computationally heavy or 

necessitate a margin to account for parameter uncertainty 

when used in production networks.  

ML predictive models are used to make predictions on 

unseen data by learning the mapping function between the 

training data and the analytically estimated labels. In other 

words, ML QoT classifiers use specific features to predict 

classes of candidate lightpaths before their establishment, 

while providing better estimation performance than analytical 

QoT estimators, according to experimental results [11]. 

 

B. QoT Estimation: Do We Need Neural Networks? 

Several ML-based QoT estimators have been proposed in 

the literature [11-19]. Good overviews of the most recent ML 

models and tools developed for lightpath QoT estimation can 

be found in [20-22]. The methodology consists in predicting 

whether the QoT of the candidate lightpath is above or below 

a predefined threshold. Artificial neural networks (ANN) are 

powerful information processing models which provide very 

efficient classification and regression models once they are 

properly configured and trained. However, building NN  

 

Fig. 2  Cognitive lightpath QoT estimation tool. 
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TABLE I.  PERFORMANCE EVALUATION OF SIMPLE 

LIGHTPATH QOT CLASSIFIERS BASED ON KNN, RF AND 

SVM [11] 

Performance metric KNN RF SVM 

Classification accuracy (%) 81.8 96.3 99.2 

Error rate (%) 18.3 3.7 0.9 

False positives (%) 16.1 2.1 0.4 

Computation time (s) 0.40 0.83 1.26 

 

models can be challenging. The objective in this section is to 

determine whether it is worth using complex NN for QoT 

estimation tasks and whether simpler models can perform 

better than NN. 

Simple QoT estimators based on KNN, RF and SVM were 

proposed in [11]. These models were built using a synthetic 

KB of 25,600 instances generated by varying 6 parameters in 

the Gaussian Noise model: the total link length, the span 

length, the number of spans, the channel input power, the 

modulation format, and the data rate [11].    

A comparative analysis of the best performing QoT 

estimator in [11], the SVM model, and a NN-based model was 

presented in [12]. The SVM and NN models were trained by 

using a synthetic KB of 38,400 instances generated by 

considering a wider range of parameter values in the Gaussian 

model.  

The performance results obtained in [11-12] are 

summarized in TABLE I and TABLE II. The QoT estimators 

were evaluated using classification accuracy, error rate and the 

computation time. The classification accuracy is used to define 

the proportion of the total number of predictions that were 

correct while the error rate represents the proportion of the 

total number of incorrect predictions. Additionally, the false 

positive rate was computed to assess the performance of the 

classifiers by determining the incorrectly identified positive 

instances. In TABLE I, we can see that for the simple 

classifiers the best performance was achieved with SVM.  

TABLE II shows that the NN model performed slightly 

better than SVM in terms of classification accuracy. The 

accuracy of the QoT estimator of the ANN model is 99.6% 

with a recall of 98.9% and an F1 score of 99.1%. Note that 

these last two metrics determine the correctly predicted classes 

in the case of unequal class distribution. The NN classifier 

performed better than the SVM with a false positive rate of 

0.2%, compared to 0.4% for SVM, and the shortest computing 

time (12 times faster than SVM). The models were executed 

on a system with an Intel Core i5-8600K 3.6 GHz CPU, 16 

GB RAM and a GTX 970 GPU. 

Feature engineering aims at evaluating the impact of 

different features on the classification accuracy in the hope of 

reducing the feature set to only those that are the most 

important. In the study presented in [12], this concept was 

used for building NN and SVM QoT estimators with two 

different feature sets. Interestingly, it was found that while the 

two models performed comparably with a set of 6 features, the 

SVM classifier performed better than the NN classifier with a 

reduced feature set.  

TABLE II.  PERFORMANCE COMPARISON OF SVM AND NN 

QOT ESTIMATORS [12] 

Performance metric SVM NN 

Classification accuracy (%) 99.4 99.6 

Error rate (%) 0.6 0.4 

False positives (%) 0.4 0.2 

Computation time (ms) 3.45 0.28 

 

These results justify the need to deepen the experiments on 

the application of NN in QoT estimation to possibly benefit 

from their reputed ability as universal function approximators. 

 

C. Neural Networks For Lightpath QoT Estimation 

Several recent studies show a tendency towards favorable 

results for ANN based estimators [13-19]. 

In [13], the authors considered four ML models in both 

classification and regression by using a knowledge base built 

based on four reference network topologies and different 

features: KNN, logistic regression, SVM and ANN. Their 

ANN-based QoT estimator presented good generalization and 

a prediction accuracy of almost 99.9% with 0.04% false 

positives for residual channel margin prediction. In [14], an 

ANN model using five features was implemented for lightpath 

QoT prediction. The OSNR prediction model achieved a mean 

relative error (MRE) close to 1% with the full set of features. 

The authors in [15] used a transfer learning approach with an 

ANN-based QoT predictor. The results showed good 

performance for a database size as small as 20 records. The 

authors in [16] presented true OSNR vs. predicted OSNR, 

with points appearing along the diagonal of the graph. Such a 

behavior describes the good accuracy of the ANN-based QoT 

estimator. Moreover, in [17] a deep graph convolutional 

neural network (DGCNN) QoT estimator could predict the bit 

error rate with accuracies ranging between 92% and 97%. In 

[18], it was possible for an ANN-based model to predict the 

SNR with a standard deviation of the SNR estimation error of 

0.13 dB as opposed to 0.2 dB for an analytical model. The 

authors in [19] used a synthetic knowledge base (KB) built 

from the GNPy simulation tool, with three different ML 

techniques (RF, NN and KNN) to predict the generalized 

signal-to-noise ratio (GSNR) of unestablished lightpaths. The 

ANN-based QoT estimator was proven to produce the best 

results for the replicated European (EU) and USA network 

topologies with a mean absolute error (MAE) of 0.001 dB and 

0.005 dB respectively. 

These results suggest that NN techniques are suitable for 

QoT estimation and offer the advantage of classification and 

prediction accuracies. However, we have observed in [9] that 

with reduced number of features, the SVM classifier 

performed better than its ANN counterpart. It achieved 

accuracies of 93.3% and 88.5% with 4 and 3 features 

respectively, as opposed to 92.3% and 85.0% for ANN. 

Moreover, with half the number of features, we noticed a 

reduction in the computation time by a factor of 3 for the 

SVM models while it remained approximately the same for  
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the ANN models.  

In summary, we can say that the jury is still out as to 

determining whether neural networks are the best classifiers to 

use for lightpath QoT estimation. More importantly, field data 

collected in real-world scenarios are required to fully assess 

the potential and applicability of ML-based and more 

specifically NN-based QoT estimators. 

 

V. MACHINE LEARNING FOR LIGHTPATH QOT FORECAST 

Unlike the QoT estimation statement, the problem of ML-

based QoT prediction is considered once the lightpath is 

deployed within the network. Lightpath QoT is monitored at 

the receiver level through various performance metrics, such 

as pre-FEC BER, SNR, Q-factor, and received optical power 

(PRX). It is therefore a prediction problem whose objective is 

to predict the future QoT lightpath over a certain forecast 

horizon.  

A. Lightpath QoT Forecast: Is Machine Learning Needed? 

QoT forecast has been studied extensively in complex 

dynamic wireless environments. ML-based forecasters based 

on recurrent neural networks have been proposed for link 

quality prediction in wireless community networks to improve 

the performance of routing protocols [23,24]. Models based on 

deep learning have also been proposed for signal quality 

prediction in radio networks [25,26]. 

QoT forecast in optical networks has started to be explored 

only very recently [28,29,34,35], thanks to the availability of 

field data showing that optical network environments and 

lightpath performance behavior can be quite dynamic. 

Fig. 3 shows the SNR evolution over a period of several 

months for two optical lightpaths carried in different optical 

links of production networks. Note that the performance of the 

lightpath can be very stable over time, as shown in Fig. 3(a). 

In such a case, performance prediction is a simple task that 

can be handled without the need for complex methods. 

However, as shown in Fig. 3(b), it may happen that some 

lightpaths exhibit a more dynamic performance behavior over 

time. This notion of performance dynamism is visible in Fig. 

3(b) from the performance degradations observed in the spring 

as well as the decreases and increases in the performance in 

winter. Note that the variations in performance in this 

particular example, can drop by a few dBs for periods and can 

last from a few days to several months and cannot be 

explained by channel add-drop and switching. This behavior 

can generate errors affecting data transmission and ultimately 

the customers and triggering the need for the network operator 

to apply corrective actions (if the SNR drops below a critical 

performance threshold, for example). Such a dynamic 

behavior cannot be explained or predicted by theoretical 

models (such as the GN model). These variations in SNR can 

last from a few days to several months and cannot be 

explained by channel add-drop and switching. 

For this reason, lightpath QoT prediction could help 

network operators to detect performance degradation early 

enough to proactively reroute traffic or trigger maintenance 

actions. It could also be used for margin optimization, by 

adapting the bandwidth occupation and bit rate of flexible 

transceivers. 

Thus, the objective of ML-based QoT forecasting is to 

predict the future QoT lightpath over a certain forecast 

horizon. Fig. 4 illustrates the implementation of QoT forecast 

models. It is divided into three steps. The first step is the 

construction of the KB. This includes preprocessing of the 

database, namely the management of missing or outlier data, 

and the statistical analysis (seasonality, stationarity, etc.) 

performed on the data. The second step is the construction of 

the forecast models. The last step is the performance 

evaluation phase for assessing the robustness and the precision 

of the predictions made by the models. 

B. Performance Monitoring Data 

ML-based QoT forecasters use historical data from 

established lightpaths to predict performance degradations and 

equipment failure or to perform channel margin optimization. 

This historical data come from performance metrics (PMs) 

collected in three different production networks: 

• CANARIE production network: the KB includes PMs 

collected on 100 Gb/s polarization multiplexed quadrature 

phase shift keying (PM-QPSK) channels transported over 

different routes of the CANARIE production network. The 

channels are deployed on different routes, both buried and 

aerial fiber types, up to 1,500 km. Moreover, PMs are 

composed of time series of PRX and SNR collected at 15-

minute sampling intervals over an observation period of up  

 
(a) (b)          

 

Fig. 3.  Evolution of SNR over time for 2 lightpaths. QoT threshold level set arbitrarily for illustration purposes. 
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to more than 12 months. 

• North American service provider (NASP) network: the 

KB includes PMs on 140 PM-QPSK channels at 100 Gb/s 

transported over 10 routes in the network. These channels 

are deployed on routes, both buried and aerial fiber types, 

ranging from 100 to 1,400 km. PMs are composed of time 

series of PRX, Q-factor and BER, collected at 15-minute 

sampling intervals over an observation period ranging 

from 5 to 12 months. Note that the Q-factor is a figure of 

merit that is directly related to the BER. 

• Microsoft (MS) network: The KB includes PMs across 

4,000 channels transported over 15 routes in the Microsoft 

optical backbone. The PM considered here is the Q-factor, 

collected at 15-minute sampling intervals over a 14-month 

observation period. 

Note that additional link parameters were also monitored 

using coherent transceivers for impairment compensation, 

such as chromatic dispersion (CD), polarization mode 

dispersion (PMD), polarization dependent loss (PDL), etc. 

The resulting KBs contain gaps (missing records) and 

outliers (i.e., sudden drops such as the ones observed in Fig. 3 

(b)) in the time series. These gaps and outliers, which vary in 

duration from a few minutes to several hours, are typically the 

result of software upgrades or maintenance activities. 

Additionally, studies of field data collected on buried and 

aerial fiber links in the NASP network revealed daily and 

seasonal patterns in SNR time series and daily variations in 

the PDL time series [27]. 

The data preprocessing step in Fig. 4 mainly involves filling 

the gaps and removing the outliers in the time series as both 

gaps and outliers can impact the performance of the models. 

The missing data can be replaced by a moving average, as in 

[28]. In the case of the NASP and MS datasets, outliers were 

observed. The outliers can be defined by data instances whose 

distance from the mean QoT value is greater than 3 times the 

standard deviation and replaced by the corresponding median 

value in the time series, as in [29]. 

Data preprocessing also includes stationary tests applying 

transformation such as differencing to make the time series 

stationary. However, recurrent neural networks such as long-

short-term memory can learn the non-stationary nature of time 

series, making such transformations optional [30]. 

C. Recurrent Neural Networks 

Recurrent neural networks (RNN) are a class of neural 

networks that are used in speech recognition and natural 

language processing tasks. They can recognize patterns in time 

series and use them to make predictions. Therefore, they seem 

to be well suited for ML problems that involve sequential data. 

As shown in Fig. 4, four different variants of neural 

networks were used in the development of lightpath QoT 

forecasters. 

 

1) Long Short-Term Memory 

Long-term memory (LSTM) is a type of RNN that learns 

long-term dependencies between time steps of sequence data. 

Thus, it can memorize information for long periods of time. 

Fig. 5(a) shows the topology of the LSTM network that 

groups the N time steps units of the time series. As such, it 

contains information in gated cells and uses structures called 

gates to control cell states and input information to determine 

the outputs. Thus, the updated output and cell states are 

calculated using the current network state and the next time 

step. 

Several parameters come into play in the optimization of 

LSTM models, which make the optimization process complex: 

• the number of hidden layers, i.e., the number of units in an 

LSTM cell, 

• the number of epochs, i.e., the number of iterations to train 

the model, 

• the function to be used as a solver to determine the states 

of the cells, 

• the function to calculate the gates in the LSTM unit.  

Note that the number of hidden layers and number of epochs 

can be determined by selecting the parameters minimizing the 

prediction errors. On the other hand, the function Adam can be 

used as the solver, as in [31, 32]. 

 

2) Encoder-Decoder LSTM 

Fig. 5(b) shows the topology of the encoder-decoder LSTM. 

First, it compresses the input SNR sequence into a set size 

context vector. Then, the internal memory cell is updated at 

each time step until it reaches the end of the sequence. Finally, 

the decoder LSTM produces an output sequence from the 

context vector with its input taken from the previous forecast.  

 

Fig. 4.  Lightpath QoT forecasters based on recurrent neural networks. 
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Note that the attention mechanism, as shown in Fig. 5(c), 

adds focus capability on different parts of the input sequence 

by producing weighted encoder outputs as inputs for the 

decoder LSTM. 

Both these mechanisms are well described in [32,33]. 

 

3) Gated Recurrent Unit 

Fig. 5(d) shows the topology of the gated recurrent unit 

(GRU). The GRU is a lighter version of LSTM and it contains 

less gates for controlling the cell states. It is therefore less 

complex and faster to run than the LSTM [31]. 

 

4) Multilayer Perceptron 

An MLP is a simple class of feedforward neural networks, 

which maps an input (historical window) to an output (future 

target). It consists of at least three layers of nodes: an input 

layer, a hidden layer, and an output layer. Except for the input 

nodes, each node is a neuron that uses a nonlinear activation 

function. An MLP is characterized by several layers of input 

nodes connected as a directed graph between the input and 

output layers. Note that, in a feedforward network, there are 

no feedback connections in which outputs of the model are fed 

back into itself, contrary to the LSTM and GRU models [31]. 

 

D. Performance Analysis 

1) Univariate RNN Models  

The first studies on lightpath QoT forecast involved RNN 

models trained with single-lightpath field data [12, 28]. 

The main reason for that was the very limited field data 

available for such studies. These RNN models, using historical 

single-lightpath SNR data as the only input, included LSTM, 

encoder-decoder LSTM and GRU. A persistence model (also 

called naïve model) was also implemented to evaluate the 

performance of the models as in [28]. The naive method 

consists in assigning to the SNR value predicted at the horizon 

T, the last value of the observation window N.  

The KB used in these initial studies was built from the 

CANARIE dataset. To build the models, first the KB was split 

into validation, training, and test datasets. The validation and 

training datasets are used to determine the appropriate 

hyperparameters and to train the models. 

The univariate models are evaluated using the RMSE as the 

performance metric. This metric is used to determine the 

accuracy of models. It indicates how close the observed values 

are to the predicted values. Thus, low RMSE values indicate 

better prediction. The obtained RMSE is shown in Fig. 6, 

presented in [28]. The performance of SNR prediction models 

was evaluated for forecast horizons ranging from 1 to 96 

hours. The RMSE increased with the forecast horizon for all 

models, as expected, with a maximum improvement of 0.02 

dB at 96 hours for the LSTM compared to the naive method. 

Moreover, the GRU RMSE curve closely followed the naive 

RMSE curve, and the LSTM encoder-decoder obtained the  

 
Fig. 6.  RMSE of the RNN models for forecast horizons ranging 

from 1 to 96 hours. From [28]. 

 
Fig. 5.  Multi-step prediction: (a) LSTM topology; (b) Encoder-Decoder LSTM; (c) Encoder-Decoder LSTM with attention; (d) GRU 

   

   

   

   

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on March 19,2022 at 14:02:08 UTC from IEEE Xplore.  Restrictions apply. 



0733-8724 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JLT.2022.3160379, Journal of
Lightwave Technology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

9 

 
TABLE III.  LIGHTPATH QOT FORECASTERS: SUMMARY OF PERFORMANCE RESULTS 

Metric 

Forecast 

horizon 

(hours) 

Baseline Univariate model Multivariate model 

Naive model LSTM GRU LSTM GRU 

Features 

SNR 
Channel SNR, DGD, PRX 

Outside T, Period of the day 

RMSE  

(dB) 

1 0.04 0.04 0.04 0.06 0.04 

24 0.14 0.14 0.14 0.14 0.14 

96 0.29 0.28 0.27 0.27 0.27 

AME  

(dB) 

1 1.10 1.11 1.10 1.00 1.08 

24 1.13 1.02 1.04 0.97 0.99 

96 1.21 0.97 0.91 0.92 0.93 

 

 

best performance in the very short-term forecast horizon (1-

hour). Hence, the LSTM was positioned as the best model 

among the forecast models tested at higher forecast horizons 

with the lowest RMSE values. However, it could not beat the 

naive method at lower forecast horizons (1 to 12 hours). 

Moreover, in [34] the authors developed a one-dimensional 

convolution neural network (1D-CNN) model, using the 

NASP field data for short-term multi-step performance 

prediction. The model performed well in capturing and 

predicting the temporal change in SNR 24 hour ahead. 

 

2) Multivariate Models 

The next question is whether the prediction performance of 

the univariate QoT forecasters can be improved by 

considering multivariate models. Multivariate models aim to 

improve the performance of the forecasters by adding 

supplementary inputs (or features) to the models. This was the 

objective of the study realized in [35], using a KB of data 

collected for one lightpath in the CANARIE production 

network including the channel BER and 5 additional features: 

the channel received power and DGD, as well the outside 

temperature and time of day. 

In Fig. 7, multivariate LSTM and GRU models (in red) 

using the 5 available features are compared to their univariate 

counterparts (in green), using a naive model (in black) as a 

baseline as in the original univariate case, and the RMSE and 

the absolute max error (AME) as performance metrics. The 

AME, which is the maximum error of the forecast model, was 

used to evaluate the impact of bad predictions on model 

performance. The results show a slightly better performance 

for multivariate models at certain forecast horizons. This 

performance advantage (especially in AME) could potentially 

increase as more features become available for such studies. 

We can see that the performance differential between the 

ML models and the naive model (namely the AME advantage) 

increases at longer forecast horizons, showing the advantages 

of ML and its potential applicability to longer forecast 

horizons.   

 

 
(a) (b) 

 

Fig. 7.  Performance evaluation of the multivariate forecasting models: (a) RMSE; (b) AME. From [35] 
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TABLE III presents a summary of the performance results 

obtained with the multivariate and univariate lightpath QoT 

forecasters trained field data from a single lightpath [35]. The 

RMSE and AME values are displayed for 1-hour, 24-hour and 

96-hour forecast horizons, with the best performers (lowest 

values) shown in bold. The first observation is that complex 

RNN models did not show an RMSE advantage over a simple 

naive method at very short forecast horizons (24 hours or 

less). However, according to the AME performance metric, 

the multivariate models outperformed their univariate 

counterparts as well as the naive models on all forecast 

horizons, except at the 96-hour horizon where the univariate 

GRU model shows a slight performance advantage. 

Moreover, the longer the forecast horizon, the greater the 

advantage of AME over univariate and naive models. Thus, to 

conclude, the best overall performance over all forecast 

horizons, in terms of RMSE and AME, was obtained using the 

multivariate LSTM model. 

 

3) Simpler Forecast Models and Larger Field Datasets  

RNN models, although a good fit for forecasting tasks, are 

rather complex to build and optimize. Furthermore, the 

univariate and multivariate models presented in the previous 

section were built using single-lightpath data due to the 

limited availability of field data. The next question is whether 

a comparable or better performance can be achieved by using 

larger datasets of field data for training the RNN models, and 

by using simpler models such as multilayer perceptron (MLP) 

and linear regression for lightpath QoT forecasting. 

This was the objective of the study presented in [29]. In this 

work, univariate lightpath QoT forecasters based on LSTM, 

MLP and linear regression were built using two KBs of field 

data collected in two production networks. The first dataset 

includes 5-month PM data from 140 channels deployed on 11 

routes of a Tier-1 North American Service Provider (NASP). 

The second dataset includes 15-month PM data from 4000 

channels deployed on 115 routes of the Microsoft (MS) 

backbone network in North America.  The models were 

trained and executed multiple times by randomly selecting 

subsets of the NASP and MS datasets, using the estimated Q-

factor as the target to be predicted and the RMSE as the 

performance metric. 

Fig. 8 (a) and Fig. 8 (b) show the RMSE values versus the 

forecast horizon, as obtained by executing the models on two 

subsets of the original MS and NASP datasets. Interestingly, 

the best performance was achieved by the MLP and linear 

regression models, which seems to show the potential of 

simple models in lightpath QoT forecasting tasks. Second, we 

can see that the performance of the models varied from one 

run to another. This results from the presence of outliers in the 

time series. Prediction errors increased in the presence of 

outliers. This also shows that RNNs perform differently on 

different scenarios and datasets, which remains one of their 

challenges and limitations. 

In summary, an interesting conclusion of this study is that 

simple QoT forecasters based on linear regression and MLP 

can outperform more complex RNN models. Another 

interesting conclusion is that the performance of the 

forecasters can be impacted significantly by the presence of 

outliers in the time series. These outliers (or sudden SNR 

drops) can be caused by cable manipulations during 

maintenance activities and last 15 minutes to 2 hours, 

typically. Outliers can be removed during the data 

preprocessing phase before training the models, but they 

cannot be avoided in normal network operations and therefore 

can impact the performance of the forecasters. 

 

E. Transfer Learning 

We explored supervised ML-based approach for QoT 

estimation of unestablished lightpaths and QoT forecast of 

deployed lightpaths in optical networks. To achieve accurate 

predictions of lightpath QoT, supervised ML models need 

large amounts of training data. However, this may be difficult 

to achieve due to their acquisition cost.  

Transfer learning (TL) has been proposed to enable ML 

models to share relevant structures, so as to effectively reduce 

the size of the training dataset and the time required for 

prediction or classification tasks. A preliminary study of a 

domain adaptation approach that used the complete set of SNR 

data from one lightpath (in red in Fig. 9) to train a univariate  

 

 
(a) (b) 

 

Fig. 8.  Performance of the lightpath QoT forecasters, as obtained by executing the models on two different subsets of the MS and NASP 

datasets: (a) subset 1; (b) subset 2. From [29]. 
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GRU and a multivariate LSTM model, and to further transfer 

the structures to forecast the SNR of another lightpath carried 

in the same fiber but on a shorter portion of the route, was 

presented in [35]. An additional scenario, exploiting data from 

another lightpath carried on the same route but in the opposite 

direction, was also considered. Domain adaptation is a 

category of transfer learning in which the feature spaces 

between the source and target domains are similar, but the 

marginal probability distributions of the input data are 

different. 

A parameter-based approach was adopted for the transfer 

structure. More specifically, we implemented a weight-sharing 

tactic between the source and the target domains. This strategy 

enables the knowledge transfer from the pre-trained models 

(using 24,445 instances of the source domain) to the target 

domain through a partial retraining with up to 1.9X less data. 

These results are certainly far from those found in [36], for the 

similar use case where only the path length is different 

between the source and target domains. This is probably 

because no optimization was performed in this preliminary 

study. However, Fig. 10 shows that transfer learning could be 

suitable for the short-term performance forecast of lightpaths 

carried in the same optical fiber of the same route. 

VI. CONCLUDING REMARKS 

In this tutorial, we explored how ML, and more specifically 

neural networks, can be used to solve optical communications 

and networking problems, with a special focus on two specific 

use cases: lightpath QoT estimation and forecast tasks.  

In the first use case, we showed how a cognitive QoT tool 

based on supervised learning can be used for QoT estimation 

before lightpath provisioning. The objective here was to 

provide a fast QoT estimation method in real-time network 

operations. Among the considered ML methods, we 

established that an SVM estimator can perform as well as an 

NN estimator and even better with reduced feature sets. Note 

that these models were trained with synthetic data, given that 

field data from production networks is difficult to obtain, 

especially for poor QoT lightpaths. Therefore, it still remains 

to be demonstrated that cognitive QoT estimation tools can be 

integrated beneficially in the control system of a production 

network or used jointly with analytical tools based on the GN 

model in lightpath provisioning tasks. Such tools would be 

particularly interesting for network operators dealing with 

incomplete or outdated inventory system and fiber plant data.  

In the second use case, we showed how machine learning, 

and more specifically RNNs, can be used in lightpath QoT 

forecast tasks. The objective was to detect degradations in 

lightpath performance over forecast horizons of up to 4 days 

for proactive maintenance purposes. Such models would be 

particularly useful to track dynamic lightpaths over time (for 

margin optimization purposes, for example). Univariate and 

multivariate models are based on LSTM and GRU and trained 

with single lightpath data. These studies reveal some very 

interesting findings. A better performance was observed for 

single-step univariate LSTM over multi-step encoder-decoder 

LSTM and GRU. Multivariate LSTM using 4 extra features 

exhibited a better performance than its univariate counterpart. 

Recent studies have shown that MLP and linear regression can 

 

Fig. 10.  Performance evaluation (AME vs. forecast horizon) using 

KB-2 (lightpath carried in the same optical fiber on a portion of 

same route). From [35]. 

 
 

Fig. 9.  Transfer learning process to forecast QoT of lightpath-2 using model pre-trained with lightpath-1 data. From [35]. 
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outperform RNNs but not always. The models were shown to 

be very sensitive to outliers (i.e., sudden drops) in the time 

series, which can impact model performance and increase the 

prediction errors. Recent studies performed with field data 

from three lightpaths suggest that QoT forecasters trained with 

single-lightpath data could be used to test lightpaths carried in 

the same fiber by using the concept of transfer learning. These 

interesting findings still need to be validated with richer 

datasets (greater number of lightpaths) and in quality (number 

of features).  

Field data remains a critical issue for demonstrating the full 

potential of ML in tasks such as lightpath QoT estimation and 

lightpath QoT forecast in real-world production networks. If 

successful, this research will pave the way to applications 

aiming at network automation, such as fast lightpath 

provisioning, margin optimization as well as proactive 

maintenance. 
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