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Abstract. The study of climate change impact on water re-
sources has accelerated worldwide over the past 2 decades.
An important component of such studies is the bias-
correction step, which accounts for spatiotemporal biases
present in climate model outputs over a reference period,
and which allows for realistic streamflow simulations using
future climate scenarios. Most of the literature on bias cor-
rection focuses on daily scale climate model temporal reso-
lution. However, a large amount of regional and global cli-
mate simulations are becoming increasingly available at the
sub-daily time step, and even extend to the hourly scale, with
convection-permitting models exploring sub-hourly time res-
olution. Recent studies have shown that the diurnal cycle
of variables simulated by climate models is also biased,
which raises issues respecting the necessity (or not) of cor-
recting such biases prior to generating streamflows at the
sub-daily timescale. This paper investigates the impact of
bias-correcting the diurnal cycle of climate model outputs
on the computation of streamflow over 133 small to large
North American catchments. A standard hydrological mod-
eling chain was set up using the temperature and precip-
itation outputs from a high spatial (0.11◦) and temporal
(1 h) regional climate model large ensemble (ClimEx-LE).
Two bias-corrected time series were generated using a mul-
tivariate quantile mapping method, with and without cor-
rection of the diurnal cycles of temperature and precipita-
tion. The impact of this correction was evaluated on three
small (< 500 km2), medium (between 500 and 1000 km2),
and large (> 1000 km2) surface area catchment size classes.
Results show relatively small (3 % to 5 %) but systematic de-
creases in the relative error of most simulated flow quantiles
when bias-correcting the diurnal cycle of precipitation and

temperature. There was a clear relationship with catchment
size, with improvements being most noticeable for the small
catchments. The diurnal cycle correction allowed for hydro-
logical simulations to accurately represent the diurnal cycle
of summer streamflow in small catchments. Bias-correcting
the diurnal cycle of precipitation and temperature is therefore
recommended when conducting impact studies at the sub-
daily timescale on small catchments.

1 Introduction

The potential impacts of climate change have become a cru-
cial concern for public safety, the environment, and the econ-
omy of the twenty-first century (Raza et al., 2019; Walsh
et al., 2019; Vogel et al., 2019). There is evidence that the
hydrological cycle has already been significantly influenced
by the changing climate in many regions, and it has become
an important issue for water resource managers and policy
makers (Yira et al., 2017; Zhao et al., 2019; Qiu et al., 2019).
In particular, it is expected that the frequency of extreme
precipitation and convective storms will increase at the lo-
cal and regional scales, and particularly in mid- to high lat-
itudes (Martel et al., 2020; Pfahl et al., 2017; Myhre et al.,
2019; Sarhadi and Soulis, 2017; Barbero et al., 2017; Prein
et al., 2017). Changes in extreme precipitation and patterns
of convective storms will in turn impact flood risk (Quintero
et al., 2018; Prein et al., 2017; Westra et al., 2014). To prop-
erly resolve extreme summer–fall convective precipitation, a
sub-daily modeling time step is required for most applica-
tions (Sunyer et al., 2017; Beranová et al., 2018; Bao et al.,
2017). In hydrology, this is particularly true for small water-
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sheds, which have a sub-daily response time, and are most
likely to be affected by the anticipated sub-daily amplifica-
tion of precipitation extremes (Yuan et al., 2019). In order
to better adapt to the consequences of a changing climate,
and to mitigate the future flood risk related to precipitation
extremes on small watersheds, it is critical to consider a sub-
daily time step for the entire hydro-climatic modeling chain
(Blenkinsop et al., 2018; Beranová et al., 2018).

General circulation models (GCMs) and Earth system
models (ESMs) are invaluable tools for simulating the
present and future climates (Panday et al., 2015; Alfieri et al.,
2015). These models do however require substantial compu-
tational power and disk space, which significantly limit both
the spatial and temporal resolution at which they can be run,
and the frequency at which their outputs can be archived.
This is particularly the case for GCMs and ESMs which
are run at the global scale. This explains why output data
from these models have typically been limited to a relatively
coarse spatial resolution of 1◦ or more(≥ 100 km), and been
archived at the daily timescale. These spatial and temporal
resolutions are too coarse to allow study of the potential hy-
drological impacts of climate change on small catchments
(Trzaska and Schnarr, 2014; Bajracharya et al., 2018; Fatichi
et al., 2014)

To overcome this issue, regional climate models (RCMs)
have been used to dynamically downscale GCM outputs at
a higher spatial and temporal resolution over limited area
domains. RCMs can better take into account local topog-
raphy, land sea contrast, soil properties, and land cover,
which impact surface forcing and physical processes. The
spatial resolution of RCMs is generally in the range of 0.1
to 0.5◦ (10 to 50 km), with typical temporal resolutions of
3 to 6 h, which are suitable for forcing hydrological mod-
els on relatively small catchments. More recently, the use of
convection-permitting RCMs has bridged the resolution gap
to 0.02◦ (2 km) or below (Prein et al., 2015; Chan et al., 2014;
Kendon et al., 2017). This increase in spatial resolution re-
quires a corresponding increase in temporal resolution (for
numerical stability), and such models are therefore limited to
even smaller computational domains.

To properly assess climate model uncertainty, several
multi-model (GCM and RCM) ensembles (e.g., CMIP5/6,
CORDEX) have been used to address the uncertainty orig-
inating from greenhouse gas emission scenarios and struc-
tural climate model uncertainty. Internal climate variability
is a third source of uncertainty, which can be studied with
a multi-member ensemble from a single climate model and
single greenhouse emission scenario. Each member of the
ensemble originates from micro and macro perturbations to
initial conditions (Deser et al., 2012, 2020). Using multi-
member ensembles has become increasingly popular in the
analysis of the impact of internal variability, as well as for ex-
ploring the impact of extreme climate events such as extreme
precipitation, since these ensembles provide many ergodic
climate realizations from which to sample large numbers of

extreme events (Zhao et al., 2020; Martel et al., 2020; Shen
et al., 2018).

All global and regional climate model outputs are biased
to some extent when compared to observations over a com-
mon reference horizon. These biases have a complex spatial
and temporal structure (Chen et al., 2013b; Maraun, 2016;
Ashfaq et al., 2010; Wang et al., 2014). Therefore, a bias-
correction step is considered as a prerequisite for most cli-
mate change impact assessment studies. A wide range of
bias-correction techniques are available, extending from sim-
ple scaling methods to more advanced trend-preserving mul-
tivariate distribution mapping approaches. There is a signifi-
cant body of literature on bias-correction methods, and sev-
eral inter-comparison studies have been published (Fang et
al., 2015; Lafon et al., 2013; Chen et al., 2013b; Maraun,
2016; Ajaaj et al., 2016; Bárdossy and Pegram, 2011). How-
ever, most of the existing work has only looked at the daily
temporal scale. Climate model outputs are now increasingly
available at sub-daily time steps. A very limited number of
studies have looked at the bias correction of sub-daily cli-
mate model outputs, and the focus has been on correcting
sub-daily annual maximum values (e.g., Li et al., 2017; Re-
quena et al., 2021). Annual maximum values are important
since they are used to determine the return period of ex-
treme events for engineering design. For example, Li et al.
(2017) showed that bias-correcting the hourly annual max-
imum rainfall was recommended. It is well recognized that
climate model biases are not constant in time, and as a result,
different correction factors are typically computed for each
month, or by using a moving window across a calendar year.
It is also known that high-resolution climate models are also
biased in the reproduction of the diurnal cycle of many vari-
ables (Scaff et al., 2019; Bannister et al., 2019). As climate
models slowly continue their steady march towards sub-daily
resolution, interesting research questions must be tackled.
Should we bias-correct the diurnal cycles of climate model
outputs? If so how? Do we have reliable reference datasets at
the sub-daily timescale? Will this even influence the results
of impact studies?

To provide an answer to these questions, this paper exam-
ines the impact of bias-correcting the diurnal cycle on the hy-
drology of several North American catchments. It also exam-
ines how the spatial scale influences the dynamic response of
watersheds to extreme precipitation. In general, smaller wa-
tersheds are more sensitive to intense short-duration storms,
whereas streamflows from larger catchments are somewhat
smoothed by the flood wave propagation routing process.
Therefore, in principle, an accurate representation of the di-
urnal cycle should be more critical for smaller catchments.
To investigate this further, a wide range of catchment sizes
has been selected.

This paper is structured into three main sections. The
methodology provides an overview of the study area, de-
scribes all datasets (observations and climate model), and
presents the bias-correction method chosen to correct the di-
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Figure 1. Distribution of catchments across the northeastern USA. Squares, circles, and triangles correspond to small, medium, and large
catchments, respectively.

Table 1. General characteristics of the three catchment-size groups.

Number of Area (km2) Annual temperature (◦C) Annual precipitation (mm)
catchments

Min Median Max Min Median Max Min Median Max

Small area 12 66.5 268.8 468.7 9.4 11.9 15.3 967.2 1247.3 1891.5
Medium area 25 530.9 758.6 994.5 7.4 10.9 17.8 861.9 1072.0 2007.8
Large area 96 1002.3 3595.1 9885.9 7.4 11.5 19.1 804.2 1049.6 1657.3

urnal cycle. Section 3 presents all results, and Sect. 4 pro-
vides a discussion of the main results as well as concluding
remarks.

2 Material and methods

2.1 Study area

This study was conducted over the eastern United States
in a rectangular region within the computational domain
of the high-resolution regional climate model used (see
Sect. 2.2 below for additional details). As described be-
low, 133 Model Parameter Estimation Experiment (MOPEX)
catchments were selected based on the criteria of having ob-
served hydrometric and meteorological data with less than
5 % of missing data over a common 24 year reference pe-
riod. These catchments are dispersed across four climate
zones of the Köppen climate classification. The impact of
the catchment size is examined in this study by classifying
catchments into three groups: less than 500 km2, between
500 and 1000 km2, and more than 1000 km2. Catchments
smaller than 500 km2 should have a clear sub-daily hydrolog-
ical time response as compared to the larger catchments. Fig-

ure 1 presents the centroid location and relative size of each
catchment. Basic catchment characteristics are presented in
Table 1.

2.2 Datasets

All the results presented in this paper are available at the
hourly time step. All observations cover the 24 year 1980–
2003 period, which is defined as the reference dataset.

2.2.1 Observed data

Hourly observed precipitation and streamflow data were de-
rived from MOPEX (Duan et al., 2006). MOPEX hourly
precipitation is a catchment-averaged value from the closest
weather stations. The MOPEX database does not however
provide hourly temperature. Rather than interpolating daily
maximum and minimum values to the hourly scale, we took
hourly temperature data directly from the ERA5 reanalysis
(Lindsay et al., 2014). At the catchment scale, Tarek et al.
(2020a) showed that the ERA5 temperature is just as good
as estimates derived from weather stations for hydrological
modeling. The mean of all ERA5 grid points within each
catchment was computed for every hour.
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2.2.2 Climate model data

This project uses the ClimEx Large Ensemble (Leduc et al.,
2019). The Climate Change and Hydrological EXtremes
project (ClimEx) is a 50-member regional large ensemble
computed using the 5th generation of the Canadian Re-
gional Climate Model (CRCM5). CRCM5 was used to dy-
namically downscale the 50 members of the Canadian Earth
System Model (v2) large ensemble (CanESM2-LE; Arora
et al., 2011) to a 0.11◦ (12 km) spatial resolution (Leduc
et al., 2019; Martel et al., 2017) . The temporal resolution of
archived ClimEx data is 1 h for precipitation and 3 h for most
other variables. The ClimEx ensemble provides a sample of
7500 years, with each member covering the 1951–2100 pe-
riod under the RCP 8.5 scenario. In this study, hourly pre-
cipitation and 3 h temperature data were extracted for all grid
points within each catchment over the ClimEx northeastern
North America (NNA) domain. The ClimEx temperature was
first interpolated to the hourly time step for all grid points
by using piecewise cubic Hermite interpolating polynomials
(Fritsch, 1985; Barker and Mcdougall, 2020). Precipitation
and temperature were then averaged at the catchment scale
to be consistent with the observed data over the reference pe-
riod.

2.3 Bias correction

The N -dimension multivariate bias correction (MBCn) by
Cannon (2018) was selected in this study to correct biases
of hourly precipitation and temperature. MBCn was cho-
sen because it is arguably the most advanced quantile-based
multivariate bias-correction method available (Meyer et al.,
2019; Chen et al., 2018; Su et al., 2020; Cannon et al., 2020).
MBCn (Cannon, 2018) is a multivariate generalization of
quantile mapping that conveys all aspects of the distribution
of observation data to the corresponding distribution from a
climate model. MBCn preserves the climate model projec-
tion trends for all quantiles, which is a highly desirable prop-
erty for climate change impact studies (e.g., Maraun, 2016).

All members of the ClimEx large ensemble were pooled
together to compute the bias-correction factors for both pre-
cipitation and temperature. The correction factors were then
applied to all the members of the ClimEx ensemble. As dis-
cussed by Ayar et al. (2021) and Chen et al. (2019), doing so
preserves the internal variability of the ensemble. This paper
is not directly concerned with the study of internal variability,
but using a large ensemble allows for the accurate empirical
computation of extreme events with very large return peri-
ods (Martel et al., 2020). Since climate model biases are not
constant across the annual cycle, different correction factors
were computed for each month of the year.

Considering the main objective of the present study, the
MBCn bias-correction method was applied in two different
ways.

1. Standard bias correction (SBC): for each calendar
month, a single set of quantile correction factors was
applied to all hourly data. This approach assumes that
all climate model biases are constant across the diurnal
cycle. In this variant, for each month, there is one set
of quantile correction factors and all hourly values are
corrected using this set.

2. Diurnal bias correction (DBC): this variant specifically
recognizes that climate model biases are not constant
throughout the diurnal cycle (e.g., daylight biases may
differ from nighttime biases). Bias corrections were
therefore computed for each hour, using a 3 h moving
window to pool all hourly values within a given month
before using the MBCn algorithm. This was performed
to smooth the diurnal cycle of observations, and there-
fore remove some of the sampling noise in the observed
data. In this variant, for each month, there are 24 sets of
quantile correction factors (one for each hour).

2.4 Hydrological model (GR4H)

A hydrological model is needed to take and transform pre-
cipitation and temperature data into streamflow values. In
this study, hourly streamflows were simulated by the GR4H
(modèle du Génie Rural à 4 paramètres Horaire) hydrologi-
cal model. GR4H is an hourly rainfall–runoff model derived
from its daily time step sibling, GR4J (Perrin et al., 2003).
GR4H is a lumped conceptual model with two storage reser-
voirs and four free parameters which define the production
and routing functions, and which must be calibrated. GR4H
was coupled with the CemaNeige degree-day snow model to
simulate snowpack accumulation and depletion. CemaNeige
is a two-parameter snow model developed by Valéry (2010).
The combination of these two models, GR4J (GR4H) and
CemaNeige, has shown good performance in different stud-
ies throughout the world (Riboust et al., 2019; Youssef et al.,
2018; Raimonet et al., 2018). GR4h requires precipitation,
temperature, and potential evapotranspiration (Westra et al.,
2014) as hourly inputs (Van Esse et al., 2013). The Oudin Ep
formulation (Oudin et al., 2005) was used here. The combi-
nation of this Ep formula with the GR4J hydrological model
has been used successfully in many hydrological studies (Ar-
senault et al., 2018; Troin et al., 2018)

The calibration of the hydrological model was performed
automatically on all catchments using the shuffled complex
evolution (SCE-UA) algorithm (Duan et al., 1994), which has
been shown to be highly efficient in a wide variety of prob-
lems (e.g., Huang et al., 2018; Muttil and Jayawardena, 2008;
Arsenault et al., 2014). The Nash–Sutcliffe efficiency (NSE)
criterion was used as the calibration objective function. The
NSE criterion has been used in many studies, and represents
a normalized root mean square error. It compares the hydro-
logical model efficiency to the mean flow as a reference pre-
dictor, as shown in the following equation:
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Figure 2. Nash–Sutcliffe efficiency (NSE) calibration results for all catchments.

NSE= 1−

∑T
t=1
(
Qt

Sim−Qt
Obs
)2∑T

t=1
(
Qt

Obs−QObs
)2 ,

where Qt
Sim and Qt

Obs are, respectively, the simulated and
observed discharges at time t and QObs is the mean of the
observed discharge.

NSE values range from negative infinity up to 1. A value
of 1 indicates a perfect agreement between modeled and ob-
served data, while a 0 value indicates that the hydrological
model’s performance is no better than what is obtained from
using the mean streamflow value as a predicting model. The
hydrological model was calibrated over the entire 24 year
period following the recommendations of Arsenault et al.
(2018). They showed that using the entire observation record
for the calibration of a hydrological model results in a more
robust parameter set than using a shorter period followed
by a validation step. The often-used split sample calibra-
tion/validation strategy was therefore not implemented in this
study.

3 Results

Figure 2 presents the NSE criterion values obtained for the
calibration procedure described above for the 133 catch-
ments. Overall, the model calibration is good, with a mean
NSE value of 0.78 across all catchments. 94.6 % of the catch-
ments have an NSE value above 0.7 and 36.9 %, a value
above 0.8. The smallest NSE value is 0.61. These results
show that the hydrological model does a good job at simu-
lating the hourly streamflow on the selected catchments.

Figure 3 presents the observed and ClimEx simulated tem-
perature diurnal cycles of a selected catchment for all four
seasons (left hand side), as well as the results of both bias-
correction approaches (right hand side). The 50 members of

the ClimEx ensemble are presented as a shaded envelope,
with the ensemble mean as a solid line. Throughout this pa-
per, time refers to the catchment local time. The left hand
side shows that ClimEx simulates a good temperature diur-
nal cycle, which is fairly close to the observed ones and for
all seasons. Over this catchment, ClimEx runs a warm bias,
especially for spring, summer, and fall. The warm bias tends
to be larger during the nighttime. All members of the ClimEx
ensemble are very close to one another, with a difference of
only about 1◦ between the coldest and warmest members.
The diurnal cycle of temperature is hardly affected by inter-
nal climate variability.

The right hand side of Fig. 3 (B1 to B4) presents the
performance of Cannon (2018) multivariate bias correction
(MBC) with diurnal cycle bias correction (DBC in green)
and standard bias correction (SBC in blue). The pooling of all
the ClimEx members to derive a unique set of bias-correction
factors preserves the signature of internal variability, as can
be seen by the width of the blue and green envelopes as com-
pared to those of the gray envelope of uncorrected ClimEx
values (A1 to A4). With the standard bias correction (SBC),
all hourly values are corrected using common correction fac-
tors for each month. The bias correction then reduces to a
simple vertical scaling, which reduces the mean daily bias to
zero. However, hourly biases remain: these biases are nega-
tive from 06:00 to 14:00 LT, and positive from 14:00 LT to
midnight. For the green curves, using a 3 h moving window
results in a diurnal cycle that is smoother than the observed
one. This was a methodological choice made in order to fil-
ter out variability in the observations, likely resulting from
sampling errors. Without the smoothing window, the bias-
corrected diurnal cycle would have matched those of obser-
vations exactly.

Figure 4 presents the observed and ClimEx simulated pre-
cipitation diurnal cycles for the same catchment. The layout
of Fig. 4 is the same as for the temperature (Fig. 3). Com-
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Figure 3. Annual diurnal cycle of temperature before bias correction (left column: A1 to A4) and after bias correction (right column: B1 to
B4) for catchment 02143040. Each row corresponds to a different season: DJF (December, January, February), MAM (March, April, May),
JJA (June, July, August), and SON (September, October, November). The right hand side shows both bias-correction methods: standard bias
correction (SBC) and diurnal bias correction (DBC). The observations (ERA5) are shown in red. Raw (uncorrected) ClimEx data are in gray,
SBC is in blue, and DBC is in green. The envelopes defined by all 50 ClimEx members are shown in the corresponding light colors, whereas
the dark colored lines display the ensemble mean. Time shown is local time, with 24:00 corresponding to midnight.

pared to the temperature, the simulated internal variability
of precipitation is much larger, as shown by the width of
the gray envelope on the left hand side. Internal variabil-
ity is largest for winter and fall, and smallest during sum-
mer. Precipitation differences between members can reach
up to 100 %, depending on the season and hour, highlight-
ing the key role of internal variability in driving precipita-
tion variability. Over this catchment, ClimEx precipitation
is positively biased in winter and spring and negatively bi-
ased over the summer. Overall, there are large differences
between observed and simulated precipitation, and these dif-
ferences extend to the diurnal cycle. Summer is the only sea-
son where observations and ClimEx have a similar diurnal
cycle despite a 3–4 h lag between the peaks of both cycles.
ClimEx presents a strong spring diurnal cycle, which is how-
ever, absent in the observations. Winter and fall do not show
clear diurnal cycles in both the observations and ClimEx. The
large differences between the observations and ClimEx out-
puts testify to the need for bias correction prior to using cli-
mate model outputs in hydrological models (or other impact
models).

Just as in Fig. 3, the right hand side of Fig. 4 presents
the performance of the multivariate bias correction (MBC)
with diurnal cycle bias correction (DBC in green) and stan-
dard bias correction (SBC in blue). Just as before, SBC (blue)
simply scales precipitation to correct for the mean daily bi-
ases, with no impact on the shape of the modeled cycle.
DBC (green), on the other hand, corrects the hourly distri-
butions such that the bias-corrected diurnal cycle of ClimEx
matches the observed one. Since precipitation correction is
multiplicative, the internal variability envelope appears to be
smaller in winter and spring because ClimEx is positively bi-
ased for these seasons. The reverse is observed for the sum-
mer season, when ClimEx is negatively biased. The relative
internal variability (around the ensemble mean) remains the
same before and after correction.

Overall, both bias-correction methods do what they were
designed for efficiently. The transformation of the gray en-
velopes into the green ones highlights the strength of these
distribution mapping approaches. The fact that they can
shape severely biased distributions into completely different
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Figure 4. Annual diurnal cycle of precipitation before bias correction (left column: A1 to A4) and after bias correction (right column: B1 to
B4) for catchment 02143040. Each row corresponds to a different season: DJF (December, January, February), MAM (March, April, May),
JJA (June, July, August), and SON (September, October, November). The right hand side shows both bias-correction methods: standard bias
correction (SBC) and diurnal bias correction (DBC). The observations are shown in red. Raw (uncorrected) ClimEx data are in gray, SBC
is in blue, and DBC is in green. The envelopes defined by all 50 ClimEx members are shown in the corresponding light colors, whereas the
dark colored lines display the ensemble mean. Time shown is local time, with 24:00 corresponding to midnight.

ones also raises important questions about their use, as will
be discussed later.

Now that the bias-correction efficiency has been estab-
lished, we can look at the hydrological modeling to see if
the correction of the diurnal cycle has any impact on the hy-
drological simulations. To this end, raw and bias-corrected
hourly precipitation and temperature time series were used
to force the GR4H hydrological model to generate stream-
flow time series. Since the ClimEx ensemble was forced by
a GCM (instead of reanalysis), it is not possible to directly
compare the hourly simulated streamflow series with ClimEx
meteorological data against those simulated using the ob-
served meteorology. For this reason, the first comparison will
be based on the mean annual hydrograph. Figure 5 shows the
mean annual hydrographs for four catchments of different
sizes. It shows streamflow observations (red line), as well as
streamflow simulations from the hydrological model, using
precipitation and temperature from three different sources.
They are the uncorrected ClimEx data (gray envelope) and
bias-corrected ClimEx data with and without accounting for
the diurnal cycle biases (DBC, light green envelope with en-

semble mean in dark green, and SBC, light blue envelope
with the ensemble mean as a dotted dark blue line). Results
show that the multivariate bias correction of precipitation
and temperature translates into accurate streamflow simula-
tions. The ensemble mean tracks very well with the mean
observed hydrographs contained within the ClimEx enve-
lope of internal variability. Observations (red line) display
a larger variability since they only contain 23 years of data,
whereas the ensemble mean for both DBC and SBC com-
prise 1150 years (50 members times 23 years), and are there-
fore much smoother. The internal variability envelopes for
DBC and SBC are very close to one another, with the blue
envelope almost perfectly overlapping the green one. There
are, however, small differences between the ensemble mean
curves, indicating that taking the diurnal cycle biases into
account impacts streamflow simulations to some extent. The
largest differences are observed for the smallest catchment
(upper right).

The impact of diurnal cycle bias correction as a function of
catchment size is illustrated in Fig. 6, which shows typical re-
sults for a small (66 km2) and a large (3817 km2) catchment.
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Figure 5. Hydrograph annual cycles for four selected catchments. Catchments A and B are classified as large and medium size, respectively.
Catchments C and D are classified as small. 0 represents January first at 00:00 LT, and 8760 is 31 December at 24:00 LT.

These two catchments have been chosen as they differ mostly
with respect to their size. They are located close to one an-
other (Fig. 6) and share common physiographical properties.

The figure presents a 1-month (July) snapshot of stream-
flow hydrographs for the mean member of the ClimEx en-
semble, with standard and diurnal cycle bias correction. The
upper graph shows the quicker reactivity of the smaller catch-
ment to meteorological inputs as compared to the larger one.
More importantly, Fig. 6 shows that the diurnal cycle cor-
rection has a larger impact on the smaller catchment com-
pared to the larger one. For larger catchments, the flow rout-
ing process acts as a low-pass filter, resulting in somewhat
smoothed hydrographs and blurring the difference between
the two bias-correction approaches. Figure 6, however, only
shows that the diurnal cycle bias correction has an impact on
streamflows, and not if this impact is beneficial. To figure out
if the impact is beneficial, it is necessary to look at stream-
flow indicators.

Figure 7 presents the impact of correcting the diurnal cycle
on the relative bias B of mean annual simulated streamflow,
as expressed by Eq. (1a) and (1b):

BDBC =
QclimexDBC−Qobs

Qobs
× 100%, (1a)

BSBC =
QclimexSBC−Qobs

Qobs
× 100%. (1b)

In the above equations, Qobs is the mean annual stream-
flow resulting from running the hydrological model with ob-
served precipitation and temperature, whereas QclimexDBC
and QclimexSBC, respectively, represent the mean annual sim-
ulated streamflow using bias-corrected ClimEx precipitation
and temperature, with and without correcting the diurnal cy-
cles of both variables. Figure 7 shows boxplots of the relative
bias of mean annual streamflow, with and without (DBC and
SBC) mean diurnal cycle correction, for the three catchment
size categories. Results are not shown for the streamflow sim-
ulations without bias corrections since the errors are up to
2 orders of magnitude larger than for the bias-corrected simu-
lations. Each boxplot represents the distribution of mean rel-
ative streamflow bias for the 133 catchments. The central box
displays the 25th, 50th (median) and 75th quantiles of the
distribution, whereas the lower and upper whiskers show the
5th and 95th quantiles. Values below and above the 5th and
95th quantiles are shown as red circles and means of the dis-
tributions are shown as purple crosses. Overall, the relative
biases are relatively small across the board, indicating that
the bias-correction method does a good job at preserving the
main characteristics of observed precipitation and tempera-
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Figure 6. Hydrographs of two sampled catchments (small and large size surface area) for the month of July (744 h= 31 d× 24 h).

Figure 7. Comparing relative error of mean flow with diurnal cycle bias correction (DBC) and standard bias correction (SBC) in three area
categories.

ture, at least in terms of hydrological modeling. Results show
that accounting for diurnal cycle biases has an important im-
pact on the representation of the mean annual streamflow.
Correcting the diurnal cycle lowers the relative bias and di-
minishes the spread of the bias estimates. Relative biases are
mostly positive with standard bias correction, and tend to be
slightly negative with the diurnal bias correction. The impact
is particularly clear for the small and medium catchments.
For the large catchments, the absolute value of the median
bias remains similar (going from positive to negative), but

the spread is lower when correcting the diurnal cycle. This is
particularly clear for the central box (25th to 75th quantiles).
As shown in Fig. 3, the climate model diurnal cycle of tem-
peratures is flatter than for observations. Bias-correcting the
diurnal cycle results in higher mean daily temperature, lead-
ing to increased evapotranspiration and decreased streamflow
values, likely explaining the observed results.

To further understand the impact of the diurnal cycle cor-
rection, Fig. 8 shows similar results for low-flow and high-
flow metrics. Low flows are represented by the 5th and

https://doi.org/10.5194/hess-26-1545-2022 Hydrol. Earth Syst. Sci., 26, 1545–1563, 2022



1554 M. Faghih et al.: Impact of correcting sub-daily climate model biases for hydrological studies

Figure 8. Distribution of the relative error ((model-obs) / obs× 100 %) corresponding to flow quantiles Q5 (a), Q10 (b), Q95 (c), and
Q99 (d). Boxplots for both bias-correction methods (DBC and SBC) are constructed from the distribution of relative errors from all catch-
ments within each size class (small, medium, and large).

10th quantiles of the annual streamflow distribution for each
catchment, and high flows, by the 95th and 99th quantiles.
All four graphs of Fig. 8 are in the same format as those in
Fig. 7. The results are therefore expressed as relative biases,
and each boxplot represents the distribution of relative biases
across all 133 catchments.

Low flows (top row) are generally not well represented,
with relatively large negative biases (mostly in the −10 % to
−30 % range). The negative biases are larger for the smaller
catchments. Correcting the diurnal cycle slightly increases
the negative biases for the small and medium size catch-
ments, but has a positive impact on the spread across all
catchments. This is once again particularly clear for the in-
terquartile range. High flows (bottom row) are much better
simulated, with biases below 10 % in most cases, with the ex-
ception of Q99 for the small catchments, where the biases are
predominantly positive and much larger (+10 % to +30 %).
Correcting the diurnal cycle provides relatively small, but
consistent, bias reduction, as well as a reduction of the spread
for the medium and large size catchments.

Finally, Fig. 9 presents similar results for the 20 year re-
turn period flood. The 95th and 99th percentiles and 20 year
return period are all high-flow indicators. However, the first
two represent relatively frequent high flow thresholds, with
several days per year exceeding these values (18 and 3 dyr−1

on average), whereas the 20 year return period threshold is an
extreme value threshold that is exceeded once every 20 years
on average. The 20 year return period was evaluated with
a log-Pearson III distribution following USGS guidelines
(Flynn et al., 2006). It was calculated from the simulated
flows using observed precipitation and temperature as well
as bias-corrected ClimEx outputs. Figure 9 shows that bias-
corrected data do a good job preserving the signature of me-

teorological data leading to extreme events. The relative bi-
ases are small for the medium and large size catchments, and
slightly positive and a bit larger over the small catchments.
Correcting the diurnal cycle provides relatively small but sys-
tematic bias reduction and across-catchment spread improve-
ments. These improvements are larger for the smaller size
catchments.

4 Discussion

The preceding section presented a hydrological modeling
comparison of the impact of bias-correcting (or not) the
diurnal cycle of precipitation and temperature modeled by
a high-resolution regional climate model. Figures 3 and 4
show that bias-correction methods can correct deficiencies
in the representation of the diurnal cycles of temperature-
and precipitation-modeled data. In the case of the temper-
ature, ClimEx simulates a diurnal cycle with an amplitude
similar to that of observations, but with a clear bias and tim-
ing offset. Both are effectively corrected using the MBCn
method. The case of precipitation is more complicated as
there are large differences between observations and mod-
eled data. The MBCn method, by construct, was able to per-
fectly map the climate model-biased diurnal cycle onto the
observed one. Considering the large differences between the
cycles, a valid question is whether or not this bias-correction
step should even be done. The differences observed between
the cycles are rooted in three possible causes: observation er-
rors affecting the observed diurnal cycle, structural errors in
the modeling of precipitation in the climate model, and in-
ternal climate variability. Measuring precipitation is difficult
(Yang et al., 1999; Angulo-Martínez et al., 2018), and partic-
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Figure 9. Distribution of the relative error ((model-obs) / obs× 100 %) for the 20 year flood QT20. Boxplots for both bias-correction methods
(DBC and SBC) are constructed from the distribution of relative errors from all catchments within each size class (small, medium, and large).

Figure 10. Annual diurnal cycle of discharge in JJA (June, July, August) before bias correction (left column: A1 and A2) and after bias
correction (right column: B1 and B2) for two selected catchments. Top row is for catchment 02143040 (small size classification) and bottom
row is for catchment 02156500 (large size classification). The observations are shown in red. Streamflow simulations using uncorrected
ClimEx members are shown in light gray, and the ensemble mean is in black. Simulations using bias-corrected data are in light blue (SBC)
and light green (DBC) with the corresponding dark colors showing the ensemble mean. Time shown is local time, with 24:00 corresponding
to midnight.

ularly so at the sub-daily scale. Measuring issues related to
the use of tipping bucket rain gauges have been reviewed by
Segovia-Cardozo et al. (2021). Those issues are an underes-
timation of total amounts, and especially so for high inten-
sity rainfall and light drizzle, losses from evaporation, and

non-linear responses to rainfall intensity. In addition, at the
sub-daily scale, the above may cause small shifts in the actual
recording of small precipitation. Hourly recorded data are not
available at all weather stations, and when it is, records often
typically suffer from large amounts of missing data. Perform-
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ing a reliable estimation of the diurnal cycle is therefore by
no means a simple task. In this work, we used catchment-
averaged hourly precipitation from the MOPEX database.
Catchment selection for inclusion into the MOPEX database
was based on several quality control requirements, includ-
ing quality precipitation data and minimum station density.
While we can assume that the quality of precipitation data
is good (or at least better than average), we have no way to
quantitatively assess the quality of the observed diurnal cycle
over the reference period. This also limits our ability to eval-
uate the diurnal cycle from the climate model. Differences
are however large enough to suspect potential problems in the
physical representation of precipitation in ClimEx. The GCM
and RCM climate model structures do not include all mecha-
nisms leading to precipitation in the real world, and this may
lead to large errors (Legates, 2014). Even at the 0.11◦ res-
olution of ClimEx, convection has to be parameterized, po-
tentially leading to significant errors in the representation of
larger precipitation quantiles. Knist et al. (2020) and Prein
et al. (2016) showed that resolving convection in climate
models led to a better representation of precipitation intensity
and of the diurnal cycle of precipitation, for example. Maraun
et al. (2017) make a compelling argument with respect to the
selection/disqualification of climate models based on their
ability (inability) to represent key physical processes leading
to any variable under consideration. Bias-correcting unreal-
istically simulated variables raises many important issues.
Nevertheless, such issues are rather peripheral to the stated
goal of this paper, which is to explore the impact of correct-
ing (or not) the diurnal cycle of precipitation. The third factor
explaining the differences between observed and simulated
precipitation cycles is the role of internal variability. Figure 4
shows that internal variability plays a very significant role in
the representation of the diurnal cycle of precipitation. For
the fall period, the difference between the observed and mod-
eled cycles is smaller than the internal variability for most of
the cycle. The large internal variability of precipitation has
long been recognized in many studies (Deser et al., 2012;
Dai and Bloecker, 2019), and it shows that 30 years (23 in
the case of this study) of observations may simply not be a
long enough period to adequately represent the diurnal cycle
of precipitation.

After bias correction, climate model precipitation and tem-
perature outputs were used in a hydrological model to gener-
ate streamflows. Hydrological modeling results point to a rel-
atively modest but consistent increase in hydrological mod-
eling performance for all metrics (with the exception of low
flows) when the diurnal cycle of precipitation and tempera-
ture is corrected. The performance increase was clearly larger
for the small catchments, but improvements were also seen
for the medium and large size classes. The reasons for this
improvement are not easy to pinpoint. Correcting the tem-
perature diurnal cycle ensures a more realistic representation
of the daily cycle of evapotranspiration, which may explain
the better representation of the mean annual streamflow dis-

charge. We can gain some insights by looking at the diurnal
cycle of streamflow for summer (JJA) for one small and one
large catchment, as shown in Fig. 10. Small catchments are
known to have such a cycle, where increased evapotranspira-
tion in the afternoon (resulting from the strong temperature
diurnal cycle) leads to a corresponding reduction of stream-
flow. It can be seen that the streamflow cycle is very well
modeled for the small catchment when the diurnal cycle of
both variables is corrected. For the large-size catchment, the
diurnal streamflow cycle is flat for both observed and sim-
ulated streamflow. This shows that the catchment response
time (flow routing transfer time or time of concentration) is
too large for the daytime increased evaporation to show at
the basin outlet. The small differences induced by the diur-
nal cycle of precipitation and temperature data are smoothed
out during flow routing to the basin outlet. The internal vari-
ability of precipitation is transferred to streamflow, as rep-
resented by the large envelope from the 50 members of the
ClimEx ensemble.

The absence of performance improvements for the low
flow criterion can be partly explained by methodologi-
cal choices. Modeling low flows is a more difficult task
than modeling high flows, especially for conceptual models
whose simplified structure is ill-suited to accurately represent
the contribution of groundwater, which is complex, heteroge-
neous, and sometimes dominant in the absence of precipita-
tion. It is also well-known that the NSE criterion that was
chosen for the hydrological model calibration is more sensi-
tive to high-flows (Krause et al., 2005; Muleta, 2012). Since
modeled low flows displayed large biases with and without
bias correction of the diurnal cycle, we do not believe that
discussing badly modeled streamflow metrics is very rele-
vant. A discussion on low flows would be better served by
using a hydrological model targeted at droughts, either with
a different model structure or using a different objective func-
tion during calibration.

There are many limitations to this study. A single cli-
mate model was used and our results should be replicated
with other climate models. Potential differences may be re-
lated to bias correction and hydrological modeling. No bias-
correction method can correct all statistics and particularly so
when it comes to joint distribution properties (P and T in this
case). In addition, hydrological models are good spatial inte-
grators, but they are sensitive non-linear integrators. As such,
small changes between two climate models (e.g., spatial res-
olution, interannual variability) could ultimately result in dif-
ferent streamflow simulations. While dramatically different
results using other climate models are not expected, a differ-
ent sensitivity to catchment size could possibly be observed.
On the other hand, there are still not many climate model runs
available with a high enough temporal and spatial resolution
to apply to the study of small catchments, where the amplifi-
cation of extreme precipitation is more likely to become crit-
ical as the climate becomes warmer. There are even fewer
large ensembles being run at these fine resolutions. As shown
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in this paper, using a large ensemble shines a bright light on
the role of internal climate variability in defining an accu-
rate diurnal cycle for precipitation. The importance of inter-
nal variability and how it brings irreducible uncertainty to
the bias-correction process have been discussed in details by
(Chen et al., 2016, 2015, 2018; Maraun, 2012; Teutschbein
and Seibert, 2013). A single bias-correction method was used
in this study. It is well-known that the choice of a bias-
correction method has implications, often very significant,
on streamflow metrics, and that a large amount of uncertainty
can arise from this choice (Chen et al., 2013a; Iizumi et al.,
2017). For small catchments, we believe that using a multi-
variate method is highly desirable as preserving correlations
between precipitation and temperature is key for an adequate
representation of the diurnal cycle of key variables such as
streamflows (as shown in Fig. 10, for example). Small catch-
ments modeled at the sub-daily scale would be very good
targets to allow testing of the advantage of multivariate bias-
correction methods against univariate ones. Considering the
subtle non-linear interactions between precipitation and tem-
perature when modeling streamflows, it is possible that the
improvements shown here in the representation of stream-
flows on small catchments may not have been realized us-
ing a univariate correction. This is something which could be
tested in future work.

Hourly temperature from the ERA5 reanalysis was used
instead of observations from stations. However, at the catch-
ment scale, recent work at the daily temporal scale (Tarek
et al., 2020a, b) showed that the ERA5 temperature was as
good as, or better than, temperature gridded datasets derived
purely from weather station observations. In addition, Lom-
par et al. (2019) showed that using the ERA5 hourly tem-
perature to replace missing data in observed time series led
to very low RMSE values. This good performance of hourly
temperature data is not entirely surprising considering that
the surface temperature is assimilated by ERA5 and that the
surface temperature can relatively easily be inferred from
geopotential heights, which are typically well reproduced by
reanalysis.

One important remaining limitation of this work lies in the
bias-correction not having been evaluated in a split-sample
methodology. The efficiency of any bias-correction scheme
for an independent period depends on the stationarity of
the biases. It has been shown in many studies that climate
model biases are not constant in time (e.g., Wan et al., 2021;
Maraun, 2012) and that non-stationarity can be amplified
when using a hydrological model to simulate streamflows
(Hui et al., 2020). The results presented here show that bias-
correcting the diurnal cycle results in streamflow simulation
improvements when tested on a common time window com-
pared with that of the bias-correction process. Performing the
same test on a different time window may impact the bias
correction of the diurnal cycle of precipitation and tempera-
ture. In particular, the diurnal cycle of precipitation is not-
stationary due to internal variability (as shown in Fig. 4),

and it is possible that the advantages of the sub-daily bias-
correction method may be somewhat reduced when tested
over an independent validation period, as found by Chen
et al. (2018), in a comparison study of multivariate vs uni-
variate bias-correction methods. On the other hand, the diur-
nal cycle of temperature, which controls evapotranspiration
(an important part of the diurnal streamflow cycle) is much
less affected by internal variability (Fig. 3).

In light of the above results, and despite the limitations
of this study, some recommendations can be made to cli-
mate change impact modelers concerned with the impact of
extreme precipitation on small catchments. For catchments
smaller than 500 km2, a sub-daily hydrological modeling
step is generally required for a good simulation of the flood
peak and timing. For such catchments, the bias correction
should include a step to account for differences between the
observed and modeled diurnal cycles of temperature and, to
a lesser extent, precipitation. Climate models do generate (as
shown here) a realistic temperature diurnal cycle, and cor-
recting for differences in timing and magnitude will ensure
that the daily cycle of potential evapotranspiration matches
that of observations. As discussed above, bias-correcting the
diurnal cycle of precipitation is a bit more controversial. Tak-
ing into account the large internal variability of precipitation,
as well as the potential issues surrounding the reliability of
modeled precipitation, and especially extreme precipitation
under a parameterized deep convection, arguments could be
advanced from either side. Considering that these problem-
atic issues also exist at the daily scale, and that bias correc-
tion of precipitation at this timescale is almost universally
performed in impact studies, we feel that bias-correcting the
diurnal cycle of precipitation is likely the best recommen-
dation. A comparison between correcting only the temper-
ature diurnal cycle versus correcting both the precipitation
and temperature could help in figuring out the variable from
which most of the improvement is derived.

The issue of climate model resolution also needs to be
raised. Climate model resolution has been steadily improving
and there is hope that with a higher resolution, the need for
bias correction will be lessened (Lucas-Picher et al., 2021).
There are however computational physical limits as to how
rapidly model resolution can decrease. Model resolution also
competes with added model complexity, leading to a con-
vergence between GCMs and ESMs (Bierkens, 2015) at the
global modeling scale, rather than a sharp decrease in res-
olution. Regional climate models have seen the largest in-
crease in spatial resolution, albeit at the expense of a pro-
gressively smaller computational domain. Climate model im-
provements have been shown to reduce biases. These im-
provements come from the increased resolution (e.g., Lucas-
Picher et al., 2017) resulting in a better representation of
local topography and land surface, and from better physics
(e.g., Kendon et al., 2017). However, climate models remain
an imperfect representation of the real climate system, and
the sensitivity of impact models (e.g., hydrological model)
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to input data (e.g., precipitation, temperature) will still re-
quire some level of post-processing to insure realistic out-
puts from impact models. The ClimEx ensemble used in this
study comes from a high-resolution regional climate model
and quite clearly requires bias correction, showing that spa-
tial resolution is not the only piece of the puzzle. Using
uncorrected ClimEx data results in unrealistic streamflow
simulations (e.g., Fig. 5). However, with better and higher-
resolution models, there is hope that post-processing meth-
ods will only end up correcting minor model deficiencies,
and not correcting bad physics over a given area (e.g., Ma-
raun et al., 2017) such as an incorrectly modeled precipita-
tion annual cycle for example. Increasing spatial resolution
has however opened the door to convection-permitting mod-
els, which require a resolution of around 0.03◦ (3–4 km) or
better to resolve convection without the need for parametriza-
tion. Convection-permitting models are becoming more com-
mon and have shown to improve the representation of precip-
itation and extreme precipitation (Lucas-Picher et al., 2021).
Even with the better physics of these models, it is likely
that bias-correcting the daily cycle of precipitation will still
be needed; however, it will be done for the right reasons,
rather than to correct for sometimes implausibly large bi-
ases. For larger catchments (> 500 km2), results have shown
that improvements linked to the diurnal cycle correction be-
come progressively smaller. For sub-daily hydrological mod-
eling, it is however recommended to correct the diurnal cycle
of temperature to ensure adequate representation of the po-
tential evapotranspiration diurnal cycle. Correcting the daily
cycle of precipitation is unlikely to make a big difference
in streamflow metrics, considering the smoothing impact of
flow routing. However, no ill effect of the diurnal cycle cor-
rection was observed for the medium to large catchments in
this study. For these catchments, even though it was not in-
vestigated, it is likely that the relatively small improvements
noted originated from the correction of the temperature daily
cycle and not from precipitation.

5 Conclusion

This paper investigated the impact of bias-correcting the di-
urnal cycle of a climate model on the computation of stream-
flow over 133 small to large catchments, using a high spa-
tial (0.11◦) and temporal (1 h) regional climate simulation
(ClimEx-LE) over the northeastern USA. The ClimEx re-
gional climate model simulated a very realistic tempera-
ture diurnal cycle, but with timing and amplitude biases.
There were however large differences between the simulated
and observed diurnal cycles of precipitation. These differ-
ences result from a combination of observation errors, inter-
nal variability of precipitation and an inadequate represen-
tation of physical processes leading to precipitation by the
climate model. These biases were successfully corrected us-
ing a multivariate quantile mapping method. The impact of
bias-correcting (or not) the diurnal cycle of precipitation and
temperature was evaluated on small (< 500 km2), medium
(between 500 and 1000 km2), and large (> 1000 km2) catch-
ments. Results indicate that correcting the diurnal cycle re-
sults in better streamflow simulation, especially for smaller
catchments, which have a definite sub-daily response time.
For the small catchments, the relative error between observed
and simulated flow quantiles was reduced. For example, the
median reduction was 5 % for the 95th and 99th quantiles,
and 4 % for the median value of the 20 year flood across all
small catchments. For larger catchments, bias-correcting the
diurnal cycle only results in minor streamflow improvements.
Despite the large differences in the diurnal cycles of observed
and simulated precipitation, and the limitations of climate
models in generating precipitation with parameterized con-
vection, we nonetheless recommend bias-correcting the di-
urnal cycle of both temperature and precipitation when con-
ducting climate change impact studies on small catchments
at the sub-daily time step.
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Appendix A

Table A1. USGS ID of the selected MOPEX catchments.

Catchment ID

01197500 03175500 02138500 01567000 02126000 02472000 03324300 03524000 05440000
01518000 03238500 02143000 01574000 02135000 02478500 03326500 03528000 05447500
01520000 03303000 02143040 01628500 02156500 02479300 03328500 03540500 05454500
01541000 03346000 02143500 01631000 02202500 02482000 03331500 04100500 05515500
01556000 03438000 03111500 01643000 02217500 02486000 03339500 04113000 05517500
01558000 03443000 03361650 01664000 02228000 03011020 03345500 04115000 05518000
02018000 03473000 03504000 01667500 02329000 03109500 03349000 04164000 05520500
02058400 03531500 03550000 01668000 02339500 03164000 03361500 04176500 05526000
02118000 04201500 07261000 01674500 02347500 03168000 03362500 04178000 05552500
02475500 04221000 01371500 02016000 02365500 03237500 03364000 04185000 05554500
03079000 05517000 01543500 02055000 02375500 03266000 03365500 04191500 05555300
03161000 01372500 01548500 02083500 02383500 03269500 03451500 04198000 05569500
03167000 01445500 01559000 02102000 02387500 03274000 03455000 05430500 05582000
03173000 01560000 01562000 02116500 02448000 03289500 03465500 05435500 05584500
05592500 05593000 05594000 07029500 07056000 07290000 07363500

Code and data availability. The MOPEX climate and streamflow
database can be downloaded from the following link: https:
//hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/ (Duan et al.,
2006). ERA5 data are available on the Copernicus Climate Change
Service (C3S) Climate Data Store: https://cds.climate.copernicus.
eu/cdsapp#!/dataset/reanalysisera5-single-levels?tab=form (Hers-
bach and Dee, 2016). ClimEx data can be downloaded from
https://www.climex-project.org/en/data-access (ClimEx, 2020).
The GR4J model (Perrin et al., 2003) and CemaNeige snow
module (Valéry et al., 2014) are available on the Matlab File
Exchange: https://github.com/TBenkHyd2/Hydrological_Models
(Benkaci, 2022). The SCE-UA global optimization algorithm can
be downloaded from https://www.mathworks.com/matlabcentral/
fileexchange/7671-shuffled-complex-evolution-sce-ua-method
(Duan, 2020).
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