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Advances of the analytical, numerical, experimental and field-measurement approaches in
wind engineering offers unprecedented volume of data that, together with rapidly evolving
learning algorithms and high-performance computational hardware, provide an
opportunity for the community to embrace and harness full potential of machine
learning (ML). This contribution examines the state of research and practice of ML for
its applications to wind engineering. In addition to ML applications to wind climate, terrain/
topography, aerodynamics/aeroelasticity and structural dynamics (following traditional
Alan G. Davenport Wind Loading Chain), the review also extends to cover wind damage
assessment and wind-related hazard mitigation and response (considering emerging
performance-based and resilience-based wind design methodologies). This state-of-the-
art review suggests to what extend ML has been utilized in each of these topic areas within
wind engineering and provides a comprehensive summary to improve understanding how
learning algorithms work and when these schemes succeed or fail. Moreover, critical
challenges and prospects of ML applications in wind engineering are identified to facilitate
future research efforts.
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1 INTRODUCTION

Wind engineering is an interdisciplinary field to provide rational treatment of interaction between
the atmospheric boundary-layer winds and human activities (Cermak 1975). There is a long and
significant history for machine learning (ML) applications in several subfields involved in wind
engineering, such as fluid mechanics (Brunton et al., 2020), meteorology (Chen et al., 2020) and
mechanics of structures (Salehi and Burgueño 2018). The application of statistical learning to
turbulence modeling in early 1940s (Kolmogorov 1941) and perceptron learning to structural
design in late 1980s (Adeli and Yeh 1989) are representative examples. On the other hand, it seems
similar passions have not been shared by researchers in the wind engineering community. Actually,
ML-based wind engineering is still in its infancy stage and the full-capacity of ML has not been
leveraged yet. However, the exceptional performance of ML to extract hidden informative features
from data shows great promise for addressing unresolved complexities and issues originated from
first principles investigations in the field of wind engineering. In addition, recent advances in
performance-/resilience-based wind engineering have placed new demands on wind
characterization, aerodynamics modeling and structural analysis that need powerful simulation
tools such as ML to overcome the emerging challenges by simultaneously achieving high
computational efficiency and accuracy. It is reasonable to expect the revitalization of ML
within the wind engineering field that is fueled by 1) rapidly evolving learning algorithms and
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high-performance computational hardware, 2) unprecedented
volume of data generated with improved wind engineering
techniques and methodologies, and 3) urgent needs for more
accurate and efficient learning and modeling of complex
phenomena in wind-related problems.

As a key subfield of artificial intelligence (AI) [that together with
natural intelligence plays a role of the computational part of the
ability to achieve goals in the world (McCarthy 2007)], ML
develops learning algorithms that use inputs from a sample
generator and observations from a system to generate an
approximation of its outputs (Cherkassky and Mulier 2007).
The evolution of learning algorithms started when McCulloch
and Pitts (1943) invented the first mathematical model of a neural
network. In 1952, Arthur Samuel from IBM introduced the first
self-learning computer program to play the game of checkers
(Wiederhold et al., 1990). Then, Rosenblatt (1957) designed the
first neural network for computers (the perceptron) that set the
foundation of deep neural networks (DNNs). Kelley (1960)
presented the method of gradients (or method of steepest
descent) in his analytical development of flight performance
optimization, which was used to develop the basics of a
continuous backpropagation model for training feedforward
neural networks (Rumelhart et al., 1986). On the other hand,
Hopfield (1982) created a feedback neural network that was
considered as the first recurrent neural network (RNN). LeCun
et al. (1989) combined convolutional neural network (CNN) and
backpropagation algorithm to recognize handwritten digits.
Watkins (1989) introduced the concept of Q-learning based on
Markov process to significantly enhance the practicability and
feasibility of reinforcement learning. Later, Cortes and Vapnik
(1995) designed a support-vector network considered as a new
learning machine for two-group classification problems with high
generalization ability. Hochreiter and Schmidhuber (1997)
introduced a long short-term memory cell to address the long-
term dependency issue in RNN. To overcome the learning
difficulty in DNNs, Hinton et al. (2006) derived a fast, greedy
algorithm that can learn deep, directed belief networks one layer at
a time and hence facilitate the rapid development of deep learning.
Recently, Goodfellow et al. (2014) proposed a generative
adversarial network consisting of two models (i.e., generative
and discriminative models) that compete with each other in a
zero-sum game. The sophisticated ML algorithm needs the help of
advanced computational hardware [e.g., graphics processing unit
(GPU) and tensor processing unit (TPU)] to unlock its full
potential (Berggren et al., 2020). For example, the great success
of AlexNet (a deep CNN on GPU) is essentially attributed to its
ability to leverage GPU for training (Krizhevsky et al., 2012).

Equipped with both sophisticated algorithms and advanced
computational hardware, the learning machine (LM) is driven by
data. Both the quantity (data rich and comprehensive) and quality
of the training/testing data are important to ensure good
performance of ML applications. Wind engineering by nature is
a data-rich field (e.g., high spatial and temporal resolution), and it
is rapidly becoming a data-comprehensive domain due to recent
advances of analytical, numerical, experimental and field-
measurement methods (Kareem and Wu 2013; Hangan et al.,
2017). The data of spatiotemporally varying wind flows are

extended from synoptic events measured by airport wind
observation system with traditional anemometers to non-
synoptic events measured by several field campaigns with
advanced doppler radars and Lidars (Light Detection and
Ranging) [e.g., Verification of the Origins of Rotation in
Tornadoes Experiment (VORTEX) and Radar Observations of
Tornadoes and Thunderstorms Experiment (ROTATE)
campaigns for tornado events and Severe Convective OUtflow
in Thunderstorms (SCOUT) and Wind Ports and Sea (WPS)
campaigns for thunderstorm downburst events]. Massive wind
data over complex terrain/topography are collected by continuous-
wave short-range WindScanner systems (e.g., Berg et al., 2013).
The low Reynolds-number, straight-line-wind, stationary
aerodynamics data generated in conventional boundary-layer
wind tunnels are extended to 1) high-Reynolds-number
aerodynamics data resulting from recently built large-scale
facilities [e.g., windstorm simulation facility at Insurance
Institute for Business and Home Safety (IBHS), Wall of Wind
(WOW) at Florida International University andWind Engineering
Energy and Environment (WindEEE) at Western University], 2)
vortex-flow aerodynamics data produced by tornado simulators
(e.g., tornado-like vortex simulator at Iowa State University and
VorTECH at Texas Tech University), and 3) transient
aerodynamics data generated in emerging actively controlled
wind tunnels (e.g., individually-controlled multi-fan wind
tunnels at Tongji University, University at Buffalo and
University of Florida). Also, significant nonlinear and inelastic
structural dynamics data under strong winds are being created in
laboratories due to advances in performance-based wind design
methodology (Abdullah et al., 2020). In addition to the
experimental and field-measurement approaches the
comprehensive data are further enriched by high-fidelity large-
scale simulation tools that are advanced by theoretical
developments in wind engineering field (Blocken 2014; Kareem
2020), such as computational fluid dynamics/computational
structural dynamics (CFS/CSI)-based hybrid modeling of
transient structural response (Hao and Wu 2018) and statistics-
based synthesis of nonstationary wind field (Wang andWu 2021).
The Computational Modeling and Simulation Center (SimCenter)
of the Natural Hazards Engineering Research Infrastructure
(NHERI) program provides an effective way to integrate various
simulation tools (Deierlein and Zsarnóczay 2021). Furthermore,
novel real-time aerodynamics hybrid simulation techniques are
emerging to effectively generate nonlinear and full-scale data in
wind engineering by seamlessly stitching the numerical modeling
in computer and physical testing in wind tunnel (Wu et al., 2019;
Wu and Song 2019). Data quality is essential to facilitate curation
and reuse of the diverse and large datasets generated in the field of
wind engineering. There are numerous methods and criteria
specified by various wind engineering research groups/centers
to ensure the high data quality, and the NHERI DesignSafe
cyberinfrastructure platform recently suggested the best
practices for detailed data quality assessment in terms of
metadata quality, data content quality, data completeness and
representation and data publications review (Rathje et al., 2017).

The improved understanding concerning the complex nature of
wind fields (e.g., nonstationary and non-Gaussian features), the
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associated structural aerodynamics/aeroelasticity (e.g., transient and
nonlinear features) and the resulting load effects (e.g., nonlinear and
inelastic structural response), as well as the necessary shift from a
prescriptive design approach to performance-based design
methodology and further to resilience-based design philosophy
(i.e., improving the rapidity, robustness, resourcefulness and
redundancy), poses new challenges in wind engineering field.
Hence, there is an urgent need of more accurate and efficient
learning and modeling tools for effective solutions. The
conventional stationary and linear analysis framework for wind-
structure interactions established by Robert H. Scanlan
(1914–2001) and Alan G. Davenport (1932–2009) has been very
successful due to its simplicity and applicability, however, its
shortcomings have begun to surface since the underlying
complexities associated with many wind engineering problems
clearly show a departure from implicit assumptions of
stationarity, Gaussianity and linear features. A number of semi-
empirical nonlinear reduced-order models have been developed in
this context and improvement in their efficiency and robustness is a
topic of cutting-edge research in the wind engineering community
(Wu 2013). Unfortunately, these reduced-order models do not
always have a satisfactory representation of the full nonlinear
equations which govern the complex phenomena in wind-related
problems. An alternate way is to utilize the CFD techniques,
however, their computational effort is too high considering the
three-dimensional nature of winds and associated bluff-body
aerodynamics. While CFD plays a significant role in generating
high-fidelity data of complex wind-structure interactions, its high
computational cost makes it not easy to be used either in an
informational mode to enhance wind hazard-related planning
and development activities (e.g., risk mitigation that needs to
quickly run thousands of scenarios at minimal computational
expense) or in an operational mode to support emergency
management and response associated with a wind hazard (e.g.,
decisionmaking that needs real-time prediction capability under an
uncertain environment). To address the emerging challenges, data-
drivenmachine learning offers a promising approach that is capable
of processing big data in wind engineering field as well as modeling
associated complex phenomena with high computational efficiency
and simulation accuracy.

With the rapid development of ML applications in wind
engineering due to the confluence of advanced learning
algorithms, high-performance computational hardware and
big data, it is believed that a systematic review on this
subject is important to suggest to what extend ML has been
utilized in each of the topic areas within wind engineering and
provide a comprehensive summary to improve understanding
how learning algorithms work and when these schemes succeed
or fail. Specifically, a total of 65 ML algorithms (Appendix A)
are identified for their applications in the five topic areas of wind
climate, terrain/topography, aerodynamics/aeroelasticity,
structural dynamics and damage assessment, and mitigation
and response. This review first presents technical background of
typical ML approaches in terms of supervised learning,
unsupervised learning, semi-supervised learning and
reinforcement learning (RL), followed by the state of research
and practice of ML applications to each topic area within wind

engineering field, and concluded with critical research gaps and
future prospects. While ML can augment the analytical
approaches [e.g., data-driven discovery of closure models
(Raissi et al., 2019)], numerical schemes [e.g., data-driven
turbulence modeling (Duraisamy et al., 2019)], experimental
tests [e.g., data-driven active control of transient wind
simulation (Li et al., 2021a)] and field measurements [e.g.,
data-driven sparse sensor placement (Manohar et al., 2018)]
in wind engineering, the review only focuses on its role to
complement existing methodologies and hence potentially
extend/transform current lines of wind engineering research
and practice.

2 BACKGROUND OF MACHINE LEARNING

Machine learning (ML) is a subclass of artificial intelligence (AI)
that extracts the underlying pattern within a set of data (e.g.,
Murphy 2012; Goodfellow et al., 2016; Mohri et al., 2018). To
acquire the hidden pattern and knowledge of a problem, the
learning process involves in general five important steps, namely
data collection, data preparation, training, evaluation and
parameters tuning. Once the learning machine is trained based
on the available data (usually retrieved from analytical solutions,
numerical simulations, experimental tests or full-scale
measurements), it can predict future or unseen events. Based
on the data fed into the learning machine, ML algorithms can be
classified into four categories, namely supervised learning,
unsupervised learning, semi-supervised learning and
reinforcement learning (Figure 1).

To train the algorithm, the supervised learning fully depends
on labeled data, the unsupervised learning relies purely on
unlabeled data and the semi-supervised learning combines
limited labeled data with a large amount of unlabeled data.
For reinforcement learning (RL), there is essentially no
predefined data. Although RL is occasionally treated as semi-
supervised learning considering the agent learns from its own
experiences in terms of infrequent and partial rewards, it is
classified here into separate category to highlight there is no
explicit, external supervisory information provided to the
learning agent. It is noted the kriging and polynomial chaos
expansions as two widely-used, data-driven statistical
interpolation approaches are not reviewed in this study.

2.1 Supervised Learning
Supervised learning models are a set of algorithms that learn the
mapping, from given labeled training data, between known inputs
and outputs. The trainable parameters of these models are
determined based on the minimization of the loss function.
Supervised learning models usually require a large amount of
reliable and unbiased data for training which might not be always
available. These algorithms can be employed for two important
tasks, namely regression and classification.

2.1.1 Regression
Regression is a type of supervised learning in which the output is a
numeric variable. Among many regression models, feed-forward
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neural networks (FFNN) are widely utilized in wind engineering
field [Figure 2]. They are statistical models inspired by biological
learning (McCulloch and Pitts 1943) and characterized by
adaptive weights between neurons which are tuned using a
learning algorithm from observed training data. For simplicity,
the FFNN is also denoted as artificial neural network (ANN) in
this study.

Deep neural networks (DNN) are also a type of FFNN
characterized by a deep architecture equipped with multiple
layers, and hence allows for better generalization and accuracy
(Deng and Yu 2014; Pouyanfar et al., 2018). The convolutional
neural networks (CNN) is another important FFNN with sparse
convolutional matrices that are usually employed for pattern
recognition and image classification (Krizhevsky et al., 2012;
Goodfellow et al., 2016). Recurrent neural networks (RNN) are
a class of feedback neural networks that allow previous outputs to
be used as inputs while having hidden states and are suited to
model time-dependent regression problems (e.g., Medsker and Jain
1999; Mandic and Chambers 2001). Long short-term memory
(LSTM) are an advanced version of RNN to alleviate the gradient
vanishing and exploding issue by only keeping necessary past
information in future model states (Bengio et al., 1994).

2.1.2 Classification
Classification is another type of supervised learning in which the
output is a categorical variable or a class. Support vector machines
(SVM) (Scholkopf and Smola 2018) and random forest (RF)
(Breiman 2001) are two classical examples of classification
algorithms. SVM classifier identifies a hyperplane in a high-
dimensional space in which a simple linear classification can be
performed. RF classifier, on the other hand, fits a number of
decision tree classifiers on various sub-samples of the dataset,
then averages the results to improve outcome accuracy [Figure 3].

2.2 Unsupervised Learning
Unsupervised learning models draw inferences from datasets to
describe hidden structures from unlabeled data based on

FIGURE 1 | Machine learning categories.

FIGURE 2 | Architecture of a typical FFNN.

FIGURE 3 | Architecture of a typical random forest classifier.
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inherent characteristics (Russell and Norvig 2016). These
models usually group instances of input data using a defined
similarity index (global criterion). Clustering and
dimensionality reduction are two standard examples of
unsupervised learning applications.

2.2.1 Clustering
Clustering is an unsupervised learning task used for pattern
recognition that automatically discovers natural groups or clusters
in data. A cluster refers to a collection of data points aggregated
togetherwith similar features (Maulik andBandyopadhyay 2002). The
k-means clustering is one of the simplest unsupervised ML models. It
is a centroid-based algorithm that partitions the data into k clusters.
Mean-shift clustering is another unsupervised model with a sliding-
window-based algorithm to identify dense areas of data points. Other
clustering algorithms such as the density-based spatial clustering of
applications with noise, the expectation–maximization clustering
using gaussian mixture models and the agglomerative hierarchical
clustering are also popularly used for statistical data analysis.

2.2.2 Dimensionality Reduction
Dimensionality reduction aims to find the most important
features within the dataset by identifying lower-dimensional
representations for high-dimensional data. It minimizes the
storage space, reduces the computation time and avoids
overfitting. The ML-based dimensionality reduction can be
divided into linear and nonlinear algorithms. The principal
component analysis (PCA) is a commonly used linear
technique that can be regarded as a two-layer neural network
with a linear activation function. It essentially provides new
uncorrelated variables, also denoted as principal components,
which maximize the variance. The nonlinear autoencoder is a
specific type of FFNN that compresses the initial input space into
a reduced dimensional space using the encoder and then
decompresses the obtained latent space back to the original
input space using the decoder. Accordingly, deep autoencoders
have a “bottleneck” architecture designed for extraction of
representative features [Figure 4]. The autoencoder algorithm

has been attracting attention in fluid mechanics community for
efficient development of reduced-order models.

2.3 Semi-Supervised Learning
Semi-supervised learning models operate based on limited
labeled data with a large amount of unlabeled data. Hence,
they can be regarded as combination results of supervised
learning and unsupervised learning algorithms. The generative
adversarial network (GAN) is a well-known semi-supervised
learning algorithm for estimating generative models via an
adversarial process. One important feature of semi-supervised
learning algorithms is their labelled-data efficiency. To this end, it
may be reasonable to consider the physics-informed deep
learning (PIDL) as a semi-supervised model that leverages
physics-based equations in the augmented loss function to
significantly reduce the data demand during training process.

2.3.1 Generative Adversarial Network
The GAN model consists of two competing neural networks,
namely the generator and the discriminator (Goodfellow et al.,
2014). It generates new data based on a probability distribution
that approximately represents the training data (true or labelled
data). Specifically, the generator produces fake samples to imitate
the distribution of a real dataset, then the discriminator tries to
distinguish (through a classification process) between the real
samples and fake ones (from the generator). The GAN model is
trained such that the new generated samples accurately represent
the underlying mechanisms of the studied system. The
architecture of a typical GAN model is illustrated in Figure 5.

2.3.2 Physics-Informed Deep Learning
The concept of PIDL models was originally proposed several
decades ago (Psichogios and Ungar 1992; Dissanayake and Phan-
Thien 1994) in which prior knowledge (in terms of the physics-
based governing equations) is integrated within the neural
networks to reduce the high-volume of required training data.
Typically, a small amount of labelled data along with a large
number of unlabeled data that satisfy the underlying physics of
the system of interest (also denoted as collocations points) are
used to train these models. Hence, self-supervision plays a
significant role in PIDL models. Recently, Raissi et al. (2017a,

FIGURE 5 | Architecture of a typical GAN model.

FIGURE 4 | Architecture of a typical autoencoder model.
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b) advanced the PIDL models by leveraging the automatic
differentiation technique to solve partial differential equations.
The architecture of a typical PIDL model is presented in Figure 6.

2.4 Reinforcement Learning
RL algorithm is usually formulated based on Markov decision
process (Sutton and Barto, 2018). The core part of RL is its agent
that interacts with its environment. Accordingly, the agent learns a
policy thatmaps the states to the actions bymaximizing the expected
cumulative reward using an automated trial-and-error process (e.g.,
Mnih et al., 2015; Silver et al., 2017). Typical reinforcement learning
models include value-based models (e.g., Q-learning or deep
Q-learning) (Watkins and Dayan 1992), policy-based models
(e.g., deep deterministic policy gradient) (Lillicrap et al., 2015)
and hybrid models (e.g., actor-critic) (Williams 1992). Recently,
the deep RL (with DNN-based policy) has been gaining attention in
wind engineering community as an efficient way for dynamic
control and shape optimization (Li et al., 2021a; 2021b). The
architecture of a typical deep RL is depicted in Figure 7.

3 APPLICATIONS OF MACHINE LEARNING
TO WIND ENGINEERING

This section provides a comprehensive review of the state of
research and practice of ML for its applications to wind
engineering. In addition to ML applications to wind climate,
terrain/topography, aerodynamics/aeroelasticity and structural

dynamics (following traditional Alan G. Davenport Wind
Loading Chain), the review also extends to cover wind damage
assessment and wind-related hazard mitigation and response
(considering emerging performance-based and resilience-based
wind design methodologies). Considering the overwhelming
number of existing research publications, this review is by no
means exhaustive. Rather, it attempts to provide a state-of-the-art
perspective on ML applications to wind engineering-related
fields.

3.1 Wind Climate
The review of ML applications to wind climate is organized by
classifying it into classical boundary-layer winds, tropical
cyclones and non-synoptic events. By leveraging the
increasingly available datasets (e.g., satellite data), ML has
become a supporting tool or even a reliable competitor of
classical approaches for wind climate modeling (e.g., CFD).
Most reviewed articles employed ML algorithms as a
regression (e.g., long-term prediction of surface wind speed) or
a classification (e.g., downburst occurrence prediction) tool. The
selected metrics to evaluate the performance of ML algorithms
included the root mean square (RMS), coefficient of correlation,
mean squared error (MSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), coefficient of determination
(R2), among others.

3.1.1 Classical Boundary-Layer Winds
Air movement in the planetary boundary layer plays a
fundamental role in current wind design of structures and
infrastructure. Although a detailed universal description of
flow characteristics in the boundary-layer region has not been
possible, the classical boundary-layer winds in gales from large
depressions or in monsoons can be well represented by a number
of empirical or semi-empirical models [e.g., power-law profile for
distribution of mean wind speed (Davenport 1960) and power
spectrum for turbulent fluctuations (Panofsky and McCormick
1960)]. The major research efforts have been focused on the
accurate estimate of design wind speed in a statistical analysis
framework (Simiu and Scanlan 1978). Specifically, long-term
wind data from meteorological observations are analyzed
based on extreme value theory to obtain the design wind
speed at each location. However, the accurate forecast of

FIGURE 6 | Architecture of a typical PIDL model.

FIGURE 7 | Architecture of a typical RL.
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classical boundary-layer winds is very challenging since it
involves a large range of various temporal and spatial scales
(e.g., from fractions of a meter to several thousand kilometers for
spatial scale and from fractions of seconds to several years for
time scales). Usually, the temporal and spatial resolutions from
the state-of-the-art weather forecast models [e.g., global forecast
system from National Oceanic and Atmospheric Administration
(NOAA)] are not sufficient for wind engineering purpose. On the
other hand, the unprecedented volumes of data from field
measurements (e.g., weather station and satellite) provide a
solid foundation to advance ML applications for classical
boundary-layer winds.

Table 1 presents the reviewed applications of ML for classical
boundary-layer winds, where the ML model, training scheme,
input data, output data, data source and performance metric are
summarized for each application. The training/testing data were
essentially retrieved from field measurements. From Table 1, it
can be concluded that most applications used ML as a regression
model for prediction of mean wind speed (averaging time
ranged from minutes to months), while the short-term
prediction of turbulent fluctuations that are very important
to structural dynamics is very limited. In many applications,
the selection of ML models is simply based on gut feeling or past
experience. Although several researchers conducted comparison
studies to select good ML models for their specific applications,
it might be very challenging to generalize the obtained results to
other applications due to a lack of a systematic comparison
framework.

3.1.2 Tropical Cyclones
Tropical cyclones (TCs), also commonly known as hurricanes
in North Atlantic, typhoons in western North Pacific and
cyclones in Australia, are low-pressure storms that form over
a warm ocean surface (Holton and Hakim 2013). With an
average of 90 events reported annually (Zhao et al., 2012),
TCs and their cascading hazards (e.g., wind, rain, storm surge
and wave) pose a serious threat to public safety, livelihoods
and local economies in many coastal regions around the
globe. Hence, significant efforts have been made in
modeling and predicting TCs and relatively well-
established mesoscale numerical weather prediction
frameworks [e.g., Weather Research and Forecasting
(WRF) model] are available for high-fidelity simulations.
However, the high-fidelity computationally expensive
models might not be always appropriate for planning
activities in an uncertain environment where Monte Carlo
simulations are needed or emergency managements where
real-time or near-real-time predictions are required. The
high demand for a rapid and reliable technique used to
assist decision-makers and planers results in many ML
models for efficient simulations of key stages in the life
cycle of a TC. These ML applications to TCs are fueled by
increasingly available remotely-sensed and high-fidelity
numerical data. The review in this section is organized
following the four important components of full track of a
TC, namely genesis, translation, intensity and wind field.

3.1.2.1 Tropical Cyclone Genesis
TC genesis requires several necessary environmental conditions
(e.g., existence of low-pressure area and sea surface temperature
of at least 26°C), however, the exact mechanisms of TC formation
are still not well understood (Gray 1968, 1979; Emanuel 2003;
Holton and Hakim 2013). To predict the TC genesis, both
numerical and statistical models were developed. The
numerical models (e.g., global forecast system) are essentially
based on the physical principles and their performance heavily
depends on improved understanding of TC genesis mechanism.
The statistical models (e.g., Michael 2017; Chen and Duan 2018;
Cui and Caracoglia 2019) linearly relate the TC genesis to a few
selected environmental factors, and hence show poor
interpolation and limited predictability. The lack of a deep
understanding of underlying mechanisms stimulated data-
driven techniques for TC genesis simulations. As a result,
increasing ML applications are available to accurately predict
TC genesis. Table 2i presents the reviewed applications of ML for
TC genesis, where the ML model, training scheme, input data,
output data, data source and performance metric are summarized
for each application. The training/testing data were essentially
retrieved from satellite measurements along with reanalysis
results. It is expected the improved spatial resolution of
currently available datasets will further enhance simulation
results of ML models. From Table 2i, it can be concluded that
most applications used ML as a classification model for either
short-term or long-term forecasting of TC genesis. Although
more dynamic and thermodynamic environmental factors can be
retrieved using advanced remote sensing technologies in recent
years, the identification of the most appropriate set of inputs to
ML models (predictors) is still very challenging.

3.1.2.2 Tropical Cyclone Translation
Numerical forecast models have been successfully applied in
forecasting normal TC trajectories, but they are
computationally expensive. Although several statistical models
were also developed based on a large amount of historical TC path
records (e.g., Vickery et al., 2000,2009; Emanuel et al., 2006; Hall
and Jewson 2007; Chen and Duan 2018; Snaiki and Wu 2020a;
Snaiki and Wu 2020b), their linear nature makes them incapable
of capturing the inherent nonlinearities in such a complex
dynamic system (Zhang and Nishijima 2012). Both numerical
and statistical models or their combinations (statistical-dynamics
models) show poor performance in forecasting sudden speed
change, recurvature and stagnation in TCmovement (Chen et al.,
2020). To satisfy both simulation accuracy and efficiency,
increasing ML applications emerged for TC path prediction.
Table 2ii presents the reviewed applications of ML for TC
translation, where the ML model, training scheme, input data,
output data, data source and performance metric are summarized
for each application. The training/testing data were essentially
retrieved from meteorological databases (e.g., satellite data) and
reanalysis results. Typically, the TC track information is available
only at each 6-h interval. From Table 2ii, it can be concluded that
most applications used ML as a regression model for TC path
prediction. Since the forecast of TC track can be regarded as a
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TABLE 1 | Summary of ML applications for classical boundary-layer winds.

Application ML model Training scheme Input data Output data Data source Performance
metric

Remarks

Forecasting
mean hourly
wind speed
time series
Sfetsos (2000)

LNN-ANN-NLN-
RBF-ANFIS-ERNN

Gradient descent,
Levenberg Marquardt

Past mean hourly
data (six past
measurements)

Next mean hourly
wind speed

Field
measurements at
the Odigitria of the
Greek island of
Crete on March
1996 (total of
744 h)

RMS NLN with logic
rule outperformed
all other models

Forecasting
daily, weekly
and monthly
mean wind
speeds More
and Deo
(2003)

ANN-JRNN Back-propagation,
cascade correlation

Past daily-,
weekly- and
monthly averaged
mean wind speed

Next daily, weekly
and monthly
averaged mean
wind speeds

Field
measurements
from 1989 to 2000
in two locations in
Mumbai, India

Coefficient of
correlation

Best performance
by RNN trained
with the cascade
correlation

Prediction of
the next daily
mean wind
speed
Mohandes
et al. (2004)

ANN-SVM Levenberg-Marquardt mean daily wind
speed of previous
days (ranging
between 1 and 11)

Next daily mean
wind speed

12 years of mean
daily wind speed in
Medina city, Saudi
Arabia

MSE SVM model
outperformed the
ANN model

Long-term
wind speed
and power
forecasting
Barbounis
et al. (2006)

IIRANN, DRNN,
LAFMN

Global recursive
prediction error

3-days forecast of
wind speed and
direction provided
by meteorological
models at four
nearby sites

Hourly meanwind
speed and power
for up to 72-h

Atmospheric
modeling system
SKIRON and wind
turbines data from
April 1st, 2000 until
31 December
2000 in Rokas’
wind park on the
Greek island of
Crete

MAE-RMS Similar
performance
results for the
three models

Short-term
mean wind
speed
forecasting
Potter and
Negnevitsky
(2006)

ANFIS least-squares estimator
and the gradient descent

4 to 6 past mean
wind speeds and
direction with a
2.5 min time step

Next mean wind
speed and
direction at
2.5 min

21-month time
series of 2.5 min
mean wind from
Hydro Tasmania at
Tasmania,
Australia

Mean absolute
percentage error

ANFIS model
outperformed a
locally developed
persistence
model

Prediction of
the next hourly
mean wind
speed Li and
Shi (2010)

ANN, RBF, ALEN Levenberg–Marquardt Past hourly mean
wind speed
observations (up
to 8 observations)

Next hourly mean
wind speed

Anemometers
data for 1 year
(2002) in two sites
in North Dakota

Mean absolute
error and RMSE

ANN
outperformed
other models

Prediction of
the hourly
mean wind
speed and
direction
Lahouar and
Slama (2014)

SVM (radial basis
kernel)

- Past hourly mean
wind speed and
direction in the site
(up to 10 past
samples)

Next hourly mean
wind speed and
direction for a
lead time up
to 10 h

Sidi Daoud wind
farm in Tunisia
from 2010 to 2011

RMSE and MAE Satisfactory
results

Short-term
wind direction
forecasting
Tagliaferri et al.
(2015)

ANN, SVM (RBF
kernel)

Gradient descent Wind direction at
past minutes

Next 1–2 min
wind direction

34 days data from
the 34th America’s
Cup in 2013, San
Francisco

Mean absolute
error and mean
effectiveness
index

SVM model
outperformed the
ANN model

Prediction of
the monthly
averaged
mean wind
speed Kumar
and Malik
(2016)

ANN, GRNN Missing 10 variables (e.g.,
latitude, longitude,
earth temperature,
atmospheric
pressure)

Monthly averaged
mean wind speed

Data retrieved from
NASA
corresponding to
various cities in
India

MSE and RMSE GRNN
outperformed the
ANN model

Predict of
short-term

Hybrid model
(wavelet packet

- Past values of the
wind speeds

Mean wind speed
for up to 1 day

Data from several
sites in the Sichuan

MAE and RMSE WPD-DBSCAN-
ENN

(Continued on following page)
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TABLE 1 | (Continued) Summary of ML applications for classical boundary-layer winds.

Application ML model Training scheme Input data Output data Data source Performance
metric

Remarks

mean wind
speed Yu et al.
(2018)

decomposition
[WPD] + density-
based spatial
clustering of
applications with
noise [DBSCAN] +
ENN), WPD-
ENN, ENN

determined based
on the gradient
boosted
regression trees

with a 10-min
time step

Province, China
over 16 days with
an average wind
speed of 10 min

outperformed all
other models

Time-series
prediction of
mean wind
speed
Khosravi et al.
(2018a)

ANN, SVR, FIS,
ANFIS, GMDH

Bayesian Regularization,
Scaled Conjugate
Gradient, BFGS Quasi-
Newton, Levenberg
Marquardt and Resilient
backpropagation

Past values of
wind speed
(number not
mentioned)

Mean wind speed
for approximately
361-time steps
ahead with
several time
intervals (e.g., 5-
min and 30-min)

Osorio wind farm
in the south of
Brazil

RMSE, MSE SVR, GMDH and
ANFIS models
preformed the
best. The
prediction
accuracy of
ANFIS was
increased when
coupled with
particle swarm
optimization
(PSO) and genetic
algorithm (GA).
The Levenberg
Marquardt
performed the
best

Prediction of
the mean wind
speed,
direction and
power
Khosravi et al.
(2018b)

ANN, SVR (with
radial basis
function), ANFIS

Levenberg Marquardt,
Conjugate Gradient and
Bayesian Regularization

Pressure, local
time, temperature
and relative
humidity

Mean wind
speed, direction
and power (in 5-
min, 10-min, 30-
min and 1-h
intervals) for up
to 24 h

Wind farm in
Bushehr, Iran

RMSE Levenberg
Marquardt and
Bayesian
Regularization
algorithms gave
the best
performance
for ANN.
SVR was the best
to simulate the
wind speed. Low
prediction results
were obtained by
the 3 models for
the wind direction

Short-term
prediction of
wind speed
and direction
Chitsazan et al.
(2019)

ESN, ANFIS,
NESN-P with
polynomial
functions and
NESN-MP with
multivariable
polynomials

- Past values of
wind speed and
direction at time
interval of 10 min
(the exact number
was not specified)

Mean wind speed
and direction at
10 min intervals
for up to 1 day
and 6 days,
respectively

Several Nevada
weather
information
stations in Reno,
Nevada

RMSE The best
prediction results
given by the
NESN-MP

Probabilistic
prediction of
the wind gusts
Wang et al.
(2020)

Ensemble of 3
machines models
(RF, LSTM and
GPR), RF, LSTM
and GBRT

Adaptive momentum
estimation

Past values of
wind speed (the
number was
determined based
on the partial
autocorrelation
function)

Wind gusts for up
to 72 h

Sutong Cable-
Stayed Bridge in
Jiangsu province
of China (sampling
frequency of 1 Hz
with a total of a
total of 720 h)

RMSE, MAE and
the mean
absolute percent
error (MAPE)

The ensemble
model achieves
the highest
accuracy

Prediction of
mean wind
speed Sharma
et al. (2020)

MFQL, SVR, KNN - 7 intrinsic mode
functions obtained
from past wind
speed values
using empirical
model
decomposition
technique

1-min ahead
mean wind speed

National Institute of
Wind Energy and
Wind Resource
Assessment data
portal (in ten Indian
cities)

Mean Absolute
Percentage Error
(MAPE)

MFQL
outperformed the
other models

-
(Continued on following page)
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time series prediction problem, the feedback neural networks
such as RNNs and LSTMs are preferred and lead to good
performance. However, their performance within each 6-h
interval is unknown due to the sampling limitation in the
training data.

3.1.2.3 Tropical Cyclone Intensity
The TC intensity (over ocean or land) can be measured in terms
of central pressure or maximum sustained wind speed. It is
impacted by several complicated physical phenomena (e.g.,
atmosphere-ocean interaction and vertical wind shear), and hence
remains one of themost challenging issues in TC forecasting especially
for rapid intensification prediction. To avoid the high computational
cost of numerical forecast models, both statistics-based (e.g., Vickey
et al., 2000; DeMaria et al., 2005; Hall and Jewson 2007; Vickey et al.,
2009) and physics-based (e.g., Snaiki and Wu 2020a) tools were
developed for fast prediction of TC intensity. However, neither
statistical nor physical models guarantee prediction accuracy of TC
intensity due essentially to the over-simplification of such a
complicated dynamic system. To improve simulation accuracy
while keeping a high efficiency, increasing ML applications are
available for TC intensity prediction. Table 2iii presents the
reviewed applications of ML for TC intensity, where the ML
model, training scheme, input data, output data, data source and
performance metric are summarized for each application. The
training/testing data were essentially retrieved from meteorological
databased (e.g., satellite data) and reanalysis results. FromTable 2iii, it
can be concluded that most applications usedML as a regression (or a
classification) model for estimation of intensity time series (or levels).
Although encouraging simulation results indicate a good performance
ofMLmodels in predicting TC intensity for their specific applications,
the selection of the most appropriate set of inputs (including the
number of predictors and previous time steps) is still very challenging.
In addition, it is not easy to conduct a systematic comparison among
reviewed ML models since the used performance metrics differ
substantially from one application to another.

3.1.2.4 Tropical Cyclone Wind Field
TC wind hazard is of great significance since it (directly) induces
significant damage to life and property and (indirectly) triggers
other TC-induced hazards (e.g., storm surge and waves).
Substantial research efforts have been made for development of
numerical models (e.g.,WRF) or analytical models (e.g., Snaiki and

Wu 2017a; Snaiki andWu 2017b; Snaiki and Wu 2018; Snaiki and
Wu 2020c; Fang et al., 2018; He et al., 2019) to simulate the
boundary-layer wind field. However, none of these models can
simultaneously achieve simulation accuracy and efficiency. To
address this issue, increasing ML applications emerged for TC
boundary-layer wind field simulation. Table 2iv presents the
reviewed applications of ML for TC wind field, where the ML
model, training scheme, input data, output data, data source and
performance metric are summarized for each application. The
training/testing data were essentially retrieved frommeteorological
databases (e.g., satellite data) and high-fidelity simulations. It is
expected the improved spatial resolution of currently available
datasets will further enhance simulation results of ML models.
FromTable 2iv, it can be concluded that most applications useML
as a regression model for prediction of surface wind speed. Since
these ML models were often trained and fine-tuned to predict the
TC wind field at a specific region, it might be very challenging to
generalize the obtained results to other locations. It is noted that
only wind field at a certain altitude is available in most ML
applications due essentially to training data sparsity issue in
vertical dimension. The widely-used logarithmic or power-law
profiles are typically employed to obtain the TC boundary-layer
winds. Accordingly, the supergradient winds that may have
significant implications to the wind design of tall buildings is
not captured (Snaiki and Wu 2020c).

3.1.3 Non-synoptic Winds
Unlike synoptic winds that are associated with large-scale
meteorological systems characterized by horizontal scales of
thousands of kilometers and time scales of days, the non-
synoptic wind systems are local phenomena (e.g., a horizontal
scale of several hundreds of meters) and short lived (e.g., a time
scale of a few minutes) (Chowdhury andWu 2021). Furthermore,
the transient nature of non-synoptic winds makes them exhibit
time-varying mean wind speeds and nonstationary/non-
Gaussian fluctuations. Accordingly, the detection,
measurement, and modeling of non-synoptic wind systems lag
behind those of synoptic winds. However, numerous studies have
demonstrated the importance of the non-synoptic wind events on
the structural design (e.g., Holmes 1999; Letchford et al., 2002;
Hao and Wu 2017). For example, the design wind speeds with
relatively high return periods are usually dominated by the
thunderstorm downbursts (Twisdale and Vickery 1992; Solari

TABLE 1 | (Continued) Summary of ML applications for classical boundary-layer winds.

Application ML model Training scheme Input data Output data Data source Performance
metric

Remarks

Prediction of
mean wind
speed
Zhongda Tian
et al. (2020)

LSSVM optimized
with four
algorithms

Past values of
mean (hourly) wind
speed (50 values)

1-h mean wind
speed (next
1-48 h)

The training data
were sampled
every 1-h from a
wind farm in
Jinzhou, China

RMSE, MAE,
mean absolute
percentile error
(MAPE),
R-square and
reliability

LSSVM optimized
with the
backtracking
search
optimization
algorithm
outperformed all
other models

Backtracking
search, genetic
algorithm, particle
swarm, and
improved feature
selection
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et al., 2015) and the ASCE 7–22 includes the first-ever criteria for
tornado-resistant design (ASCE, 2021). Recently, there is a rapid
development of field-measurement networks (e.g., THUNDERR
project at University of Genova) and laboratory facilities (e.g.,
WindEEE at Western University) for improved understanding of
non-synoptic wind systems. These advances offer an
unprecedented volume of data, and hence provide an
opportunity to facilitate ML applications to non-synoptic
winds. Although the non-synoptic wind systems can be
originated from various mechanisms (e.g., convective storm,
gravity wave or negative buoyancy) (Bluestein 2021), the
review only focuses on those associated with convective
storms. Specifically, ML applications to thunderstorms
(subsynoptic-scale weather system) are first presented,
followed by detailed reviews of its applications to two
important types of non-synoptic wind events associated with
thunderstorms, namely downbursts and tornadoes.

3.1.3.1 Thunderstorms
A thunderstorm is short-lived atmospheric weather system
accompanied by lightning and thunder, gusty winds, heavy rain,
and sometimes hail (Solari 2020). The life cycle of a thunderstorm
usually consists of cumulus stage, mature stage and dissipative stage,
and it typically lasts around 30min. Both mesoscale and microscale
numerical models have been developed for simulation of
thunderstorms (Hawbecker 2021). Mesoscale modeling covers a
large-scale computational domain (and hence fully considers physics
involved), however, it is limited to a low spatiotemporal resolution.
Microscale modeling utilizes a high spatiotemporal resolution (and
hence obtains important small-scale features in the simulation of
winds), however, it is limited to a relatively small-scale
computational domain resulting in insufficiently reliable
boundary conditions. To avoid shortcomings of currently
available numerical models, ML models may provide a promising
approach for efficient and accurate simulation of key stages in the life
cycle of a thunderstorm. Table 3i presents the reviewed applications
of ML thunderstorms, where the ML model, training scheme, input
data, output data, data source and performance metric are
summarized for each application. The training/testing data were
essentially retrieved from meteorological databases and reanalysis
results. From Table 3i, it can be concluded that most applications
usedML as either a classification or a regressionmodel for prediction
of thunderstorm occurrence. Obviously, there is still room for more
comprehensive applications of ML in terms of modeling and
forecasting each aspect of the thunderstorm from formation to
dissipation. In addition, most ML applications to thunderstorm
were limited to simple models with standard algorithms (e.g., ANN
with backpropagation).

3.1.3.2 Downbursts
Downbursts are one of the most spectacular and dangerous
events resulting from thunderstorms (Solari 2020). Their radial
outflows and ring vortices after touchdown produce strong wind
gusts very close to the ground and therefore lead to substantial
structural damages (e.g., Yang et al., 2018). Downbursts are
typically simulated numerically using CFD (e.g., Mason et al.,
2009; Aboshosha et al., 2015; Haines and Taylor 2018; Hao and

Wu 2018; Oreskovic et al., 2018; Oreskovic and Savory 2018; Iida
and Uematsu 2019) or experimentally using wind tunnels (e.g.,
Jesson et al., 2015; Jubayer et al., 2016; Hoshino et al., 2018;
Aboutabikh et al., 2019; Asano et al., 2019; Junayed et al., 2019;
Romanic et al., 2019). Both numerical and experimental
approaches to obtain wind fields associated with downbursts
are very time consuming (either computational expensive or
labor intensive). This shortcoming motivated increasing use of
ML tools for efficient and accurate simulations of downbursts.
Table 3ii presents the reviewed applications of ML for
downbursts, where the ML model, training scheme, input data,
output data, data source and performance metric are summarized
for each application. The training/testing data were essentially
retrieved from field measurement. From Table 3ii, it can be
concluded that most applications used ML as a classification
model for prediction of the occurrence of downburst or
probability of damaging wind. There are a very limited
number of ML applications for modeling and forecasting the
downburst wind field, hence more research efforts are needed in
this aspect. It is noted that the reviewed ML applications usually
involved a high number of predictors. The employment of
relatively high number of input variables may be necessary
due to the complexity of downburst prediction. However, it
makes the ML models not easy to use since these input
variables might not be always available.

3.1.3.3 Tornadoes
Tornadoes are characterized by a rotating column of air
descending from supercell thunderstorms lasting from several
minutes to few hours. They are the most intense of all non-
synoptic wind events, and hence result in significant damage and
collapse of structures (Hao and Wu 2016, 2020). Several
analytical and empirical models have been developed to
simulate the vertical and radial wind profiles of tornado-like
vortices (e.g., Wen and Chu 1973; Baker and Sterling 2017). These
models are clearly over-simplified. The tornado wind fields are
also modeled using CFD simulations (e.g., Kuai et al., 2008;
Ishihara et al., 2011; Liu and Ishihara 2015; Eguchi et al.,
2018; Gairola and Bitsuamlak 2019; Kawaguchi et al., 2019;
Huo et al., 2020; Liu et al., 2021) or laboratory tests (e.g.,
Sarkar et al., 2006; Refan and Hangan 2016; Razavi and Sarkar
2018; Tang et al., 2018; Ashton et al., 2019; Gillmeier et al., 2019;
Hou and Sarkar 2020; Razavi and Sarkar 2021). However, CFD
simulations of tornadoes are computational expensive while the
laboratory tests are labor intensive. These shortcomings
motivated increasing use of ML tools for efficient and accurate
modeling of tornadoes. Table 3iii presents the reviewed
applications of ML for tornadoes, where the ML model,
training scheme, input data, output data, data source and
performance metric are summarized for each application. The
training/testing data were essentially retrieved from
meteorological datasets (e.g., Radio-based data). From
Table 3iii, it can be concluded that most applications use ML
as a classification or a regression model for prediction of tornado
occurrence. Obviously, there is still room for more
comprehensive applications of ML in terms of simulation of
the full track of a tornado (including its intensity and associated
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TABLE 2 | Summary of ML applications for tropical cyclones.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

i) Genesis Prediction of the
number of TCs in
the northwest of
Australia Richman
and Leslie (2012)

SVR with radial
basis function
coupled with
sequential
minimal
optimization
algorithm, MLR

- Nine predictors (e.g., El
Niño Southern
Oscillation)

Number of TCs in
the northwest of
Australia

Australian
Government, Bureau
of Meteorology
website

RMSE, MAE, R2 SVR outperformed
the MLR model – The
prediction accuracy
was further improved
by coupling the SVR
model with Quasi-
Biennial Oscillation

Prediction of TC
genesis in the
South Pacific
Ocean and
Australian region
Wijnands et al.
(2014)

SVM with
polynomial
kernel, LDA

- El Niño—Southern
Oscillation indices,
Multivariate ENSO
Index, El Niño Modoki
Index, Dipole Mode
Index and the Southern
Oscillation Index

TC genesis
(number of TCs) in
the South Pacific
Ocean and
Australian region

Bureau of
Meteorology’s
National Climate
Center - Australia

MAE SVM outperformed
LDA model. Overall
prediction
performance for both
models is low

Prediction of TCs
genesis in the
western North
Pacific region
Zhang et al. (2015)

DT (C4.5
algorithm)

- Sea surface
temperature, rainfall
intensity, divergence
averaged between
1000- and 500-hPa
levels, maximum 800-
hPa relative vorticity
and the 300-hPa air
temperature anomaly

TCs genesis in the
western North
Pacific region

Navy Operational
Global Atmospheric
Prediction System
and the Tropical
Rainfall Measuring
Mission (TRMM)
Microwave Imager
(TMI) from 2004 to
2013

Prediction
accuracy =
(correctly classified
samples/number
of samples in the
whole dataset)

Satisfactory results
were obtained based
on the C4.5 algorithm

Variable selection
and prediction of
TC genesis
Wijnands et al.
(2016)

LR and Peter-
Clark algorithm

- Selected variables:
relative vorticity
(925 hPa), potential
vorticity (600 hPa) and
vertical wind shear
(200–700 hPa)

TCs genesis in
region between
30°N and 30°S

IBTrACS, tropical
cloud cluster (TCC)
and ERA-Interim
(1979–2014)

p-value and area
under the receiver
operating
characteristic
(ROC) curve

Top ranked variables
include the relative
vorticity (925 hPa),
potential vorticity
(600 hPa) and vertical
wind shear
(200–700 hPa)

Development a TC
genesis detection
model over the
western North
Pacific Park et al.
(2016)

DT (C5.0
algorithm)

- 8 WindSat-derived
indices tested and 2
were selected as the
most dominant
predictors: circulation
symmetry and intensity

TC genesis WindSat satellite data
(wind and rainfall)
were used to extract
the training/testing
data from 2005 to
2009 over the
western North Pacific

Prediction
accuracy =
(correctly classified
samples/number
of samples in the
whole dataset)

Good simulation
results were obtained

Prediction of the
number of seasonal
TCs in the North
Atlantic region
Richman et al.
(2017)

SVR (with 2
kernels:
polynomial and
radial basis
function)

- SST and El Niño 3.4
were the best
attributes

Number of
seasonal TCs in the
North Atlantic
region

Hurricane database in
the North Atlantic
basin and Hadley
Centre Sea Ice and
Sea Surface
Temperature dataset

RMSE The SVR model gave
enhanced prediction
compared to an
operational statistical
model that was
developed by
Colorado State
University. The
polynomial kernel
gave a slightly
improved simulation
results compared to
the RBF kernel

Prediction of TC
formation from
mesoscale
convective system
Zhang et al. (2019)

LR, NB, DT,
KNN, ANN, QDA,
SVM (with a radial
basis function
kernel),
AdaBoostRF.

- Several
thermodynamic and
dynamic predictors
were employed in this
study (e.g., genesis
potential index, 850-
hPa vorticity and
vertical wind shear)

Genesis prediction
at different lead
times (e.g., 6 h)

Mesoscale convective
system (MCS)
dataset, IBTrACS,
and ERA-Interim
(1985–2008)

F1-score accuracy AdaBoost algorithm
was the best
classifier. Both the
genesis potential
index and the low-
level vorticity were the
most dominant
predictors for the
tropical cyclone
genesis

Detection of TC
genesis over the
western North
Pacific Kim M et al.
(2019)

DT, RF, SVM
(with three
different kernels:
linear,
polynomial, and
radial basis
functions), LDA

- 8 dynamic and
hydrological predictors
(e.g., rain rate, circular
variance of wind
speed)

Genesis detection
for a lead time up
to 30 h

WindSat satellite
measurements from
2005 to 2009 over the
western North Pacific
basin

F1-score accuracy
and PSS score

Best performance
from the SVM model
with a radial basis
function kernel

ii)
Translation

Prediction of
cyclone track over

ANN Pseudo invert
learning

12 h of past track
observations (in terms

24 h of cyclone
track over the

Joint Typhoon
Warning Center

MAE Acceptable accuracy

(Continued on following page)
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TABLE 2 | (Continued) Summary of ML applications for tropical cyclones.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

the Indian Ocean Ali
et al. (2007)

of latitude and
longitude)

Indian Ocean at 6 h
intervals

(JTWC) from 1971 to
2002

Prediction of TCs
track of over the
western North
Pacific basin Wang
et al. (2011)

ANN Levenberg
Marquardt

2 previous 6-h
positions and the
current one (in terms of
latitude and longitude)

24 h of cyclone
track over the
western North
Pacific basin at 6
hourly intervals

20 years of historical
tack data from the
JTWC

Correlation
coefficient

Good simulation
results

Trajectory
Prediction of
Atlantic Hurricanes
Moradi
Kordmahalleh et al.
(2016)

RNN Genetic algorithm Past hurricane track
locations which are
selected by the RNN
model (6-hourly
hurricane center’s
latitude and longitude)

hurricane track for
up to 12 h in
advance

National Oceanic and
Atmospheric
Administration
(NOAA) from 1900 to
2013

MAE Acceptable accuracy

Cyclone track
prediction over the
South Indian ocean
Zhang et al. (2018)

MNN, RNN,
LSTM, GRU

Backpropagation Past hurricane
trajectories
-automatically selected
by the algorithm-

1-step of 6-h ahead
TC trajectory (in
terms of latitude
and longitude)

JTWC between 1985
and 2013 in the South
Indian ocean

RMSE MNN-based model
outperformed the
three recurrent neural
networks

Prediction of
hurricane
trajectories over the
Atlantic basin
Alemany et al.
(2019)

Grid-based RNN,
sparse RNN

Backpropagation Past hurricane
locations (6-hourly
distributed)

Hurricane tracks
over the Atlantic
basin up to 120 h

NOAA database MSE, RMSE The grid-based
algorithm
outperformed the
sparse RNN

Prediction of a
typhoon track in the
Korean Peninsula
Rüttgers et al.
(2019)

GAN Backpropagation Satellite images Typhoon tracks in
the Korean
Peninsula at 6 h
lead time

Korean
Meteorological
Administration and
the ERA-interim
databases with a total
of 76 typhoons that hit
the Korean peninsula
from 1993 till 2017

Average absolute
error

Acceptable accuracy

Prediction of the
spatial-temporal
hurricane trajectory
Kim S et al. (2019)

ConvLSTM AdaGrad Last 5 consecutive
hurricane density-
maps

Spatial-temporal
hurricane trajectory
(up to 15-h) with a
3-h time steps

Community
Atmospheric Model
v5 from 1995 to 2015

RMSE The error increased
with the increasing
leading time

Tropical cyclone
track forecasting
Giffard-Roisin et al.
(2020)

CNN Adam Atmospheric fields
(image-like data)
corresponding to the
current and past data
(with a 6-h time step)
including the latitude,
longitude and
geospatial height fields
at three pressure
levels: 700, 500, and
225 hPa (e.g., wind
speed components)

TC trajectory (in
terms of latitude
and longitude) for
up to 24-h leading
time

TCs data in both
hemispheres from
NOAA, IBTrACS and
ERA-Interim since
1979 (more than
3,000 storms with 6-h
time steps)

RMSE, MAE The proposed model
outperformed the
statistical CLP5
model

iii) Intensity Prediction of
typhoon intensity
changes in the
western North
Pacific basin Baik
and Paek (2000)

ANN, MLR Backpropagation 11 predictors (e.g.,
initial storm intensity,
initial storm latitude,
vertical wind shear and
850-mb horizontal
moisture flux)

Typhoon intensity
changes in the
western North
Pacific basin from
12-h and up to 72-
h (1 output)

National Centers for
Environmental
Prediction/National
Center for
Atmospheric
Research (NCEP/
NCAR) reanalysis
from 1983 to 1996

Average error The ANN-based
model outperformed
THE MLR model

Prediction of the
cyclone intensity
over the Arabian
Sea and Bay of
Bengal Chaudhuri
et al. (2013)

ANN, RBF,
MLR, OLR

Backpropagation 5 predictors: sea
surface temperature,
central pressure,
pressure drop,
maximum sustained
surface wind speed
and total ozone column

Cyclone intensity
over the Arabian
Sea and Bay of
Bengal for
approximately 72 h
lead time (1 output)

Indian Meteorological
Department from
2005 to 2010

RMSE, MAE ANN model provided
the best prediction
results

Prediction of the
cyclone intensity
levels Chen et al.
(2018)

ANN, MLR, SVM Backpropagation Multispectral Imagery Cyclone intensity
level (class labels)

Tropical cyclone
Nalgae data from 04/
08/2017 till 06/08/
2017 retrieved from
No. 4 meteorological
satellite (FY-4) of
China

Kappa coefficient
and overall
accuracy (%)

The three models
provided comparable
classification results

Prediction of time
series of typhoon

RNN Backpropagation 3 previous time steps
along with the current

Time series
prediction of

Western North Pacific
typhoon database

Average forecast
error

Performance
comparable to the

(Continued on following page)
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TABLE 2 | (Continued) Summary of ML applications for tropical cyclones.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

intensity Pan et al.
(2019)

time of typhoon
location and intensity

intensity up to 48 h
with a 6 h time step

from the Chinese
Meteorological
Administration and
the Shanghai
Typhoon Institute
from 1949 till 2016

Japanese
Meteorological
Agency-Global
Spectral model

Cyclone intensify
forecasting over the
Western Pacific,
Eastern Pacific and
North Atlantic
basins Chen et al.
(2019)

Hybrid CNN-
LSTMmodel (2D-
CNN, 3D-CNN
and LSTM)

Gradient descent
and Adam

3-D atmospheric
variables (wind
components,
temperature, relative
humidity and
geopotential height)
and 2-D sea surface
variables (sea surface
temperature)

Intensity (24-h lead
time) with a 6 h
time step

International Best
Track Archive for
Climate Stewardship
(IBTrACS) and ERA-
Interim reanalysis

MAE Good simulation
results comparable to
other operational
forecast models (e.g.,
Hurricane Weather
and Research
Forecasting Model)

TC intensity
prediction over the
Pacific Northwest
and Atlantic Ocean
Wei Tian et al.
(2020)

CNN Adam Satellite images of TCs
in real time

TC intensity in near
real time

Satellite outputs from
2003 till 2016 from the
Meteorological
Satellite Research
Cooperation Institute
and JWTC

RMSE Good simulation
results

Hurricane intensity
prediction Maskey
et al. (2020)

CNN Adam Satellite images of TCs
in real time

TC intensity in near
real time

U.S. Naval research
laboratory and the
NOAA Geostationary
Operational
Environmental
Satellite from 2000
through 2019

RMSE Acceptable
simulation results

iv) Wind
field hazard

Estimation of
surface wind field
based on satellite
data Stiles et al.
(2014)

ANN (a total of 3
were used)

Levenberg-
Marquardt

ANN 1: SeaWinds
scatterometer
measurements

ANN 1: wind speed
from 0 to 20 m/s

QuikSCAT mission
and H*Wind between
1999 and 2009 for all
basins (globally)

MAE Good simulation
results for the surface
wind speed were
obtainedANN 2: Outputs of

ANN 1
ANN 2: corrected
wind speed over
20 m/s (retrieved
from H*Wind)

ANN 3: 6 predictors
(outputs of the first two
ANNs, QuikSCAT
radiometer rain rate
and rain impact
quantity, maximum
likelihood estimation
direction interval wind
speed and cross-track
distance)

ANN 3: final
optimized wind
speed with a
12.5 km resolution

Forecasting surface
wind speeds during
tropical cyclones
Wei (2015)

SVM with 4
kernels: linear,
polynomial, radial
basis function
and Pearson VII

- 13 features are
considered (e.g.,
central pressure,
latitude, longitude, sea
surface pressure)
based on stepwise
regression method

Surface wind
speed (1-h
average) for up to
6 h over two
offshore islands
near Taiwan

Central Weather
Bureau of Taiwan
from 2000 till 2012
(84 typhoon events)

RMSE -Pearson VII SVR
model is the most
accurate technique
among all other
tested kernel-based
SVM models
-Resolution not
discussed

Estimation of TCs
inner-core surface
wind structure
based on infrared
satellite images
Zhang et al. (2017)

LSSVM, RBFNN,
linear regression

- TC age, center latitude
and maximum surface
wind speed

Critical wind radii of
34- and 50-kt
winds in real time

National Satellite
Meteorological Centre
of China and the
Shanghai Typhoon
Institute from 2005 to
2008

MAE LSSVM
outperformed all
other models

Simulation of TC
boundary-layer
winds Snaiki and
Wu (2019)

KEDL L-BFGS-B Storm parameters
(e.g., spatial
coordinates, storm size
and intensity)

Hurricane
boundary-layer
winds

H*Wind snapshots RMSE Good simulation
results were obtained

Surface wind
simulation in near
real time Wei (2019)

DNN Back-
propagation
algorithm

16 inputs for Taipei and
14 for Keelung
corresponding to the
typhoon
characteristics (e.g.,
central pressure) and
surface meteorological
data (e.g., relative
humidity)

Hourly surface wind
field with 1-degree
by 1-degree
resolution in 2
locations in Taiwan
(Taipei and
Keelung)

Central Weather
Bureau of Taiwan and
Weather Research
and Forecasting (47
typhoons from 2000
till 2017)

RMSE Good consistency
between the
simulated and WRF
results
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TABLE 3 | Summary of ML applications for non-synoptic winds.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

i)
Thunderstorm

Prediction of severe
thunderstorms McCann
(1992)

ANN Backpropagation Lifted index and surface
moisture convergence

Value between 0 and 1
representing the likelihood
of the thunderstorm
occurrence for a 3-7 h lead
time

Centralized Storm
Information System of the
National Severe Storms
Forecast Center (NSSFC)
from April to August 1990
over the eastern two-thirds
of the United States

critical success
index

Acceptable results

Prediction of the surface
peak gust wind speed
during thunderstorm
events Chaudhuri and
Middey (2011)

ANFIS, ANN,
RBFNN, MLR

Gradient descent and
the least squares
estimate

Lift index, Convective
Inhibition Energy,
Convective Available
Potential Energy and bulk
Richardson number

Surface peak gust wind
speed in Kolkata, India
with a lead time up to 12 h

Radiosonde and
rawinsonde from the
Department of
Atmospheric Sciences,
University of Wyoming for
the location of Kolkata,
India from 1997 till 2009

RMSE, MAE ANFIS model outperformed the
other machine learning models

Prediction of
thunderstorms
occurrences Litta et al.
(2012)

ANN Levenberg Marquardt,
Momentum, Conjugate
Gradient, Delta Bar
Delta, Quick Propagation
and Step

Wind speed, humidity and
mean sea level pressure

Hourly temperature during
thunderstorm, proxy for
thunderstorm occurrence,
over the northeastern
region of India

Indian meteorological
department from 2007 to
2009 (hourly data)

RMSE, MAE,
correlation
coefficient

Best results with
Levenberg–Marquardt learning
algorithm

Prediction of severe
thunderstorms
occurrences Chakrabarty
et al. (2013)

ANN, KNN Gradient descent 2 predictors at 5
geopotential heights: dry
adiabatic lapse rate and
moisture difference (a total
of 10 inputs)

Likelihood of occurrence of
severe thunderstorms with
a lead time between 10
and 14 h over the
northeastern region of
India

Indian Meteorological
Department from 1969 to
2008

Correlation
coefficient

KNNmodel was the best classifier

Prediction of thunderstorm
occurrence Yasen et al.
(2017)

ANN, Bayes Network,
C4.5 decision

Artificial Bee Colony
(ABC), gradient descent

31 thermodynamic and
dynamic predictors

Thunderstorm occurrence METeorological Aerodrome
Reports and Surface
Synoptic observation from
December 2015 to
November 2016 at lake
Charles airport in Louisiana

Accuracy, AUC, and
F-measure

ANN model optimized with ABC
algorithm outperformed the other
classifiers in detecting
thunderstorms

Tree, KNN

Prediction of thunderstorm
occurrence Ukkonen et al.
(2017)

ANN Scaled conjugate
gradient

15 inputs (e.g., most
unstable lifted index and
relative humidity near
700 hPa) identified based
on skill scores

Thunderstorm occurrence
in the next 6-h period

ERA-Interim database from
2002 to 2015 over Finland

Heidke skill score Acceptable results

Forecasting
thunderstorms
occurrence Kamangir et al.
(2020)

SD-AE Stochastic gradient
descent

38 features (e.g., total
predictable water and
convective precipitation)

Thunderstorm occurrence
through cloud-to-ground
lightning parameter for a
maximum lead time of 15 h
and within 400 km2 of a
selected site in South
Texas

North American Mesoscale
Forecast System and the
National Lightning Data
Network from the
2004–2012

Peirce skill score The SD-AE model outperformed
an ANN model developed by
Collins and Tissot (2015, 2016) for
the same region and with similar
lead time

Forecasting the
occurrence of
thunderstorms events
(Chen and Lombardo
2020)

CNN Backpropagation 91-min time series of wind
speed and direction

Event type (thunderstorm
or non-thunderstorm
event)

Automated Surface
Observing System (ASOS)
(1-min averaged data) from
2000 to 2018 with a total of
76,480 time series of
91 min of wind speed and
direction

F1 score and
average success
rate

Reliable classifier for
thunderstorms occurrences

(Continued on following page)
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TABLE 3 | (Continued) Summary of ML applications for non-synoptic winds.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

ii) Downburst Prediction of damaging
wind from tornadic and
straight-line events
(including downbursts)
(Marzban and Stumpf
1998)

ANN Conjugate gradient 23 radar-derived predictors
characterizing the
circulations (e.g., depth of
circulation, maximum
rotational velocity and low
altitude shear)

Probability of damaging
wind (with a damaging
wind excessing 25 m/s)
with a lead time of 20-min

National Severe Storms
Laboratory (NSSL)
Mesocyclone Detection
Algorithm (MDA)

Fraction Correct
and Heidke’s Skill
Score

Acceptable results

Classification of damaging
downburst winds (Smith
et al. (2004)

LDA - 26 reflectivity and radial
velocity-based attributes
(e.g., cell volume, max
reflectivity and height of the
max reflectivity)

Severity of downburst
winds (severe or non-
severe events) with a
maximum lead time of
15 min

WSR-88D radars (in several
locations within the U.S.)
from the National Climatic
Data Center’s Storm. It
contains 91 events that
produced severe
downbursts and 1247
events that did not produce
severe downbursts

median Heidke skill Acceptable results for the
prediction of severe downburst
events

Prediction of the
probability of occurrence
of damaging straight-line
winds (including
downbursts) from storm
cells Lagerquist et al.
(2017)

LR, LR with an elastic
network, ANN, RF, GBTE

Gradient descent 431 predictors. They can
be divided into 4 main
categories, namely radar
statistics, storm shape
parameters, storm motion
and sounding indices

Probability of occurrence
of damaging winds with a
lead time up to 90 min

Near-surface wind
observations (from the
Meteorological Assimilation
Data Ingest System, the
Oklahoma Mesonet, and
the National Weather
Service), radar scans (from
the Multiyear Reanalysis of
Remotely Sensed Storms)
and soundings (from the
Rapid Update Cycle and
the North American
Regional Reanalysis) [from
2001 to 2011]

AUC - The simulation results indicated
that storm motion and sounding
indices are the dominant
predictors
- Both random forest and
gradient-boosted tree ensembles
gave the best simulation results

Downburst wind speed
forecasting Li and Li (2018)

LSSVM (coupled with
variational mode
decomposition and
particle swarm) – with
several kernels (linear,
polynomial, Mexican Hat,
radial basis function, and
Morlet wavelet)

- Time series of downburst
wind (up to 1600 s)

Time series of downburst
wind from 1600 s through
1800 s

Time series of downburst
wind from two
measurements data
consisting of 450 sample
points with a sampling
frequency of 0.25 Hz for a
total of 1800 s (the data
source was not mentioned)

MAE, RMSE, 2-
norms relative error
and Pearson
correlation
coefficient

The combined Morlet wavelet and
radial basis kernel functions (RBF)
gave the best simulation results

Identification of the
downburst occurrence
Medina et al. (2019)

RF - 8 dual-polarization radar
signatures (e.g., maximum
vertically integrated liquid
and temperature colder
than 0°C)

Downburst related events
or null events around the
Cape Canaveral Air Force
Station and Kennedy
Space Center

Weather observation
towers around the Cape
Canaveral Air Force Station
and Kennedy Space Center
from 2015 to 2016

Mean Decrease
Accuracy (MDA) and
Mean Decrease
Gini (MDG)

Although the model provided
good simulation results, strong
events were better classified
compared to weaker ones

iii) Tornado Prediction of the tornado’s
occurrences Marzban and
Stumpf (1996); Marzban
et al. (1997); Marzban
(2000)

ANN Conjugate Gradient 23 input variables (e.g.,
maximum shear, low- and
mid-altitude convergence)

occurrence/non-
occurrence of tornados for
a given mesoscale
circulation in the next
20 min

National Severe Storms
Laboratory’s (NSSL)
Mesocyclone Detection
Algorithm (MDA) with a total
of 3258 circulation events

Critical Success
Index

The ANN model outperformed
other statistical models such as
the discriminant analysis bur still
the performance is low

Detection of the tornado’s
occurrences Lakshmanan
et al. (2005)

ANN Resilient
backpropagation

13 features (e.g., rotational
velocity)

Tornado occurrence from
given circulations in the
next 20 min

National Severe Storms
Laboratory based on the
Mesocyclone Detection
Algorithm (MDA) and the
near-storm environment
(NSE) with 110 storm days

Heidke Skill Score Simulation results acceptable
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TABLE 3 | (Continued) Summary of ML applications for non-synoptic winds.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

Prediction of the tornado
occurrence Santosa
(2007)

SVM, LDA, BNN Backpropagation 34 input features (e.g.,
meso core depth and meso
low-level shear)

Tornado occurrence in the
next 20 min

Weather Surveillance Radar
1998 Doppler

Heidke Skill Score - linear programming support
vector machine was used for
feature selection
- BNN model gave the best
performance in detecting
tornados from given circulations

Prediction of the tornado
occurrence Adrianto et al.
(2009)

SVM with 3 kernels (linear,
polynomial and RBF),
ANN, LDA

Backpropagation 53 input features (e.g.,
azimuthal shear low level
average, gradient direction
maximum and reflectivity
aloft average)

Tornado occurrence in the
next 30 min

Radar measurements from
the National Climatic Data
center with a total of 33
storm days sampled at
30 min

Heidke Skill Score -The best classifier was the SVM
model with the RBF kernel
-SVM model outperformed the
other algorithms

Prediction of the tornado
occurrence Trafalis et al.
(2014)

SVM (radial basis function
kernel), LR, RF, rotation
forest

- 22 attributes (e.g., wind
shear and humidity)

Tornado occurrence from
mesocyclones events (no
leading time indicated)

MDA and NSE databases
with 111 storm days

Heidke Skill Score -Feature selection was performed
using the SVM-Recursive Feature
Elimination algorithm with a radial
basis function kernel
- SVM with threshold adjustment
outperformed all other classifiers

Prediction of the
probability of occurrence
of a tornado Lagerquist
et al. (2018), (2020)

CNN Adam Storm-centered radar
image and a proximity
sounding

Probability of occurrence
of a tornado in the next-
hour

Multiyear Reanalysis of
Remotely Sensed Storms
(MRRSS) in the [period from
2000 to 2011] and Gridded
NEXRAD WSR-88D Radar
(GNWR) [period from 2011
to 2018]

Area under the
receiver-operating-
characteristic curve
(AUC) score

Excellent simulation results

Predicting property
damage from tornadoes
Diaz and Joseph (2019)

ANN (2) AdaGrad Storm, land cover,
socioeconomic and
demographic features

ANN1: occurrence or non-
occurrence of damage due
to a tornado event

NOAA’s tornado database,
the National Land Cover
database and the American
Community Survey

AUC, MSE, R2 -Only the initial tornado
coordinates are accounted for
rather than the tornado path

ANN2: level of damage
when it occurs

-Acceptable results

Prediction of the
occurrence of tornadic
events Coffer et al. (2020)

RF, CNN Stochastic gradient
descent

222 input features at
various geopotential
heights were initially
selected (e.g., temperature,
pressure) –Exact final
parameters not mentioned-

Tornadic and non-tornadic
events

Rapid Update Cycle
sounding data from the
National Climatic Data
Center from 2003 to 2017

Overall accuracy
score (in %)

-The input feature selection was
carried out using RF which
indicated that the pressure terms
are not as important as the other
environmental parameters (e.g.,
v-wind component)
- RF outperformed CNN
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TABLE 4 | Summary of ML applications for terrain and topography.

Application ML model Training scheme Input data Output data Data source Performance
metric

Remarks

Modeling the effects of
topography on the
wind profile
Bitsuamlak (2004);
Bitsuamlak et al.
(2002), (2006), (2007)

ANN Cascade correlation 6 inputs including
simple geometric
properties
(i.e., “Windward
slope of the hill”,
“Distance between
hills”, “Height from
the crest of the hill”
and “Longitudinal
location”),
roughness element
and hill count

Fractional speed-
up ratio

CFD simulations
corresponding to
different
topographic
configurations:
single and multiple
hills and
escarpments

R2 coefficient -Comparison
with experimental
data from wind
tunnel
-Good
performance

Wind field simulation
considering terrain
effects
Martínez-Vázquez and
Rodríguez-Cuevas
(2007)

ANN
combined
with
conditional
simulation
technique

Backpropagation Terrain roughness,
mean wind profile
and spectral density

Wind velocity time
series (3 min of
time series with a
time step of 0.1 s)
at different points

The time series of
wind speed were
generated using
the procedure of
Simiu and Scanlan
(1978) at two
heights (i.e., 10
and 200 m) with 11
local velocities
(from 0.5 to 100 m/
s) and surface
roughness
between 0.001
and 0.050 m

MSE -The conditional
simulation
technique
significantly
decreased the
number of
required layers in
the ANN
-Good simulation
results

Estimation of the effect
of wind direction on
wind speed prediction
in complex terrain
Lopez et al. (2008)

ANN Bayesian regularization 4 inputs: 10-min
mean wind speed
from 3 stations
nearby and wind
direction from
another nearby
station

Annual average
wind speed at a
given site with
complex terrain
configuration

Meteo-Galicia
during 2003 at the
Galicia region in the
northwest Spain
corresponding to 5
stations and
representing
various terrain
conditions (e.g.,
inland and offshore
conditions) and
elevations

RMS -Wind direction is
important to be
considered to
improve the
simulation results
for a site with
complex terrain

Prediction of typhoon
wind speed and profile
over complex terrain
Huang and Xu (2013)

ANN Backpropagation Upstream wind
speed and direction
at height z

Wind speed and
direction at height
z on a bridge site

Reynolds-
averaged Navier-
Stokes simulations
which provides the
wind profiles at the
bridge site given an
inlet upstream
wind field (which
does not account
for topographic
effects)

MAE Good simulation
results for both
wind speed and
direction

Prediction of the wind
flow over complex
topographies Mayo
et al. (2018)

DNN Proximal adagrad 3 cartesian
coordinates (x,y,z)
of the selected point
and the incoming
uniform mean wind
speed

Mean wind speed
over a given site
with complex
topography

4 CFD simulations
of the wind field in a
given coastal dune
system with
complex terrain

MAE Acceptable
simulation results

Selection of the
experimental
hardware within a wind
tunnel Abdi et al.
(2009)

ANN (2) cascade correlation ANN1: height from
floor, the bottom-
spire width, the
surface roughness
and the top spire
width

ANN1: mean
longitudinal wind
velocity and
turbulence
intensity

RWDI USA LLC
wind tunnel in
Miramar, Florida

No error scores
were provided

- Visual
inspection of the
predicted wind
profile and
turbulence
intensity of the
first neural
network

(Continued on following page)

Frontiers in Built Environment | www.frontiersin.org March 2022 | Volume 8 | Article 81146018

Wu and Snaiki ML Applications to Wind Engineering

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


wind field). Just like ML applications to downbursts, a high
number of input variables (predictors) were utilized for the
reviewed ML models. The identification of the most
appropriate set of predictors is still very challenging, and a
trail-and error approach was typically employed. In addition,
it is not easy to conduct a systematic comparison among reviewed
ML models since the used performance metrics differ
substantially from one application to another.

3.2 Terrain and Topography
Wind characteristics including mean wind speeds and turbulent
fluctuations are much affected by the surrounding terrain and
topography. As a consequence, careful consideration of local
terrain roughness and topographic features as well as
surrounding obstacles is vital to the accurate determination of
wind pressures on structures and pedestrian level winds. Wind
codes and standards consider the terrain effects corresponding to
limited (and simplified) terrain geometries (e.g., escarpment and

single hill) through correction factors. To examine the effects of
complex terrain condition on wind fields, wind tunnel tests are
usually employed with a very small geometric scale (e.g., 1:500).
Alternatively, numerical schemes such as the mass-conservation
or momentum-conservation model can be used to capture the
terrain effects on oncoming wind fields. Although the
topographic effects can be well simulated based on
momentum-conservation models (e.g., using Reynolds-
averaged Navier-Stokes equations), the needed computational
time makes it impractical for use as a real-time decision support
tool. The mass-conservation model computes wind fields over
complex terrain in seconds to a few minutes (Forthofer et al.,
2014a; 2014b), but the accuracy of simulation may be poor
because nonlinear momentum effects are not considered
(Jackson and Hunt 1975). Considering the complex terrain-
wind data from high-fidelity CFD simulations, wind tunnel
tests and field measurements are increasingly available, ML
tools can be utilized (as computationally efficient reduced-

TABLE 4 | (Continued) Summary of ML applications for terrain and topography.

Application ML model Training scheme Input data Output data Data source Performance
metric

Remarks

indicated good
simulation results

ANN2: target mean
longitudinal wind
speed, target
turbulence intensity
and height from floor

ANN2: difference
between top and
bottom spire
width and the
surface roughness

- Results from
ANN2 were not
satisfactory

Prediction of wind
properties in urban
environments based
on wind tunnel tests
Varshney and Poddar
(2012)

ANN (2) Lavenberg–Marquardt ANN1: number of
roughness
elements, number of
barriers, height from
floor and slot width

ANN1: mean wind
speed, turbulence
intensity and
length scale factor

Boundary-layer
wind tunnel tests of
the National Wind
Tunnel Facility in
Kanpur, India (18
configurations)

No error scores
were provided

- Visual
inspection of the
predicted results
indicated
satisfactory
simulationsANN2: number of

roughness
elements, number of
barriers and slot
width

ANN2:
instantaneous
velocity

Designing laboratory
wind simulations
Križan et al. (2015)

ANN (2) RPROP Riedmiller and
Braun (1993)

ANN1: basis barrier
height, barrier
castellation height,
surface roughness
elements’ spacing
density, surface
roughness
elements’ height
and height of
measurement
points

ANN1: mean wind
speed, turbulent
intensities (in the
three directions),
length scales (in
the three
directions) and
turbulent
Reynolds stress

Boundary-layer
wind tunnel at the
Technische
Universität
München with a
total of 23
configurations of
hardware setups

R2 -ANN1: except
the turbulent
length scale in the
x-direction (not
that accurate) all
other results were
good

ANN2: basis barrier
height, surface
roughness
elements’ spacing
density, surface
roughness
elements’ height,
frequency and
height of
measurement
points

ANN2: power
spectral densities
of the velocity
fluctuations in the
three directions

- ANN2: good
simulation results
were obtained
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order models that possess high simulation accuracy of complex
nonlinear systems) to provide rapid estimation of wind flows over
various terrain conditions. However, ML development for terrain
and topographic considerations is still at an early stage with a
limited number of studies reported in the literature. Table 4
presents the reviewed applications of ML for terrain and
topography, where the ML model, training scheme, input data,
output data, data source and performance metric are summarized
for each application. The training/testing data were essentially
retrieved from either CFD simulations or wind tunnel tests. From
Table 4, it can be concluded that most applications used ML as a
regression model for prediction of wind fields over various terrain
conditions and topographic configurations. There are a few
studies that applied ML techniques to assist in efficient search
for a correct layout of passive flow altering devices (e.g., spires and
roughness elements) in the boundary-layer wind tunnel. It is
noted that the current ML applications to consider topographic
effects on wind fields are usually limited to terrain configurations
that can be characterized by several parameters, hence, the
employed ML models and training schemes are simple and
standard (e.g., ANN with backpropagation). However, several
advanced ML models such as autoencoder (e.g., Fukami et al.,
2019) and GAN (Kim and Lee 2020) have been utilized to assist in
the generation of turbulent inflow (as a realistic inlet boundary
condition of CFD simulations).

3.3 Aerodynamics and Aeroelasticity
The bluff-body aerodynamics and aeroelasticity play a critical
role in the safe and cost-effective design of wind-sensitive
structures, and their considerations rely heavily on boundary-
layer wind tunnels. In addition to the Reynolds number effects
(due to very small model scales), wind tunnel tests are very time
consuming and labor intensive. To this end, CFD techniques have
been rapidly developed for simulations of structural
aerodynamics (gust-induced effects) and aeroelasticity
(motion-induced effects). The purpose is to make CFD
simulations serve as a complementary or even alternative
approach to wind tunnel tests. Despite significant advances of
hardware and algorithms, the reliable CFD simulations of wind-
structure interactions are still computationally very expensive due
to three-dimensional nature of wakes and intensive flow
separations from structures. Hence, a number of reduced-
order models have been developed to efficiently model
structural aerodynamics and aeroelasticity (Wu and Kareem
2013). Unfortunately, these reduced-order models do not
always have a satisfactory representation of the full nonlinear
equations that govern the wind-structure interactions.
Specifically, modern bridge decks and super tall buildings with
unusually geometries all exhibit nonlinear unsteady
aerodynamics and aeroelasticity that limit the applicability of
the state-of-the-art reduced-order modeling methodologies. On
the other hand, the Kolmogorov Neural Network existence
theorem offers mathematical foundation for applying
multilayer neural networks to approximate arbitrary nonlinear
systems with any precision (Huang and Lippmann 1988; Hornik,
1991). With high-fidelity data and advanced algorithms, ML
models can simultaneously achieve great simulation efficiency

and accuracy. It is noted that there are numerous ML applications
to aerodynamics and aeroelasticity of both bluff bodies (e.g.,
circular cylinder) and streamlined bodies (e.g., airfoil) in fluid
mechanics community (e.g., Kutz 2017; Brunton et al., 2020),
however, they are not discussed here. The review in this section
only covers wind-sensitive structures in civil engineering. TheML
applications for bridge aerodynamics and aeroelasticity are first
reviewed in Table 5i and then followed by buildings and other
structures in Table 5ii, where the ML model, training scheme,
input data, output data, data source and performance metric are
summarized for each application. The training/testing data were
essentially retrieved from either CFD simulations or wind tunnel
tests. From Table 5, it can be concluded that most applications
used ML as a regression model for prediction of steady-state force
coefficients, flutter derivatives and vortex-induced vibrations
(VIV) of various bridges and for modeling of wind pressure
coefficients of various buildings (as well as estimation of the
interference factors for adjacent buildings). The different
aerodynamic representations in bridges (mainly using global
quantities such as force coefficients) and buildings (mainly
using local quantities such as pressure coefficients) are
partially due to available data types from wind tunnel tests.
Although satisfactory ML simulation results have been
obtained (in terms of interpolations), most reviewed
applications do not necessarily have good performance in
terms of extrapolations outside the training datasets. It is
noted that the currently available ML models of aerodynamics
and aeroelasticity are developed for the main purpose of being
used as preliminary design tools to avoid the high-cost wind
tunnel tests in the early design stage. There is a lack of systematic
comparison among various ML models, hence, their selection for
specific applications is rather rudimentary.

3.4 Structural Dynamics and Damage
Assessment
Due to the computational complexity of numerical techniques
(e.g., finite element method) for solving wind-induced nonlinear
structural response, reduced-order models (e.g., ANN) have been
developed to alleviate the computational cost of the high-fidelity
models. The ML models have been used for structural dynamics
and damage assessment for several decades mainly in the field of
earthquake engineering (e.g., Wu et al., 1992; Masri et al., 1993;
Jiang and Adeli 2005; Pei et al., 2005; Gholizadeh et al., 2009;
Facchini et al., 2014; Derkevorkian et al., 2015; Liang 2019; Wu
and Jahanshahi 2019; Yu et al., 2020). However, similar
applications have not emerged in wind engineering
community until recently due essentially to the linear
consideration of the wind-induced structural response [ASCE
7-16 (ASCE, 2017)]. Recent advances of performance-based wind
design methodology have placed increasing importance on
effective simulations of nonlinear, inelastic structural dynamics
response under strong winds. The numerical estimation of wind-
induced nonlinear structural response using a high-fidelity finite
element model is computationally very expensive due to its small
time-step size and long simulation duration. Accordingly, several
ML applications to wind-induced structural dynamics have been

Frontiers in Built Environment | www.frontiersin.org March 2022 | Volume 8 | Article 81146020

Wu and Snaiki ML Applications to Wind Engineering

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


TABLE 5 | Summary of ML applications for aerodynamics and aeroelasticity.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

i) Bridges Estimation of
aeroelastic parameters
of bridge decks Jung
et al. (2004)

ANN Resilient
backpropagation
Riedmiller and Braun
(1993)

100 inputs:90 inputs
representing the
section geometry and
10 inputs for the
nondimensional
velocity

Flutter derivatives (6)
of a rectangular
section

Wind tunnel test
(total of 17
experiments)

MSE Acceptable
performance

Prediction of flutter
derivatives of a
rectangular section
model Chen et al.
(2008)

ANN (total
of 8)

Gradient descent Width-to-depth ratio
and a set of reduced
frequency

8 flutter derivatives
(each given by 1
ANN separately) of
rectangular section
model

Experimental data
from wind tunnel
tests

No error metrics From the graphical
results, the
simulation results
were in good
agreement with the
experimental ones

Prediction of flutter
derivatives of a cable
stayed bridge Lute
et al. (2009)

SVM (RBF
kernel)

- Non-dimensional
velocity and width to
depth ratio of bridge
deck

8 flutter derivatives
of a cable stayed
bridge

Wind tunnel tests
were retrieved form
Matsumoto et al.
(1996)

MSE Good simulation
results

Estimation of flutter
derivatives of a
rectangular section
Chung et al. (2012)

ANN (total
of 8)

Backpropagation Width-to-depth ratio,
reduced frequency
and reduced
velocities

8 flutter derivatives
(each given by 1
ANN separately) of
rectangular section
model

CFD simulations and
forced-vibration test
in a wind tunnel

No error metrics Good performance

Modeling vortex-
induced vibration of a
long-span suspension
bridge Li et al. (2018)

DT, SVR
(with
Gaussian
radial basis
kernel)

- DT: incoming wind
speed and direction
at three locations on
the bridge deck

DT: VIV modes (a
total of 6)

Field measurements
of a full-scale
suspension bridge
over a period of 6-
years (2010–2015)
located in the
eastern ocean of
China

RMSE, accuracy
(%), squared
correlation
coefficient

Good simulation
results

SVR: same inputs as
DT model at the
current step along
with the response of
the previous step

SVR: VIV amplitudes

Prediction of nonlinear
unsteady bridge
aerodynamics Li et al.
(2020)

LSTM Back-pass algorithm Bridge deck motions Motion-induced
aerodynamic forces

CFD simulations
(total of
14,880 input-output
data corresponding
to a 2-D bridge deck
cross-section)

No error metrics Excellent
agreement (through
visual inspection)
between the LSTM
model and CFD
was obtained

Prediction of
aeroelastic response of
bridge decks Abbas
et al. (2020)

ANN Levenberg-Marquardt 18 inputs
corresponding to the
response for heave
and pitch (in terms of
displacement,
velocity and
acceleration) at
previous time steps
with three lag terms

Normalized lift force
and torsional
moment coefficients
at current time step

2 dimensional CFD
simulations for the
two bridge cross-
sections

MSE Good simulation
results were
obtained

Prediction of the flutter
velocity of suspension
bridges Rizzo and
Caracoglia (2020)

ANN
(different
topologies)

Levenberg-Marquardt 1st ANN category:
deck chord, deck
weight or the ratio
between the 1st
torsional and the 1st
vertical circular
frequencies of the
bridge, structural
damping, air density
and the flutter
derivatives

Critical flutter
velocity of
suspension bridge
with closed box
deck sections

Wind tunnel
experiments along
with finite element-
based simulation
corresponding to
various geometrical
and mechanical
parameters of the
bridge deck cross-
section

R2 While the
performance of the
ANN models varied
according to the
topology, their
performance was
good

2nd ANN category:
deck chord, the ratio
between the first
torsional and the first
vertical circular
frequencies of the
bridge, and the flutter
derivatives

(Continued on following page)
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TABLE 5 | (Continued) Summary of ML applications for aerodynamics and aeroelasticity.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

ii) Building
& other
structures

Prediction of wind load
distribution for air-
supported structures
Turkkan and
Srivastava (1995)

ANN Gradient descent Hemispherical
membrane: internal
pressure ratio and
two spatial
orientations

Steady-state wind
pressure coefficient
for air-supported
structures (e.g.,
cylindrical and
hemispherical
membranes)

Wind tunnel tests R2 Acceptable results

Cylindrical
membrane: Similar
inputs as the first
case + membrane
aspect ratio

Modelling wind-
induced interference
effects on high-rise
buildings Khanduri
et al. (1997)

ANN Generalized delta rule Spacing between two
adjacent buildings in
the along- and
across-wind
directions

Mean and dynamic
along- and across-
wind directions
interference factors

Wind-tunnel tests
from two references
Saunders and
Melbourne (1980);
Taniike and Inaoka
(1988)

No error metrics -

Modelling wind-
induced interference
effects on high-rise
buildings English and
Fricke (1999)

ANN Backpropagation Building aspect ratio,
normalized
separation distance
and power law index

Interference index Wind tunnel tests
from several sources
e.g., Zambrano and
Peterka (1978);
Blessmann and
Riera (1985)

No error metrics -

Interpolation of wind-
induced pressure time
series on a scaled
model Chen et al.
(2002)

ANN Levenberg–Marquardt 4 adjacent
experimental
pressure taps at the
next time step (t+1)
and values of the
pressure taps at
current & two
previous time steps in
the target tap
(central one)

Wind pressure
coefficient at the
next time step

Wind tunnel tests of
a 1:50 scale model

R2 Good simulation
results

Prediction of pressure
coefficients on roofs of
low buildings Chen
et al. (2003)

ANN (2
models)

Levenberg–Marquardt Roof height, wind
direction and two
normalized roof
coordinates (for the
two models)

ANN1: mean
pressure coefficients
on a gable roof of
low-rise building

Wind tunnels
experimental data

MSE Good simulation
results

ANN2: root-mean-
square pressure
coefficients on a
gable roof of low-rise
building

Prediction of building
interference effects
Zhang and Zhang
(2004)

ANN,
RBFNN (with
Gaussian
kernel)

Backpropagation Ground roughness,
relative orientation of
two buildings

Inference factor Experimental data
from literature e.g.,
Bailey and Kwok
(1985)

MSE RBF outperformed
the ANN model

Prediction of wind
loads on a large flat
roof Fu et al., (2006),
(2007)

FNN (2
models)

Backpropagation FNN1: wind direction
and the positions of
the available pressure
taps

FNN1: Mean
pressure coefficients
on a large flat roof

Boundary-layer wind
tunnels tests

MSE - Acceptable results
for the 1st FNN
model

FNN2: wind direction
and the frequency for
the few selected tap
locations

FNN2: Power
spectral density (at
given input
frequencies) at few
locations in the roof
corners and leading
edge

- No error metrics
were reported for
the 2nd FNN model

Wind load evaluation
for the design of roof
cladding of spherical
domes Uematsu and
Tsuruishi (2008)

ANN (4
models)

Quickprop algorithm
Fahlman (1988)

‘2 geometric
parameters of the
dome’, ‘2
coordinates
parameters x and y’,
‘turbulence intensity
of the incoming wind
at the mean roof
height’

Statistics of wind
pressure coefficient
on the roof of a
spherical dome:
mean, standard
deviation, skewness
and kurtosis

Experimental wind
tunnel tests

Predefined error
index (normalized
by the standard
deviation of the
target data)

- Acceptable results

Estimation of the wind
force coefficients on a
rectangular building
Wang et al. (2013),

ANN,
RBFNN,
GRNN

Backpropagation Aspect & side ratio
and ground
roughness

Along-wind mean
coefficient of base
shear of a
rectangular building

Wind tunnel tests RMSE RBFNN
outperformed all
other models

(Continued on following page)
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TABLE 5 | (Continued) Summary of ML applications for aerodynamics and aeroelasticity.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

Wang and Cheng
(2015), (2017)
Wind load prediction of
large-span dry coal
sheds Sun et al. (2017)

GRNN - rise-span ratio,
depth-span ratio,
wind angle, and local
coordinates

Statistics of the
pressure
coefficients: mean,
RMS. Skewness,
kurtosis of pressure
coefficients, three
auto-correlation
coefficients and
coherence exponent

Wind tunnel tests R2 While the mean
pressure coefficient
was predicted
accurately, the
kurtosis of the
pressure coefficient
was poorly
predicted

Prediction of wind
loads on high-rise
building Huang et al.
(2017)

ANN (2
models)

Levenberg–Marquardt ANN1: coordinates
(x, y, z) of the
pressure taps

ANN1: mean or
root-mean-square
pressure coefficients
on a high-rise
building

Wind tunnel tests RMSE - No error metric
was reported for
the 1st ANN model

ANN2: coordinates
(x, y, z) of the
pressure taps and
time

ANN2: time series of
wind-induced
pressures on a high-
rise building

- Good simulation
results for the 2nd
ANN model based
on RMSE.

Prediction of wind
pressure coefficients
on building surfaces
Bre et al. (2018)

ANN (3
models for
flat-, gable,
and hip-
roofed low-
rise
buildings)

Levenberg–Marquardt Wind direction and
building
characteristics (1
parameter for the flat-
roofed building, and 2
parameters for the
gable roofed and hip-
roofed buildings)

Mean pressure
coefficients over few
locations on the
roofs and walls (5
outputs for the flat-
roofed, 6 for the
gable-roofed and 8
for the hip-roofed)

Tokyo Polytechnique
University
experimental
database

MSE, R2 Good simulation
accuracies

Prediction of roof
pressures on a low-rise
structure
Fernández-Cabán
et al. (2018)

ANN Levenberg–Marquardt Turbulence intensity
(at eave height) and 2
normalized roof
coordinates

Mean, root-mean-
square, and peak
pressure coefficients
on the roof (at 152
roof taps) of 3 scaled
low-rise buildings (1:
50, 1:30, and 1:20)

Wind tunnel tests RMSE, MAE, R2 The accuracy of
simulation results
depends on the
pressure taps
location

Modeling for unsteady
flows around bluff
bodies of various
shapes Hasegawa
et al. (2019), (2020)

CNN-AE +
LSTM

Adam Temporal variation of
the flow field around
different 2-D cross-
sections shapes: 2
velocity components
and pressure

Temporal variation
(next time step) of
the flow field around
different 2-D cross-
sections shapes: 2
velocity components
and pressure

Direct numerical
simulation (DNS):
100 different bluff-
bodies shapes (in 2-
D space) with 500
instantaneous time-
series flow fields
each

MSE -The use of CNN-
AE allows the
mapping between
the high-
dimensional space
and a low-
dimensional latent
space which
facilitates the
training of the LSTM
model
- Excellent
performance

Prediction of wind
pressures on a tall
building under
interference effects Hu
et al. (2020)

DT, RF,
XGBoost,
GAN

- GAN: wind direction
and location of the
interfering building

GAN: mean and
fluctuating pressure
coefficients over all
faces of the building

Aerodynamic
database of Tokyo
Polytechnic
University

R2 The GANs-based
model
outperformed the
other threemachine
learning algorithms
and provided
accurate mean and
fluctuating pressure
coefficients on the
principle building

DT, RF, XGBoost:
wind direction, the
coordinates of the
pressure tap and the
location of the
interfering building

DT, RF, XGBoost:
mean and
fluctuating pressure
coefficient at one
point on the building
surface

Prediction of low-rise
gable roof building
pressures Jianqiao
Tian et al. (2020)

DNN Levenberg–Marquardt Prediction’s location
(x, y, z) and the
incoming wind
direction

Mean and peak wind
pressure coefficients
on the surface of a
scale model
corresponding to a
low-rise, gable roof
building

Wind tunnel tests R2 Excellent
performance
results

Predicting wind
pressures around
circular cylinders Hu
and Kwok (2020)

RF, DT,
GBRT

Gradient descent Turbulence intensity,
incoming wind,
Reynolds number
and circumferential
angle of the cylinder

Mean and
fluctuating wind
pressures around a
circular cylinder for
high Reynolds
numbers

From published
papers e.g., Cheng
et al. (2016), Gao
et al. (2017)

R2 GBRT
outperformed all
other models
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TABLE 6 | Summary of ML applications for structural dynamics and damage assessment.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

i) Structural
dynamics

Modeling
hysteretic
nonlinear
behavior of bridge
aerodynamics
Wu and Kareem
(2011)

ANN Gradient descent 12 inputs: mean
wind velocity in
the current and
next time steps,
fluctuating
components in
the longitudinal
and vertical
direction in the
current and next
time steps, and
the vertical and
torsional
displacement
with their first
and second
derivatives in the
current time step

Vertical (torsional)
acceleration of
the bridge deck
section in the next
time step

Tongji-1 wind
tunnel at State Key
Lab in Tongji
University

No error metrics - Cellular
automata-
based system
was employed
to optimize the
ANN
configuration
- The visual
inspection of the
results indicated
the good
agreement
between the
simulated and
measured
- ANN model
showed good
promise in
simulating the
hysteretic
nonlinear
behavior of the
bridge deck
which interacts
with the
incoming
fluctuating wind

Analysis of tall
building for
across wind
response
Vyavahare et al.
(2012)

ANN Backpropagation Building shape
(height, breadth
and depth), the
terrain category
and incoming
wind speed

Shear force and
bending
moments of tall
buildings

Data generated
from numerical
examples

No error metrics From visual
inspection, it
can be
concluded that
a good
agreement
between the
simulated and
numerical
results has been
obtained

Identification of
the dynamic
properties high-
rise buildings
subjected to wind
Oh et al. (2017)

ERBFN Genetic
algorithm

Wind speed and
direction

Column stress of
a tall building
subjected to wind
loads

Wind tunnel tests RMSE,
maximum error
between the
measured and
estimated values

Good simulation
results were
obtained

Identification of
the dynamic
properties high-
rise buildings
subjected to wind
Nikose and
Sonparote
(2019a); (2019b),
(2020)

ANN Backpropagation Building
geometry
(height, breadth
and depth),
incoming wind
velocity and
terrain category

Dynamic
response in the
along-wind and
across-wind in
terms of base
shear and base
bending moment

Dataset were
generated based
on the Indian Wind
Code (IWC) for
various building
configurations

RMSE Good simulation
results were
obtained

Wind-induced
response
estimation for tall
buildings Oh et al.
(2019)

CNN Backpropagation Top-level (top
floor of a tall
building) wind
induced
displacement in
both time and
frequency
domain and
measured wind
speed in the

Maximum and
minimum strains
of the building
columns

Wind tunnel tests RMSE Good simulation
results were
obtained

(Continued on following page)
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TABLE 6 | (Continued) Summary of ML applications for structural dynamics and damage assessment.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

frequency
domain

Wind-induced
nonlinear
structural
dynamic analysis
Wang and Wu
(2020)

KE-LSTM AdaMax Wavelet
coefficients of
the normalized
wind excitation
(external wind
force)

Normalized
structural
displacement at
different nodes

Numerically for the
case of SDOF and
MDOF

MAE - The governing
equation of
motion was
embedded
within the loss
function
- Excellent
simulation
results

Prediction of
structural
response of wind-
excited tall
buildings Micheli
et al. (2020)

AWN Backpropagation Wind load and
high-
performance
control systems
(HPCS)
characteristics

Maximum
absolute
acceleration of
the structure

Dataset generated
numerically
corresponding to
a 39-stoery steel-
frame system
building subjected
to wind load and
equipped with
several equipment
(e.g., damping
devices, sensors
and global
controller)

RMSE - AWN
parameters
were updated
sequentially
each time data
arrives (online
training)
- Good
simulation
results

ii) Damage
assessment

Constructing and
validating
geographically
refined HAZUS-
MH4 hurricane
wind risk models
Subramanian
et al. (2013)

Ensemble
models
composed
of 50
bagged DT

- 10 predictors
were identified
(e.g., number of
floors, terrain
roughness, wind
speed and
direction)

Classification:
Structures that
were correctly or
not well predicted
by HAZUS-MH4
(in terms of
hurricane induced
wind damage) in
1-km square
blocks

The data contains
the damage states
and corresponds
to approximately
700,000
residences in the
Harris County
following hurricane
Ike (2008)

Accuracy (%)
and customized
error metric

- The results of
this study
suggest that
HAZUS-MH4
fragility curves
for certain home
types, need to
be refined to
improve the
prediction
results

Probabilistic
damage
estimation for
asphalt shingle
roofing Huang
et al. (2015)

ANN Backpropagation 8 predictors:
wind speed,
angle of attack,
shingle
resistance,
building length,
building width,
building height,
roof slope and
surface
roughness

Mean damage
ratio of an asphalt
shingle roof

Boundary-layer
wind tunnel tests
from the University
ofWestern Ontario

Accuracy (%) Good
performance

Estimatin of the
fatigue damage of
coastal bridges
under coupled
loads Zhu and
Zhang (2018)

SVR (with
Gaussian
kernel)

- Gross vehicle
weight; 10-min
wind speed;
significant wave
height; and peak
wave period

Daily equivalent
fatigue damage
accumulation

Traffic data from a
cable-stayed
bridge located in
southern China
coastal regions &
the wind/wave
data from
Meteorological
Observatory near
the bridge location
from 1980 to 2012

RMSE, MAE,
MAPE

Good simulation
results were
obtained

Performance
assessment of a
vertical structure
subjected to non-
stationary,
tornadic wind

ANN Levenberg-
Marquadt

Maximum mean
tangential
velocity of the
tornado and its
radial length
scale

Fragility values
associated with
each intensity
measures
combination

Numerically
generated in
which the Monte
Carlo simulation
was employed

Absolute
differences

Various
architectures
were tested and
the best ANN
model has one

(Continued on following page)
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developed in recent years for simultaneously achieving high
simulation accuracy and efficiency. The performance-based
(and further resilience-ba sed) wind design philosophies also
require accurate damage assessment of structures and
infrastructure under extreme storms. The structural damages
under winds depend on numerous factors including wind
features (e.g., wind speed/direction and topography) and built
environment characteristics (e.g., building opening and roof
slope), hence its assessment and quantification are extremely
challenging. On the other hand, increasingly available field-
measurement data characterizing structural damages under
strong wind events [e.g., resulting from post-disaster
reconnaissance activities such NHERI Natural Hazards
Reconnaissance (RAPID) Facility and NSF Structural Extreme
Events Reconnaissance (StEER) Network] provide a great
opportunity to learn from data by using various ML models.
The ML applications for structural dynamics are first reviewed
in Table 6i and then followed by damage assessment in Table 6ii,
where theMLmodel, training scheme, input data, output data, data
source and performance metric are summarized for each
application. The training/testing data were essentially retrieved
from numerical simulations, wind tunnel tests and field
measurements. From Table 6, it can be concluded that most
applications used ML as a regression model for modeling
structural dynamics and as a regression or a classification model
for structural damage assessment. While many applications
employed simple ML models and standard training schemes
(e.g., ANN with backpropagation), some advanced schemes
such as knowledge-enhanced LSTM have been successfully
applied to predict time series of wind-induced nonlinear
structural response. It is noted that the selection of the most

appropriate set of inputs to ML models for damage assessment
(predictors or features) is still very challenging.

3.5 Mitigation and Response
Both long-term and short-term strategies are needed to enhance
resilience of individual structures or communities to withstand
wind-related hazards. One important long-term consideration is
to mitigate structural response/vibration subjected to winds
through structural optimization and/or control. For structural
optimization under winds, the shape optimization is probably the
most effective approach to reduce aerodynamic loading. For
wind-induced vibration control, both aerodynamic and
mechanical measures are well recognized in wind engineering
community. Although the structural performance evaluation
under winds is typically a very complicated task, the
corresponding simulations during optimization or (active)
control process is required to be efficient and accurate because
they need to be conducted either repeatedly for numerous
scenarios or in a (near) real-time sense. As noted earlier, the
MLmodels are very promising to simultaneously achieve the high
simulation efficiency and accuracy goal. In addition, the RL
models that have gained increasing popularity in recent years
can be used as very effective optimization or control algorithms
compared to conventional approaches (Silver et al., 2017). In the
consideration of short-term actions, efficient management
strategies are critically important. Although the ML models
used in the disaster (including wind-related hazard)
management framework (i.e., covering preparedness, response
and recovery) have recently been systematically reviewed (e.g.,
Sun et al., 2020), its applications to social media-informed
response are still discussed here since the unprecedentedly

TABLE 6 | (Continued) Summary of ML applications for structural dynamics and damage assessment.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

loads Le and
Caracoglia (2020)

hidden layer
with 4 neurons

Object detection
in aerial imagery
for disaster
response and
recovery after the
occurrence of
hurricanes Pi et al.
(2020)

Series of
CNN trained
using
transfer
learning

Backpropagation Digital images
and videos

Bounding boxes
of the ground
objects of interest
(i.e., flooded area,
building roofs
damage, debris,
vegetation and
cars) and their
corresponding
class labels (e.g.,
damaged or
undamaged)

-The models were
pretrained on the
common objects
in context/visual
object classes
(COCO/VOC)
databases
Everingham et al.
(2010); Lin et al.
(2017)

Mean average
precision

Acceptable
results

- Then they were
retrained on new
aerial video
dataset Volan
2018
(corresponding to
hurricanes that
occurred in
2017–2018)
obtained using
web mining
algorithms
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TABLE 7 | Summary of ML applications for mitigation and response.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

i) Structural
optimization &
control under
winds

Vibration control of
wind-induced
response of tall
buildings with active
tuned mass damper
Bani-Hani (2007)

ANN (2
models)

Backpropagation ANN1&2: 20 inputs-
absolute wind-
induced
acceleration of 3
selected floors at
the current and
previous 4-time
steps, and the active
tuned mass damper
control forces at the
current and
previous 4-time
steps

ANN1: 4-time steps
ahead the absolute
acceleration of three
floors (i.e., 50th, 60th
and 70th)

Numerically generated
using a SIMULINK
model with a total of
50 s of data and a
sampling time of 0.001s
for a tall building with
76-stoery (data
generated with and
without random white
noise control force of up
to 5 Hz frequency)

RMS and defined
dimensionless
performance
indexes

The coupled ANN
models were able to
reduce substantially
the peak
displacement and the
absolute acceleration
response of the
building storeys

ANN2: future control
force at the next time
step of the active
tuned mass damper

Aerodynamic shape
optimization of tall
buildings Elshaer
et al. (2016), (2017)

ANN with a
genetic
algorithm

- Geometric variables
of the cross section
and the wind angle
of attacks

Objective function =
the mean drag
coefficient or the
standard deviation of
the lift coefficient

LES simulations of a
two-dimensional flow
corresponding to
different geometric
properties of the cross
section

R2 - Good simulation
results
- Significant
optimization of the
mean drag coefficient
and standard
deviation of the lift
coefficient

Aerodynamic shape
optimization of tall
buildings Li et al.
(2021a)

KE-DRL Gradient descent State: external
shape of the
structure

Action: design
adjustment of the
cross section to
maximize the
aerodynamic
mitigation (by
minimizing the drag
of a high-rise building)

RANS and LES
simulation of a 2-D
cross section example

- - Both specific direct-
domain and cross-
domain knowledge
are leveraged through
transfer-learning and
meta-learning
- The deep
deterministic policy
gradient algorithm
(DDPG) was used for
the RL algorithm
- RL-based shape
optimizer
outperformed the
basic gradient
descent, particle
swarm optimization
(PSO) and typical RL
without knowledge

Bluff body active flow
control in
experiments and
simulations Fan et al.
(2020)

DRL Adam States: drag and lift
coefficients

Action: ratio of the
rotation rate for each
rotating cylinder and
the maximum
rotation rate to
minimize the drag in
both simulations and
experiments

Entropy-viscosity-
based large eddy
simulation (LES) (for the
numerical simulation)
and an experimental
setup

- -The Twin Delayed
Deep Deterministic
policy gradient
algorithm was
selected as the RL-
algorithm to update
the agent
- The RL-agent was
capable to efficiently
learn a control
strategy, for both
experiment and
simulation, that will
allow the
reattachment of flow
behind the cylinder
and reduce the drag
coefficient

ii) Disaster
response
informed by
social media

Information
classification from
disaster-related
messages in twitter
Imran et al. (2013)

NB (2
classifiers)

- NB1: tweets NB1: classification of
tweets as personal,
direct informative,
indirect informative
direct-indirect
informative and other
following the tornado
event in Joplin,
Missouri (2011)

206,764 tweets
collected during the
Joplin tornado of 2011
in Joplin, Missouri

F1 score Acceptable
performance

(Continued on following page)
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abundant data from various powerful communication tools (e.g.,
Twitter) greatly facilitate the rapid ML model developments in
this field. Table 7i,ii respectively present the reviewed
applications of ML for mitigation and response, where the ML

model, training scheme, input data, output data, data source and
performance metric are summarized for each application. The
training/testing data were essentially retrieved from CFD
simulations and experimental tests for structural mitigation or

TABLE 7 | (Continued) Summary of ML applications for mitigation and response.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

NB2: informative
tweets

NB2: classification of
informative tweets as
caution, donation,
advice, or information
source

Classification of
tweets to inform
disaster response
Ashktorab et al.
(2014)

SLDA, LR,
KNN, NB, DT

- Tweets Classification of
tweets to identify
those that reported
human casualties or
structural damage
(requiring
intervention)

17 million tweets
collected during 12
different natural
disasters in the U.S
since 2006 (e.g.,
tornado and hurricane)

AUC The LR was the best
classifier

Information
classification from
disaster-related
messages in twitter
Imran et al. (2016)

RF, SVM, NB - Tweets 9 classes (e.g.,
injured or dead
people, infrastructure
and utilities damage,
displaced people and
evacuations, caution
and advice)

52 million tweets for
events related to 19
natural hazards and
crisis (e.g., typhoon,
floods and earthquake)
occurring between
2013 and 2015 in
different parts of the
world was used

Area under ROC
curve

- Good results were
obtained for all
classes (for the three
classifiers) except for
the “missing trapped
or found people” -
poor classification-

Information
classification from
disaster-related
events O’Neal et al.
(2018)

SVM, KNN,
GNB, MNB,
BNB,
DT, SGD

- Images Image classes in
terms of human roles:
rescuees or rescuers

The images were
collected from August
17th to 3 September
2017 based on private
social media platforms
(e.g., twitter) during
Hurricane Harvey
(2017)

Average
precision

SVM-based model
gave the best
prediction accuracy

Real-time disaster
communication
Robertson et al.
(2019)

VGG-16
CNN, ANN

Adam Tweeter-based
images

VGG-16 CNN:
informative features
(pre-storm, landfall
and the period after
landfall)

A total of 17,483
images were extracted
from Twitter between
17th August and 17
September 2017 from
Hurricane Harvey
(2017)

Accuracy Acceptable
simulation results

ANN: urgency level
(highly urgent,
moderately urgent,
somewhat urgent,
not urgent, and
unrelated to the
hurricane event)

Information
classification from
disaster-related
events Manna and
Nakai (2019)

ANN, SVM,
NB, LR

- Tweets 2 classes: crisis-
related tweets and
non-crisis-related
tweets

6 crisis related datasets
were used (e.g.,
hurricane Harvey 2017
and the 2011 Joplin
Tornado) with
approximately 10,000
tweets for each event

Accuracy ANN classifier
outperformed all
other classifiers

Real-time information
classification from
hurricane-related
events Yu et al.,
(2019)

CNN,
SVM, LR

RMSprop Tweets 5 classes:
Information Sources,
Caution and Advice,
Infrastructure and
Resources,
Casualties and
Damage, and
Donation and Aid

3 manually labeled
datasets were used
corresponding to
hurricane Sandy (2012),
Irma (2017) and Harvey
(2017), respectively
with approximatively
2000–3000 tweets per
each event

Accuracy CNN outperformed
other classifiers

Identification of social
media-based
requests for urgent
help during
hurricanes Devaraj
et al., (2020)

DT, SVM,
ANN, LR,
NB,
AdaBoost,
RR

- Tweets Tweets from people
requiring or not
urgent rescue by first
responders

2,072,715 tweets
related to Hurricane
Harvey (2017) event

F1-score CNN, SVM and ANN
achieve the best
simulation results
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from social media platforms for disaster response. From Table 7i,
it can be concluded that the structural performance evaluations in
mitigation applications usually used ML as a regression model
while RL was typically utilized as an effective optimization or
control algorithm. It is noted that relatively few ML applications
for structural optimization and control under winds have been
generated compared to those in earthquake engineering
community (e.g., Ghaboussi and Joghataie 1995; Adam and
Smith 2008; Jiang and Adeli 2008; Yakut and Alli 2011;
Subasri et al., 2014; Khodabandehlou et al., 2018;
Khalatbarisoltani et al., 2019; Hayashi and Ohsaki 2020). From
Table 7ii, it can be concluded that most social media-informed
response applications used ML as a classification model for
disaster rescue and relief information dissemination. Although
these ML applications present promising results in terms of
effectively supporting timely decision-making, there is a
concern of using information from social media platforms due
to a lack of data quality control.

3.6 Summary
TheML applications in each topical area of wind engineering are
summarized in Figure 8. As shown in the figure, ML models are
unevenly distributed among these areas. The wind climate area
has the most ML applications followed by the aerodynamics and
aeroelasticity area, and they are respectively contributed by wind
engineering-related fields of meteorology and fluid mechanics.
On the other hand, the wind engineering-exclusive field of
terrain and topography has the least applications of ML.
Although ML models have been instrumental in modern
structural design for winds, their developments are in a very
preliminary stage and there is still a long way to go before they
can complement or even replace existing approaches of wind

tunnel tests andCFD simulations. In general, the supervised learning
dominates theML applications inwind engineeringwith the podium
position attributed to simple models with standard algorithms (e.g.,
ANN with backpropagation). Actually, the selection of various ML
models is rather rudimentary since there is a lack of systematic
comparison among them (e.g., in terms of model complexity and
performance). It is noted that the great potential of semi-supervised
learning and unsupervised learning (as well as RL) with little or no
labelled data is not leveraged yet. Accordingly, the current ML
developments in wind engineering heavily rely on available
labelled data. For example, the ML applications to non-synoptic
winds are much less than those of synoptic winds due essentially to
the difficulty in obtaining the data of local and short-lived storms.
On the other hand, the recent emergence of numerous ML
applications to social media-informed disaster response is due
mainly to the unprecedentedly abundant data from various
powerful communication tools. For the reviewed ML
applications, the training/testing data are retrieved from several
major sources (e.g., field measurements, wind tunnel tests,
numerical simulations and social media platforms). In the
determination of ML model inputs and outputs, a good
understanding of underlying physics of each application is critical
to effectively select an appropriate set of predictors (ML inputs)
while the output types heavily depend on the needs of traditional
analysis procedure in each application (e.g., local wind pressures for
building design and global wind forces for bridge design).

4 CHALLENGES AND PROSPECTS

The rapidly increasing ML applications to wind engineering have
generated a large volume of datasets associated with a large set of

FIGURE 8 | Overview of reviewed ML applications in wind engineering (following Alan G. Davenport Wind Loading Chain).
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domain-specific algorithms. It is strongly believed that the
platforms encouraging open sharing of these datasets and
algorithms would greatly benefit the ML research progress in
wind engineering. The openly available wind engineering datasets
will greatly reduce efforts for their creation/collection and pre-
processing, and open-source ML algorithms will save significant
time for their re-implementation. The reduced need of time and
effort to use the state-of-the-art or latest developed ML tools
under such a culture of openness would spur interests among
researchers in wind engineering, and hence result in more related
ML applications. Moreover, the developed cyberinfrastructure to
store and share data usually has a systematic curation procedure
to ensure the high quality of its standardized benchmark datasets.
Also, the open-source software allows the hidden bugs/tricks of
ML algorithms to be easily uncovered and accordingly makes
them more robust. In addition to availability, the reproducibility
and testability of wind engineering data and domain-specific
algorithms due to a culture of openness would also facilitate
the adoption of the obtained transparent and trustworthy ML
tools in real-world problems. Although the wind engineering
community has started to embrace the prevalent openness of ML
community (e.g., NHERI DesignSafe platform), the culture of
openness is still in its early stage. It is expected that more
incentives based on the existing reward system (e.g., a digital
object identifier for each dataset or algorithm published by the
platform) are needed to motivate the ML wind engineering
community towards open science. Given a potential open-
science environment with openly available datasets and open-
source algorithms (supported by open-access scientific
publications), some remaining challenges and future prospects
are discussed in terms of data in wind engineering and algorithms
in ML. It is noted that both challenge and prospect lists are not
exhaustive.

4.1 Challenges and Research Gaps
The reviewed various ML models for a wide range of topics in
wind engineering suggests that their cross field has recently
attracted much interest. However, there are still numerous
challenges to advance ML applications to wind engineering
from conception and research into practice. These remaining
challenges of data in wind engineering and algorithms in ML are
discussed in this sub-section.

4.1.1 Wind Engineering Data Challenges
Wind engineering data could be rich in some dimensions but may
be poor in others. For example, a large volume of flow data or
pressure data could be obtained by one wind tunnel test (using
advancedmeasurement systems with high resolution in space and
high sampling rate in time), however, all these data would be
located at a point in the Reynolds number dimension. For
structural response under winds, most of the data are located
in the linear elastic domain, while very limited nonlinear inelastic
data needed to advance implementation of performance-based
wind design are available. Another example is that the
anemometric monitoring network typically generates abundant
data in time dimension but sparse data in space. More
importantly, it is usually very challenging or expensive to

create extra points in currently data-scarce dimensions. Wind
engineering data could be short in time span of their collection.
For example, the climate changing impacts are not easy to be
considered based on the currently available wind data since their
record period is much shorter than the time scale of climate
changing. Also, few structural performance data under winds are
long enough to take the life-span deterioration behaviors into
account. Essentially, the learningmachine based on current wind-
structure interaction data cannot be used for accurately
predicting future long-term behaviors of the same wind-
structure system. Wind engineering data could be highly
heterogeneous for collaborative or large-scale ML applications.
Many complex tasks (e.g., life-cycle performance evaluation of
structures under winds) and/or real-world problems (e.g.,
hurricane resilience assessment of coastal communities) in
wind engineering need collaborative efforts and/or large-scale
implementations. The datasets generated from these activities
may result from various CFD simulation tools or field
measurement devices, and they are typically interpreted by
different entities before sent to a central processing platform.
Accordingly, significant processing efforts (e.g., data cleaning,
data aggregation, dimension reduction and data standardization)
are needed for these heterogeneous datasets with high variability
of data types and formats (e.g., mixtures of structured, semi-
structured and unstructured data). In addition, advanced
powerful learning machines are necessary to generate new
knowledge from large, heterogeneous sets of wind
engineering data.

4.1.2 Machine Learning Algorithm Challenges
ML algorithms commonly-used in wind engineering are standard
ones designed for solving problems in other fields (e.g., handwriting
recognition or computer vision). While these classical algorithms
(e.g., ANN with backpropagation) achieved great success for simple
wind engineering applications, they are not necessarily concise and
efficient. More importantly, the immediate applications of these
popular algorithms to modern wind engineering (involving
nonstationary and non-Gaussian wind flow, transient and
nonlinear aerodynamics, nonlinear and inelastic structural
dynamics, or time-variant wind-structure system under a
changing climate) may be very challenging. On the other hand,
the newly developed ML algorithms (e.g., advanced LSTM and
GAN) need to be carefully scrutinized for their applicability to these
complex problems. ML algorithms commonly-used in wind
engineering are supervised ones that need a significant amount of
labelled data. Although the cost of obtaining/collecting the data from
various sources (e.g., numerical simulations, wind tunnel tests, or
field measurements) is greatly reduced and accordingly
unprecedented volume of data are increasingly available, these
datasets may be limited to unlabeled due to a lack of sufficient
human resources (with expert knowledge) for data labeling. ML
algorithms commonly-used in wind engineering are purely data-
driven ones that are usually consider as black boxes. Furthermore,
currently available ML models usually present a conflict between
their advances (and hence performance) and explainability. One
important feature of human intelligence is the ability to explain the
rationale behind its decisions to others, hence, the explainability of
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learning machines is often an essential prerequisite for establishing a
trust relationship between human intelligence and artificial
intelligence. The highly non-transparent nature of ML algorithms
may be acceptable for some applications in wind engineering (e.g., a
CNNmapping the oncoming winds to pressure fields on or velocity
fields around various bridge decks), however, it may be a clear
drawback for many high-stake applications (e.g., evacuation
planning or transportation infrastructure management under a
landfalling hurricane) since any error in prediction may have
catastrophic consequences. It is noted that the high-stake
applications also place a high demand for quantification of
uncertainties involved in ML algorithm selection, training and
performance evaluation (along with data collection), whereas the
formalization of uncertainty quantification for purely data-
driven approaches is very challenging and not well
established yet. ML algorithms commonly-used in wind
engineering are typically selected based on past experience
(or simply by “gut feeling”) and the associated model
hyperparameters (e.g., layer and neuron numbers,
activation function and learning rate) are usually obtained
by extensive trial and error. While the selected ML
algorithms present good performance for the particular
applications of interest, they are not necessarily an
optimal choice. A systematic approach to identify the
most appropriate ML model and associated best
hyperparameters essentially needs a global optimization
within a high dimensional space, and is currently very
challenging for wind engineering applications.

4.2 Prospects and Future Directions
The remaining challenges, while not trivial, provide new research
opportunities for the development of more effective ML tools.
The identified prospects of data in wind engineering and
algorithms in ML are discussed in this sub-section.

4.2.1 Wind Engineering Data Prospects
To generate/collect wind engineering data that are scarce in
certain dimensions, advanced full-scale/laboratory/numerical
tools and technologies need to be utilized or developed. In
addition to large-scale facilities (e.g., WindEEE), various high-
fidelity and efficient modern CFD techniques (e.g., hybrid large
eddy simulation/Reynolds-averaged Navier-Stokes schemes)
should be exploited to generate data of high-Reynolds number
scenarios. The rational loading protocols for extreme wind
performance cyclic testing of deformation-controlled MWFRS
(Main Wind Force Resisting System) members need to be
designed to generate the wind-induced nonlinear inelastic
structural response data. Also, data reconstructions using
linear/nonlinear dimensionality reduction techniques (e.g.,
singular value decomposition/autoencoder) should be
employed to enhance spatial resolution of full-scale
measurements. To generate/collect wind engineering data that
cover sufficiently-long time span of structural behaviors, more
reliable long-term structural health monitoring systems should be
established in addition to high-fidelity modeling of aging and
deterioration of wind-sensitive structures. For the consideration
of wind engineering data under a changing climate, synthesized

wind fields (resulting from tropical cyclones, extratropical
cyclones or local non-synoptic storms) need to be generated
by global climate models coupled with accurate and efficient
downscaling exercises under projected climate conditions [e.g.,
various RCP (Representative Concentration Pathway) scenarios].
To effectively learn from heterogeneous data that need to be first
unified, they can be efficiently processed by advanced big data
analytics. For example, unsupervised or semi-supervised
clustering techniques could be used for data cleaning, data
fusion techniques of Kalman filters could be used for data
aggregation, and linear principal component analysis or
nonlinear self-organizing map could be used for dimensional
reduction.

4.2.2 ML Algorithm Prospects
To facilitate ML applications to complex wind engineering
problems, the state-of-the-art or latest algorithms emerging in
ML community could be leveraged. For example, the GAN could
be used for effectively generating nonstationary and non-
Gaussian wind flow through its two competing sub-networks,
the CNN could be employed for efficiently mapping oncoming
winds to pressure fields (characterizing transient and nonlinear
aerodynamics) on structures with an arbitrary shape because it is
particularly good at handling input-output data with a known
grid-like topology, the LSTM could be utilized for accurately
simulating nonlinear and inelastic structural dynamics since its
forget gates ensure a reliable consideration of long-term
dependencies (where the structural response at the current
time depends on not only the current wind load but also the
load history), and the lifelong learning networks should be
explored for adaptively modeling time-variant wind-structure
system assuming their underlying parameters can be
continuously modified to accommodate new data inputs. The
direct or immediate applications of the advanced ML algorithms
to complex wind engineering problems may not necessarily result
in parsimonious models that may need specialized customization
for each application. To reduce the demand for labelled data in
ML applications to wind engineering, both unsupervised learning
and semi-supervised learning (including physics-informed
machine learning) are promising alternatives to popularly used
supervised learning. In addition, advanced ML algorithms have
been emerging (e.g., reservoir computing) for processing
information generated by complicated dynamical systems
using very small training datasets. To open the ML black box,
model explainability and interpretability in wind engineering
applications needs to be enhanced. Various general techniques
have been developed to improve understanding of the ML model
predictions, such as sensitivity analysis and layer-wise relevance
propagation. On the other hand, the definitions of explainability
and interpretability are typically domain dependent, hence, the
domain knowledge in wind engineering should be leveraged for
enhanced explainability/interpretability of each ML application.
It is expected that the explainability/interpretability analysis
(along with uncertain quantification) will likely become a
fundamental building block for bounding the overall
confidence in ML applications in wind engineering (parallel to
verification and validation in CFD simulations). To enable an
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automatic search ofMLmodel hyperparameters inwind engineering
applications, increasingly available optimization schemes with
improved efficiency and accuracy (e.g., grid search, random
search, Bayesian optimization and population-based training) can
be utilized to find the best configuration for each task. On the other
hand, it is believed that a practical guide to selection ofMLmodels in
wind engineering applications will greatly facilitate their appropriate
use. The best practices for model selection in each application are
essentially consistent with the principle of Ockham’s razo by first
testing simple linear MLmodels (due to their easy to implement and
high model explainability), and then followed by more complex
nonlinear models (without data overfitting). Among ML models
with similar complexity, a predetermined performance metric is
typically used for further model selection. Since iteration is generally
needed in a purely performance-driven ML model selection, the
domain knowledge is suggested to be utilized for a more effective
search process.

4.3 Knowledge-Enhanced Machine
Learning
As discussed in preceding sections, domain knowledge could be
leveraged for improved selection of ML model and its inputs and
outputs in wind engineering applications. Hence, a good
understanding of fundamental physics and other types of
domain knowledge underlying each subfield of wind
engineering would enable more effective use of ML tools. It is
noted that the fundamental physics in terms of governing
equations is a special type of domain knowledge, and recent
studies have demonstrated that the required labelled datasets
could be significantly reduced by incorporating the underlying
physics into training process (and hence enhancing the
regularization mechanism) (e.g., Raissi et al., 2017a; 2017b).
Other equation-based domain knowledge such as empirical/
semi-empirical formulas were also employed as part of the
loss function in deep learning to provide machine-readable
prior knowledge that facilitates the effective regularization
of the neural networks for simulations of tropical cyclone
winds (Snaiki and Wu 2019) and nonlinear structural
dynamics (Wang and Wu 2020). In addition, the equation-free
domain knowledge has been integrated into a deep RL-based
aerodynamic shape optimizer (via the transfer-learning and
meta-learning techniques) to remarkably enhance the training
efficiency for wind engineering applications (Li et al., 2021a).
These emerging successful applications indicate that this novel
scheme of knowledge-enhanced machine learning (KEML) could
significantly enhance ML applications to wind engineering. To
fully embrace the promising potential of KEML, systematic
research efforts are needed to efficiently identify knowledge
representations (invariances, physics equations, empirical

formulas, probabilistic relations, logic rules, simulation results,
field observations, human feedback, and others) in various
subfields of wind engineering and then to effectively integrate
them into each module of machine learning pipeline (data
preparation, model selection, model training, and others).
While domain knowledge could be employed to enhance
purely data-driven ML tools, it is expected that learning
machines could be utilized for harnessing data to discover new
knowledge in wind engineering (e.g., governing laws
characterizing transport of turbulence quantities or
optimization of wind-structure system).

5 CONCLUDING REMARKS

A total of 65 machine learning (ML) algorithms were reviewed in
terms of their applications to each topical area of wind
engineering, namely wind climate, terrain/topography,
aerodynamics/aeroelasticity, structural dynamics, wind damage
assessment and wind-related hazard mitigation and response.
The most ML applications were found in wind climate area, while
the terrain/topography area had the least applications of ML.
Although the ML-based wind engineering is fueled by the
unprecedented volume of analytical, numerical,
experimental and field-measurement data together with
rapidly evolving learning algorithms and high-
performance computational hardware, it is still at an early
stage of development. Most of wind engineering applications
employed supervised learning with standard ML models
designed for solving problems in other fields, and the
promising unsupervised and semi-supervised learning
tools were rarely used to reduce the high demand of
labelled data. For the selection of ML models and
associated hyperparameters in wind engineering
applications, it was typically based on expertise and
extensive trial and error. In this review, the culture of
openness, explainability/interpretability and uncertainty
quantification were identified as important research gaps
that need to be addressed in ML-based wind engineering
community. Furthermore, the knowledge-enhanced machine
learning was considered as a very promising scheme to
enhance ML applications to wind engineering.
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APPENDIX A: LIST OF REVIEWED
MACHINE LEARNING ALGORITHMS
(NOTE: ACRONYMS WITH * REPRESENT
THOSE REVIEWED IN THIS
CONTRIBUTION).

A2C advantage actor critic

AdaBoost* adaptive boosting

AE* autoencoder

ALEN* adaptive linear element network

ANFIS* adaptive neuro-fuzzy inference system

ANN* artificial neural network

AWN* adaptive wavelet network

BNB* Bernoulli naive Bayes

BNN* Bayesian neural network

CGAN conditional GAN

CNN* convolutional neural network

CNN-AE* convolutional neural network-based autoencoder

ConvLSTM* convolutional Long Short-Term Memory

DCGAN deep convolutional GAN

DDPG* deep deterministic policy gradient

DDQN double deep Q-network

DNN* deep neural network

DQN deep Q-network

DRL* deep reinforcement learning

DRNN* diagonal recurrent neural networks

DT* decision tree

ENN* Elman neural network

ERBFN* radial basis function neural network

ERNN* Elman recurrent neural networks

FIS* fuzzy inference system

FNN* fuzzy neural network

GAN* generative adversarial network

GBRT* gradient boosted regression trees

GBTE* gradient-boosted tree ensembles

GMDH* group method of data handling

GNB* gaussian naïve Bayes

GPR* gaussian process regression

GRU* gated recurrent unit network

GRNN* generalized regression neural network

ICA independent component analysis

IIRANN* infinite impulse response artificial neural network

JRNN* Jordan recurrent neural networks

KEDL* knowledge-enhanced deep learning

KE-DRL* knowledge-enhanced deep reinforcement learning

KE-LSTM* knowledge enhanced long short-term memory

KM k-means

KNN* k-nearest neighbors

LAFMN* local activation feedback multilayer network

LDA* linear discriminant analysis

LNN* linear neural network

LR* logistic regression

LSSVM* least squares support vector machine

LSTM* long short-term memory

MC* multiple correlation

MFQL* modified fuzzy Q-learning

MLR* multiple linear regression

MNB* multinomial naive Bayes

MNN* matrix neural network

MSC mean-shift clustering

NB* naïve Bayes

NESN* nonlinear echo state networks

NLN* neural logic network

OLR* ordinary linear regression

PCA principal component analysis

PI* Physics-informed

PPO proximal policy optimization

QDA* quadratic discriminant analysis

QL* Q-learning

RBF* radial basis function

RBFNN* radial basis function neural network

RF* random forest

RL* reinforcement learning

RNN* recurrent neural networks

RR* ridge regression

SC spectral clustering

SD-AE* stacked denoising autoencoder

SLDA* supervised latent Dirichlet Allocation

SGD* stochastic gradient descent

SVM* support vector machines

SVR* support vector regression

TRPO trust region policy optimization

WGAN Wasserstein GAN

XGBoost* extreme gradient boosting
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