
An Action-Aware Combat Model for Efficient Video
Compression of Massively Multiplayer Online

Role-playing Games on Cloud Gaming Platforms
Sardar Basiri, Kaiwen Zhang, Stéphane Coulombe

Dept. of Software and IT Engineering
École de technologie supérieure

Montreal, Quebec, Canada
sardar.basiri.1@ens.etsmtl.ca, {kaiwen.zhang, stephane.coulombe}@etsmtl.ca

Abstract—Cloud gaming is a rising new trend for remote video
gaming. Players send their commands using a thin-client device to
a graphics rendering cloud server and receive a compressed video
stream in response. However, video games with complex textures
and motions, especially at high resolutions, require a substantial
bitrate to deliver good visual quality. When the player’s Internet
connection is constrained or fluctuates, the visual quality may
be significantly reduced, which negatively impacts the playing
experience. In this paper, we present an Action-awaRe COmbat
moDEl (ARCODE) for massively multiplayer online role-playing
games (MMORPGs) running on cloud gaming platforms to
improve compression efficiency. ARCODE captures different
action data for different object types in the battle scene and
determines the importance of each object relative to the player
in each game state, considering the actions at the time. Based on
the significance of each object to the player, the model determines
how frequently its position should be updated. Reducing the
number of motion updates in the scene leads to fewer bits needed
to encode the video frames. Our experimental results on various
test cases show that, for similar visual quality as that of the
traditional approach, ARCODE can reduce the video bitrate from
9% to over 40%.

Index Terms—cloud gaming, multiplayer cloud gaming, mas-
sively multiplayer online role-playing games, MMORPG

I. INTRODUCTION

Cloud gaming [1] eliminates the need for powerful devices
to play high-quality video games. Players access video games
remotely over the Internet, wired or wireless, without down-
loading the game locally. The game itself is executed on cloud
servers and the audiovisual (AV) data is sent over the Internet
to the end user. As of 2021, the most recently launched cloud
gaming platform is Amazon Luna [2].

Streaming video games, in essence, is similar to streaming
movies. A significant difference is that in video game stream-
ing, the control inputs are constantly sent over the Internet
from the thin-client device to the cloud servers. After receiving
the player’s input, changes are applied to the game world.
The modified scene is rendered by a graphics processing unit,
compressed by the encoder, and sent to the player’s device.

This work was funded by the Natural Sciences and Engineering Research
Council of Canada (NSERC) Discovery Grant.

The video stream quality is an important factor affecting the
player’s quality of experience. Numerous works were proposed
to improve the stream quality by either improving the encoder
performance or by modifying the visual content so it would
require fewer bits to encode at a certain fidelity [3].

Works belonging to the first category improve compression
efficiency by focusing on the encoder. In [4], the render-
ing information is analyzed to generate a macroblock (MB)
saliency map for each video frame. The encoder’s quantization
parameter (QP) values are determined based on the importance
of each MB and the bitrate budget. The game information is
also used to compute the motion vectors (MVs), which are
then exploited in a fast mode selection algorithm to accelerate
encoding. In [5], the authors propose a MB level rate control
scheme, in the context of H.264 [6], where more bits are allo-
cated to the region of interest (ROI) based on its importance.
The same approach, but with a different spatial ROI-based
weighting assignment, is proposed in [7] for the H.265 (aka
high efficiency video coding (HEVC)) [8] video encoder. In
both methods, after extracting the ROIs, different weights are
assigned to blocks inside and outside the ROIs. In [9], the
authors reduce the H.265 encoding time by exploiting the in-
game objects information to pre-process the MVs instead of
using the traditional diamond search. But these approaches are
difficult to implement as they require specialized video coder-
decoder (CODEC) expertise.

Works such as [10]–[12] belong to the second category, and
their authors consider the network dynamics and manipulate
the graphical content to make it suitable for video stream-
ing. In [10], the authors investigate how different adaptive
rendering parameters (e.g., realistic effect, texture and envi-
ronment details, viewing distance) affect the communication
and computation costs in cloud mobile gaming (CMG). They
then propose an adaptive rendering method that changes these
rendering settings based on the bandwidth constraints. In [11],
Hemati et al. exclude the less important immobile objects
from the game scene where the significance of each object
in each activity in the game is provided by the game designer.
Here, removing the immobile objects does not always reduce
video bitrate significantly since excluding an object can expose978-1-6654-3288-7/21/$31.00 ©2021 IEEE

Authors' accepted manuscript. Article published in 2021 IEEE 23rd International Workshop on Multimedia Signal Processing (MMSP).Tampere, Finland. Oct. 06-08, 2021.
The final published version available at https://doi.org/10.1109/MMSP53017.2021.9733496

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

scoulombe
Accepted in IEEE Workshop on Multimedia Signal Processing (MMSP 2021), 2021

other objects in the scene. Their model also forces the game
designer to be highly involved in the process. In [12], the
authors propose a model inspired from [10] and [11] where
the importance of each object in the scene is considered to
either decide not to render it or to alter its texture in order to
reduce the video bitrate.

In this paper, we present a new approach for the second
category: an action-awaRe COmbat moDEl (ARCODE) for
massively multiplayer online role-playing games (MMORPGs)
on cloud gaming platforms. Our proposed model is aware
of game semantics, specifically during battles. It captures
different action data for different in-game object types and de-
termines the importance of each object, considering the actions
it can perform in the combat area. Based on the significance of
each object to the player in each game state, the model adjusts
its position update rate, which results in better compression
efficiency. In our proposed model, no change is applied to
the CODEC as the model merely generates visual content
which can then be encoded more efficiently. This improves our
solution’s portability and compatibility. Furthermore, unlike
other solutions, the method does not exclude objects from
the game scene. To the best of our knowledge, this is the
first model that adjusts the object position update rates for
improving compression efficiency in cloud gaming.

The remainder of this paper is organized as follows. Sec-
tion 2 is devoted to the background related to our work. In
Section 3, we present our proposed model. We then present
our experimental evaluation in Section 4. Finally, we conclude
the work in Section 5.

II. BACKGROUND

In this section, we briefly review the multiplayer cloud
gaming (MCG) and MMORPGs, and present the concepts and
techniques we consider to create our model.

A. Multiplayer Cloud Gaming

A multiplayer cloud gaming architecture is illustrated in
Fig. 1 [13]. Each player is remotely connected to a rendering
server using a thin-client device. An instance of the game
runs on a rendering server for the connected player. The
player sends the commands over the Internet to the rendering
server. The rendering server is responsible for receiving the
player’s commands and apply them to the game world. The
rendering servers are connected to the remote game server,
which manages the updates and synchronizes the game states
between all players. The remote game server should send any
change in the game world to all the rendering servers before
the AV data is sent back to the players. The rendering server
is a server from a player’s perspective and is a client of the
remote game server.

B. Massively Multiplayer Online Role-playing games

Scalability is an important aspect of MMORPGs [14]. A
large number of players should be able to interact in a vast
virtual game world. Each player controls an avatar to interact
with the other players’ avatars, or non-playable characters

Remote game server

Session host

Game world/player state update/synchronization

Rendering server
Virtual

machine

Thin-client

Input

AV

Rendering server
Virtual

machine

Rendering server
Virtual

machine

Thin-client

Input

AV

Thin-client

Input

AV

Fig. 1: MCG architecture

(NPCs) controlled by an artificial intelligence (AI) entity.
In the combat area, each player and NPCs are constantly
performing different actions (e.g, movements, using weapons
and skills in the battle). Different skills and weapons are
available to be associated with an avatar. Two types of weapons
commonly used in MMORPGs are melee weapons for short-
range attacks and long-range weapons to attack the targets
from a distance. For an action performed using a weapon to
be effective, the target position should be within the action’s
target area (e.g., the cone-shaped area for an axe-auto attack
in Fig. 3). Apart from weapons, skills are playing an important
role in combats. Each character can own various skills to use
during battle. Many skills are used to affect the health of the
in-game characters. Orison of healing is an example of a skill
that heals any friendly object in its target area, while firestorm
is a skill used to damage opponent objects in its target area
(e.g., the yellow circle-shaped area in Fig.3). Usually, skills
have a cooldown of a few seconds, which is the amount of time
that the skill is unavailable to be used again. In the following
subsections, we review the essential concepts and techniques
commonly used in MMORPGs, which we take into account
to conceive our proposed model.

1) Interest Management: Interest management (IM) is a
technique commonly used in the traditional client-server ar-
chitecture to make the MMORPGs more scalable. Different
IM techniques are compared in [14]. A sequence of events is
constantly happening in MMORPGs. Because of bandwidth
constraints, a server cannot propagate all the state updates
to all players. IM determines the eligible players to receive
updates based on their avatar’s area of interest (AoI). Fig. 2
illustrates a region-based IM where the game world is divided
into sixteen regions of equal size. The blue edge rectangle
around the player’s green dot avatar specifies his AoI which
is formed by regions overlapping with that rectangle (orange
grids in the figure). The player only receives updates from the
state of the objects within his avatar’s AoI; not from the blue
regions and blue dots, which are of no interest to him.

2) Area of Effect: Area of effect (AoE) [15] is a mechanism
that specifies an area within which the state of an object can
change. The AoE can be built on top of the AoI. In Fig. 2,
the green circle-shaped area around the avatar represents the

Fig. 2: Region-based interest management with an AoE
built on top of it for the green dot avatar

area within which an avatar’s action can change the state of
other objects. The concept of receiving different update rates
based on the avatar’s AoE is introduced in [16], where players
receive high-frequency updates within or on the edge of their
avatar’s AoE and low-frequency updates outside it. Referring
to Fig. 2, the player receives high-frequency position updates
from the red dots while he receives low-frequency updates
from the yellow dots.

For our model, we use the same concept of adjusting the
position update rates using the AoE mechanism. However, the
model of [16] adjusts these updates in traditional client-server
architecture to limit bandwidth demand, while our model aims
at improving video compression efficiency in cloud gaming
platforms. Furthermore, in [16], only the player’s AoE is
considered when adjusting the update rates. In contrast, as
presented in Section III-C, our model considers all in-game
objects’ AoE to adjust the update frequencies.

III. PROPOSED MODEL

In this section, we present our proposed model AR-
CODE. The importance of each object in the combat area of
MMORPGs is determined by the object type and the radius
within which the object can change the state of other objects.
ARCODE captures different action data, and based on the
properties of each action associated with an object, the model
determines the object’s AoE. ARCODE considers two types
of objects with motions in the combat area. The first type is
the avatar of different players and NPCs, which we refer to as
character entities. The second type is the skill entities spawned
in the game world during the gameplay at the request of the
character entities.

A. AoE of Character Entity

Each character entity can perform different actions during
combat. Some actions, such as casting a skill, can change the
state of other character entities if their position is within the
range of the performed action. ARCODE considers the range
of different actions the character entity can perform and forms
circle-shaped areas of different sizes corresponding to the
range of each action. The combination of these circle-shaped
areas, each having the character entity as the center, constitute
the character entity’s AoE. Fig. 3 illustrates the case where a
character entity owns an axe and a skill. Accordingly, its AoE
consists of two circle-shaped areas. The red circle-shaped area
is formed based on the range of the axe-auto attack. The blue
circle-shaped area is formed based on the skill’s range. In

5

Target

Avatar

4

1
2

3

Fig. 3: Example of an avatar using an axe (weapon) and
a skill to attack the opponent entities within its AoE

Section III-C, we explain the purpose of forming these areas
and how our model manages different areas of the AoE when
they overlap (e.g., the blue area covered the red area in Fig. 3).

B. AoE of Skill Entity

For an action performed by a character entity to be effective,
the target position should be within the performed action’s
target area. Each skill’s target area is considered as the
corresponding skill entity’s AoE. Each skill’s target area size
is equal to its skill entity size, which is only visual feedback
to show that the skill can change this particular area’s state.

In Fig. 3, the character entity has performed the axe-auto
attack to attack the target #3. The target takes damage since
its position is within the target area of axe-auto attack (cone-
shaped area). The character entity also uses its skill to attack
targets #1 and #2. These targets take damage since their
position is within the skill’s target area (yellow circle-shaped
area). The targets #4 and #5 are safe in this combat state since
their position is not within the target area of the performed
actions.

C. Types of Situations Handled by ARCODE

The variety of weapons and skills with different ranges
leads to each character entity having an AoE of different
size areas. In each state of the game, the player’s avatar
can be within different character entities’ AoE simultaneously
without having these character entities inside its AoE. In [16],
the player receives low-frequency updates from the position
of these character entities. Since these character entities can
attack the player’s avatar, the player needs to receive enough
updates from their position. ARCODE considers the AoE of
all the objects besides the AoE of the player’s avatar to address
this asymmetric situation. Different situations in the combat
area are taken into account by our model to decide how
frequently each object’s position should be updated in each
game state. To explain each situation, the avatar (character
entity) of the player from whose point of view the game is
going on is referred to as the client entity, and by character
entity, we mean the avatar of other players or NPCs. Please
note that the player only receives video frames from the cloud
gaming platform. By saying the client entity receives position
updates, we mean the player’s avatar in the game, which is
placed on a rendering server (see Fig. 1).

1) Updates Based on the Client Entity’s AoE: A client
entity only receives updates based on its AoE, if it has one or
more character entities within its AoE. If the character entities

are outside its AoE, it receives updates based on their AoE. In
any state, the client entity receives updates based on the skill
entities’ AoE, as its actions do not affect them.

Each circle-shaped area of the client entity’s AoE has a fixed
update frequency. Depending on the area the target is within,
the client entity receives updates from the target’s position
with the associated update rate. ARCODE considers the lowest
interval between each update for the area that is formed based
on the range of a weapon like axe (red area in Fig. 3). The
target area of a weapon is usually small, and the effect of
a performed action by a weapon (e.g., axe-auto attack) is
applied instantaneously into the game world. Therefore, the
player needs to have an accurate approximation of the target’s
position to attack it by his avatar’s weapon. On the other
hand, the skills’ target area is usually big, and their effect
is not applied instantaneously. Therefore, ARCODE considers
lower frequency updates to be received by the client entity
from the targets within the area formed by the range of a skill
(blue area in Fig. 3) the client entity owns. If an action is on
cooldown, the area formed based on its radius is not considered
by the model until the action becomes available again. It is
very likely for a target to be within different areas of the client
entity’s AoE (targets #3, #5 in Fig. 3) with different update
frequencies. Here, the model always considers the area with
the highest frequency (shortest interval between each update).

2) Updates Based on the Other Entities’ AoE: ARCODE
considers different parameters to calculate the update intervals
at which the client entity receives from the position of other
entities, based on their AoE. These parameters are the distance
of the client entity to the edge of the other entity’s AoE, the
size of the other entity, the resolution, and the bitrate chosen
by the player for the game streaming. The following formula
is used to calculate the update intervals, in milliseconds, the
client entity receives from the position of the given entity:

Inter(E,CE) =
(
1 +

[
(wDI×DI(E,CE))

+ (wPI×PI)
]
× RBD

)
× Intermin (1)

where CE and E, respectively, denote the client entity and
the other entity under consideration. We describe the other
parameters in the following paragraphs:
• DI(E,CE): The distance impact parameter calculated in
each game state based on the client entity’s position with
respect to the edge of other entity’s AoE and calculated as:

DI(E,CE) = |D(E,CE)− Radius(E)| (2)

where Radius(E) is the radius of the other entity’s AoE. If
the other entity is a character entity, this radius is equal to
the biggest range among all actions the character entity can
perform. If the action is on cooldown, the next biggest range
is considered by ARCODE. If the other entity is a skill entity,
this radius is equal to the radius of the skill’s target area.
Moreover, the distance between E and CE is calculated as:

D(E,CE)=
√
(Ex−CEx)2+(Ey−CEy)2+(Ez−CEz)2 (3)

where Ex,Ey,Ez (CEx,CEy,CEz) denote the position of
entity E, and client entity (CE) in x, y, and z, respectively.
The frequency of updates increases when DI decreases. The
most critical state is when the client entity is on the edge of
the other entity’s AoE, where enough updates from the other
entity’s position should be received so that the player can act
rapidly. Therefore, DI increases outside and inside the AoE’s
range as we move further from the edge because, in these
states, making an immediate decision is less critical.
• PI: The pixel impact is a parameter which value is deter-
mined based on the size of each object. The idea is that fewer
position updates need to be received from larger entities in
the scene than the smaller ones since, due to their big size,
precision is less significant. It is essential that the values of PI
and DI be on the same scale since we are using the weighted
sum of the two factors in Equation 1. In our experiments, we
considered the values 1 and 3 for small and large objects,
respectively.
• wDI and wPI: distance impact weight and pixel impact
weight are the weights assigned to the pixel impact and
distance impact, respectively:

0 < wDI < 1 and wPI = (1− wDI) (4)

By changing the value of wDI between 0 and 1, we modify
each factor’s impact on the frequency of updates in Equation 1.
• RBD: To compute the relative bitrate difference (RBD),
the normalized difference between the standard bitrate (SB)
needed by the cloud platform to render the best video quality,
and the player’s bitrate budget (BB) is calculated.

RBD = 1− (BB / SB) = (SB−BB)/ SB (5)

The frequency of updates is set to be inversely proportional
to the relative bitrate difference.
• Intermin: The shortest interval (in milliseconds) be-
tween each update. From Equation 1, when RBD is 0,
then Inter(E,CE) = Intermin. Otherwise, Inter(E,CE) >
Intermin is obtained by multiplying Intermin by a factor
depending on the above-defined parameters.

IV. EXPERIMENTAL EVALUATION

In this section, we present our experimental setup, validation
methodology and experimental parameters. We then show the
experimental results and analyze them.

A. Experimental Setup

1) MMOnkey framework: We integrated our solution
into MMOnkey [16], the adopted research framework for
MMORPGs, which consists of two parts: server and client.
The MMOnkey server is similar to the remote game server in
Fig. 1. In the MMOnkey server, we implemented our model
on top of its square tile interest management. The size of
the interest area for each client entity is considered to be the
size of the whole combat area; therefore, each player can see
every entity in the scene. The MMOnkey client comprises our
exemplar game (see Fig. 4), and can be seen as the rendering
server in Fig. 1 which runs an instance of the game for the

connected player. The update rates for each client are managed
by our model on the server.

2) Game stream setup: The game stream setup we use
has the GeForce Experience software [17] installed on the
game stream PC server comprising the MMOnkey framework.
The GeForce Experience software streams the video frames,
directly captured and encoded by the Nvidia GeForce graphics
cards, to Moonlight [18] on the thin-client device. Moonlight
is the open-source version of the Nvidia Gamestream [19]
client and enables video game streaming from a PC having the
GeForce Experience software installed to the devices where
Moonlight is installed. To take advantage of video game
streaming, using Moonlight and GeForce experience software,
the host gaming PC requires to be equipped with an Nvidia
GeForce graphics card [18]. The process of video encoding is
performed by a section in the video card called Nvidia video
encoding (NVENC). Our game stream PC server is equipped
with a GeForce RTX 2070 graphics card, 16 GB RAM, and
an Intel Core I7-9700 CPU 3.00 GHz.

B. Validation Methodology

To compare the performance of ARCODE against the
unaltered game, which is referred to as the baseline approach,
we use a metric inspired from the Bjøntegaard model [20].
The Bjøntegaard Delta (BD)-Rate measures the bitrate saving,
for the same visual quality, provided by a method compared to
a baseline while the BD-PSNR measures the improvement in
visual quality for the same bitrate. Both metrics use the peak
signal-to-noise ratio (PSNR) as the objective visual quality
metric. Various bitrate and PSNR data points are needed by the
Bjøntegaard model to compare the efficiency of two methods
over a wide range of bitrates and qualities.

The Bjøntegaard model is widely used to compare the
performance of two different compression methods on the
same original video. However, in our case, we want to compare
the performance of the same compression method, e.g. H.264
or H.265, on different original videos. The goal is to establish
if ARCODE, which generates visually similar and comparably
playable content as the baseline, permits the rendering of visu-
ally improved content under the same compression conditions.

We thus compare the visual quality of the content generated
by the baseline and ARCODE after they are encoded with the
same encoder and transmitted under four different bitrates,
each one with respect to its own original video. The remainder
of the evaluation process follows the Bjøntegaard model.
Because of these differences in methodology, we call our
evaluation methods similar reference (SR)-BD-Rate and SR-
BD-PSNR. In each test, the original video is captured from
the game stream PC server, and the reconstructed video frames
are extracted from Moonlight.

C. Experimental Parameters

Different tests are performed to show the improvements
of our model over the baseline. Our main scenario is the
simulation of the common combat area in MMORPGs where
many players in different regions of the combat area interact

using their avatars. We implemented interactive behavior for
the NPCs controlled by AI to simulate the battle and have a
consistent gameplay in each round. Different in-game proper-
ties such as camera rotation and translation alongside different
settings chosen for the game streaming such as the resolution
and different video CODECs are considered to show the results
for the main scenario. The second scenario is the boss fight,
where the combat is concentrated in relatively small regions
of the combat area, with all the NPCs fighting a few stronger
enemies. Two sensitivity tests are also performed. For the
first test, the NPCs are moving in the combat area without
using their weapons and skills. For the second test, the NPCs
are continuously using their skills witch results in many skill
entities spawned and moving in the game world.

Each video sequence extracted from Moonlight contains
3600 frames generated from 60 seconds gameplay at 60 frames
per second (FPS). For the baseline, the update interval in each
state is 30 ms. In ARCODE, the position update intervals the
client entity receives from the character entities within its AoE
are between 30 ms to 60 ms. The update intervals are computed
using Equation 1, when the client entity receives updates based
on the other entities’ AoE. The Intermin is equal to 30 ms. DI
is calculated in each game state based on the distance of the
client entity to the edge of the other entities’ AoE. The PI
value is 1 and 3, respectively, for small and large entities. We
set wDI = 0.6. The target bitrates for game streaming at 720P
resolution are 1, 2, 3, 4 Mbps, while at 1080P, they are 2, 4,
6, 8 Mbps. The required bitrates for the best visual quality in
720P and 1080P resolutions are 10 and 20 Mbps, respectively.

D. Experimental Results and Analysis

The results for each test case are shown in Table I and
a visual comparison is presented in Fig. 4 for H.264. More
results are available in [21] (e.g., distortion curves and the
image quality comparisons).

Table I demonstrates the superiority of our model over the
baseline for both H.264 and H.265 video CODECs with bitrate
savings ranging from 9% to over 40% depending on the test
case. Based on the results of our sensitivity tests, it can be
concluded that the more objects with motions in the scene,
the better is the performance of our model compared to the
baseline. Referring to the results of the main scenario (without
camera movements) and boss fight scenario, our model offers
a better performance if the motions and changes are distributed
throughout the scene instead of a small portion of it. The
performance of our model drops considerably when we have
camera movements, including rotation or translation. The
camera movements involve visual changes in video frames as
new objects enter the scene and affect performance. However,
the performance of our model is still superior to the baseline.
Fig. 4 zooms in a part of the scene to better show the improved
visual quality provided by ARCODE at the same bitrate.

V. CONCLUSION

The process of video encoding in cloud gaming platforms
requires a high bitrate, especially for high-resolution video

Test cases SR-BD-Rate (%) SR-BD-PSNR (dB)
Main scenario

Client entity is idle in the scene, without any camera rotation and translation (H.264 - 1080P) -36.2 2.38
Client entity is idle in the scene, without any camera rotation and translation (H.264 - 720P) -37.5 2.44
Client entity is idle in the scene, without any camera rotation and translation (H.265 - 1080P) -36.8 2.06
Client entity is idle in the scene, without any camera rotation and translation (H.265 - 720P) -36.3 2.30
Client entity is idle in the scene, with camera rotation around it (H.264 - 1080P) -9.2 0.75
Client entity is moving in the scene, with camera translation (H.264 - 1080P) -14.0 0.89

Boss fight scenario
Client entity is idle in the scene, without any camera rotation and translation (H.264 - 1080P) -16.1 0.96

Sensitivity tests
Client entity is idle in the scene, NPCs are moving in the scene without using their skills (H.264 - 1080P) -11.0 0.78
Client entity is idle in the scene, NPCs are continuously using their skills (H.264 - 1080P) -41.3 2.95

Table I: ARCODE VS baseline - The calculated SR-BD-Rate and SR-BD-PSNR under various target bitrates.

(a) Baseline

(b) ARCODE
Fig. 4: The image quality of Baseline vs. ARCODE

games having a lot of motions and changes within the scene.
We proposed a new model for MMORPGs to reduce the update
rates of in-game objects considering their significance to the
player in each game state. The importance of each object is
determined by the actions it can perform that can change the
state of other objects. Our experimental results indicate that
our model can save between 9% to over 40% of the bitrate
for similar visual quality as the baseline. Although we used a
single sample game, we expect the principles to apply to other
MMORPGs. This will be investigated in future works.

REFERENCES

[1] R. Shea, J. Liu, E. C.-H. Ngai, and Y. Cui, “Cloud gaming: architecture
and performance,” IEEE network, vol. 27, no. 4, pp. 16–21, 2013.

[2] Businesswire. (2020) Introducing luna—amazon’s new cloud
gaming service where it’s easy to play on
the devices you already own. [Online]. Available:
https://www.businesswire.com/news/home/20200924005810/en/

[3] W. Cai, R. Shea, C.-Y. Huang, K.-T. Chen, J. Liu, V. C. Leung, and
C.-H. Hsu, “A survey on cloud gaming: Future of computer games,”
IEEE Access, vol. 4, pp. 7605–7620, 2016.

[4] Y. Liu, S. Dey, and Y. Lu, “Enhancing video encoding for cloud
gaming using rendering information,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 25, no. 12, pp. 1960–1974, 2015.

[5] K. Sun and D. Wu, “Video rate control strategies for cloud gaming,”
Journal of Visual Communication and Image Representation, vol. 30,
pp. 234–241, 2015.

[6] ITU-T, “ITU-T recommendation H.264: Advanced video coding for
generic audiovisual services,” 2019.

[7] M. Hegazy, K. Diab, M. Saeedi, B. Ivanovic, I. Amer, Y. Liu, G. Sines,
and M. Hefeeda, “Content-aware video encoding for cloud gaming,” in
Proceedings of the 10th ACM multimedia systems conference, 2019, pp.
60–73.

[8] ITU-T, “ITU-T recommendation H.265: High efficiency video coding,”
p. 317, 2019.

[9] C.-W. Lu, S.-D. Wang, and S.-Y. Chien, “A novel gaming video encoding
process using in-game motion vectors,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 30, no. 7, pp. 2207–2214, 2019.

[10] S. Wang and S. Dey, “Rendering adaptation to address communication
and computation constraints in cloud mobile gaming,” in 2010 IEEE
Global Telecommunications Conference (GLOBECOM). IEEE, 2010,
pp. 1–6.

[11] M. Hemmati, A. Javadtalab, A. A. Nazari Shirehjini, S. Shirmohammadi,
and T. Arici, “Game as video: Bit rate reduction through adaptive object
encoding,” in Proceeding of the 23rd ACM Workshop on Network and
Operating Systems Support for Digital Audio and Video, 2013, pp. 7–12.

[12] Y. Lu, Y. Liu, and S. Dey, “Asymmetric and selective object rendering for
optimized cloud mobile 3d display gaming user experience,” Multimedia
Tools and Applications, vol. 76, no. 18, pp. 18 291–18 320, 2017.

[13] Y. Deng, Y. Li, R. Seet, X. Tang, and W. Cai, “The server allocation
problem for session-based multiplayer cloud gaming,” IEEE Transac-
tions on Multimedia, vol. 20, no. 5, pp. 1233–1245, 2017.

[14] J.-S. Boulanger, J. Kienzle, and C. Verbrugge, “Comparing interest man-
agement algorithms for massively multiplayer games,” in Proceedings
of 5th ACM SIGCOMM workshop on Network and system support for
games, 2006, pp. 6–es.

[15] F. Heger, G. Schiele, R. Süselbeck, and C. Becker, “Towards an interest
management scheme for peer-based virtual environments,” Electronic
Communications of the EASST, vol. 17, 2009.

[16] J. Y. Wang, K. Zhang, and H.-A. Jacobsen, “Combat state-aware
interest management for online games,” in Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference: Posters and Demos, 2017,
pp. 17–18.

[17] Nvidia. (2021) Geforce experience. [Online]. Available:
https://www.nvidia.com/en-us/geforce/geforce-experience/

[18] C. Gutman, D. Waxemberg, A. Neyer, M. Bergeron, A. Hennessy, and
A. Campbell. (2021) Moonlight open source nvidia gamestream client.
[Online]. Available: https://moonlight-stream.org/

[19] Nvidia. (2021) Nvidia gamestream. [Online]. Available:
https://www.nvidia.com/en-us/shield/support/shield-tv/gamestream/

[20] G. Bjøntegaard, “Calculation of average psnr differences between rd-
curves,” VCEG-M33, 2001.

[21] S. Basiri, K. Zhang, and S. Coulombe. (2021) Action-aware combat
model for efficient video compression of massively multiplayer online
role-playing games on cloud gaming platforms. [Online]. Available:
https://arcode-project.github.io/

