
Benchmarking Real-time Image Processing for
Offloading at the Edge

Olivier Brochu†, Dimitrios Spatharakis∗, Dimitrios Dechouniotis∗ Aris Leivadeas†, Symeon Papavassiliou†

† Department of Software and Information Technology Engineering,
École de technologie supérieure, Montréal, Canada

∗ School of Electrical and Computer Engineering, National Technical University of Athens, Greece
olivier.brochu.1@ens.etsmtl.ca, {dspatharakis, ddechou}@netmode.ntua.gr, aris.leivadeas@etsmtl.ca, papavass@mail.ntua.gr

Abstract—Modern applications involve complex tasks such as
machine learning and multimedia content. Resource-constrained
devices are unable to guarantee real-time processing for time-
critical applications. Therefore, Edge Computing provides the
necessary resources to meet the stringent requirements.

Index Terms—Edge Computing, Task Offloading, Image Com-
pression, Machine Learning, Yolov5

I. OVERVIEW

This paper focuses on the use case of a robotic search and
rescue in the context of Industrial Internet of Things (IIoT). In
this use case, a robot or an Unmanned Aerial Vehicle, looks
for subjects of interest (e.g., humans) in a designated area.
The robot performs the task by periodically capturing high-
resolution images of the landscape and running inference, i.e.,
applying a Machine Learning (ML) model, to identify a list of
predicted objects and their location, and with some confidence
regarding the prediction.

In a search and rescue mission, missing subjects may be in
a life-threatening condition. Therefore, the inference must be
as fast and as accurate as possible. Due to computing power
improvements in IIoT, resource-constrained robots can run
computationally-light ML models in real-time with low battery
usage. However, these models lack the required accuracy to
find subjects that can be only a few pixels wide. Neverthe-
less, computationally-heavy ML models are more accurate,
however, executing them in the robot results in a significant
increase in inference time and battery usage. Similarly to
recent works in the literature [1], the robot may choose to
offload such process to a more powerful local edge computing
server deployed by the search and rescue team. In this work,
we employ an Edge server instead of a Cloud infrastructure to
reduce the transmission overhead [2]. The Edge server has the
necessary resources to run a heavier ML model in real-time.
Before offloading, the robot encodes the image to minimize
the transmission time. Fig. 1 depicts the system’s flowchart.

A. Featured Software

YOLOv5 1 (You Only Look Once version 5) is a ML
algorithm and a family of models that aims to permit real-
time object detection on a GPU. It is based on the YOLOv4 [3]

1https://github.com/ultralytics/yolov5

Fig. 1. Search and rescue system flowchart.

ML algorithm and improves its convenience. YOLOv5 offers
five pre-trained models on the MS-COCO 2017 dataset [4]
(nano, small, medium, large and x-large) provided in two input
sizes (640 and 1280 pixels). Heavier models can offer better
accuracy at the cost of more floating-point operations. We used
the version 6.1 of the pre-trained models.

Moreover, libjxl2 is the reference implementation of the
JPEG XL image format specification. It generally offers a
better compression ratio, image fidelity, and encoding and
decoding speed than legacy JPEG formats (JPEG and JPEG
2000) and modern image formats such as WebP and HEIC
[5]. JPEG XL aims to replace the original JPEG format by
ensuring backward compatibility and lossless transcoding of
JPEG files. New features such as support for the alpha channel,
GIF-like animation, and 360 degree images are introduced. We
used the version 0.6.1 of libjxl.

B. Featured Hardware

Table I details the hardware specifications of the robot (Intel
NUC 11) and the edge server used to run the experiments.

II. INNOVATION

In this paper, we follow the current trends in Edge Robotics.
Recent works involving real-time image recognition, data
processing, and robot learning, e.g., [6] [7], rely heavily on
a task offloading scheme to increase the accuracy of specific

2https://github.com/libjxl/libjxl

Authors' accepted manuscript. Paper presented at the IEEE International Mediterranean Conference on Communication and 
Networking (MeditCom) (Athens, Greece, Sept. 5-8, 2022).

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works.

https://github.com/ultralytics/yolov5
https://github.com/libjxl/libjxl


TABLE I
FEATURED HARDWARE SPECIFICATIONS

Robot Edge Server

OS Ubuntu 20.4 LTS

CPU Intel Core i5-1135G7 AMD Ryzen 5 5600G

Memory Capacity 8 GiB 16 GiB

Memory Speed 3200 MHz DDR4

GPU – Nvidia GeForce
GTX 1660 SUPER

GPU Memory – 6 GiB

GPU Driver – 515.43.04

CUDA Version – 11.7

applications, while reducing the response time and preserving
resources on IIoT devices. Approximate computing is an inno-
vative idea for selecting between different efficiency or quality
configurations for a compute-intensive application that can be
executed in different computing resources (i.e., GPU or CPU).
However, deciding whether to offload such tasks is essential.
Task-offloading decision schemes are crucial in maximizing
resource utilization while preserving the Quality of Service
(QoS) requirements. Moreover, utilizing the Edge Computing
paradigm the overhead of communication is minimized. To this
extent, we believe that this work is a significant preliminary
benchmark using state-of-the-art software to support such a
framework.

III. RELEVANCE TO MEDITCOM

The above-described challenges in Edge Robotics and real-
time data processing are the cornerstones of current network
and communication optimization. Investigating different set-
tings for modern applications is crucial in finding a trade-off
between accuracy, inference time, and resource utilization. It
attracts many researchers from the academia and/or industry,
who investigate relevant challenging research topics.

IV. DEMO SUMMARY

We conducted three sets of experiments to showcase three
main aspects of the proposed scenario, namely; (i) YOLOv5
Accuracy Benchmark under different sets of image parameters,
(ii) JPEG XL Compression Benchmark using different efforts
and quality factors, and (iii) YOLOv5 Processing Benchmark
using different number of requests. The code repositories3 to
reproduce the experiments are publicly available.

A. YOLOv5 Accuracy Benchmark

In this experiment, we selected 150 images that contained
people from the People Overhead dataset4. The images were
rotated to landscape and resized to different heights while
keeping their aspect ratio and encoded in the JPEG XL format
with different quality factors. The quality factor is a real
number of at most 100 that controls the maximum butterraugli
distance (i.e., psychovisual distance) of the encoded image

3https://github.com/NTUA-Edge-Robotics
4https://www.kaggle.com/datasets/hifrom/people-overhead

Fig. 2. Accuracy of the YOLOv5 predictions according to the height and the
quality factor of the images.

with the input image. A quality factor of 100 produces a
mathematically lossless image while a quality factor of 90
produces a visually lossless image. A lower quality factor
reduces the bitrate of the encoded image at the cost of lower
visual fidelity. We ran the inference on the edge server GPU
using the YOLOv5 x-large model with an input size of 640 and
recorded the accuracy of the predictions. In this experiment,
we study the impact of the height and the quality factor of an
image on the accuracy of the YOLOv5 predictions to identify
the parameters that allow the fastest transmission time with
minimal accuracy loss.

Fig. 2 shows the results. Images bigger than the YOLOv5
input size yield more accurate results. We believe it is due
to the bilinear scaling algorithm that resizes the images and
favors speed over quality. Images with a quality factor of 100
generally yield the most accurate results, as long as they are
at least as big as the YOLOv5 input size. However, as shown
in the next experiment, these images have a bitrate that is
at least 3.4 times higher than the other quality factors, which
increases their transmission time. In the offloading mechanism,
a reasonable compromise between the transmission time and
accuracy of the predictions may be to encode at a quality factor
of 90 while keeping their high resolution.

B. JPEG XL Benchmark

In this experiment, we selected 213 images from the DOTA
dataset [8] that we cropped to 640 by 640 pixels. We selected
this dataset because it offers the content diversity needed to
properly benchmark an image codec. We encoded the images
using libjxl with different quality factors and different efforts
on the robot CPU. We ignored quality factors lower than 40
because, as shown in Fig. 2, the accuracy of the predictions
is too low. Efforts are presets that enable or disable JPEG

https://github.com/NTUA-Edge-Robotics
https://www.kaggle.com/datasets/hifrom/people-overhead


Fig. 3. Average bitrate, in bits per pixel, according to the quality factor for
each effort. The y-axis is in logarithmic scale.

TABLE II
AVERAGE ENCODING SPEED, IN MEGAPIXELS PER SECOND, ACCORDING

TO THE QUALITY FACTOR FOR EACH EFFORT

Quality Factor

Effort 40 50 60 70 80 90 100

lightning 33.04 32.92 50.65 48.2 45.4 40.52 26.21

thunder 32.08 31.60 49.95 48.08 44.96 40.12 22.83

falcon 31.61 31.44 48.99 46.81 43.89 38.78 12.38

cheetah 30.96 30.29 39.24 37.84 42.64 37.86 1.46

hare 18.77 18.39 21.15 20.79 21.17 20.1 1.28

wombat 16.31 16.25 18.51 18.03 18.56 17.25 1.20

squirrel 10.26 10.00 11.01 13.78 14.32 13.81 0.83

kitten 0.84 0.83 0.88 0.9 0.9 0.90 0.35

XL encoding tools. Slower animals (e.g., kitten) enable more
tools to reduce the bitrate at the cost of a slower encoding
speed. We ignored the effort "tortoise" as it is too slow for
real-time processing. Each combination of quality factor and
effort is executed 10 times and the metrics are averaged. In
this experiment, we study the impact of the effort and the
quality factor on the bitrate and the encoding speed to identify
the parameters that allows the fastest transmission time with
minimal accuracy loss.

Fig. 3 and Table II show the results. The behavior of JPEG
XL is not deterministic. Images with different content and
resolution yield different results. However, effort generally
offers diminishing returns. For example, "kitten", compared
to "cheetah", allows an average bitrate saving of 9.5% while
being 97.5% slower to encode. For an image of 640 by 640
pixels, this is an increase of 490 ms in encoding time. Lossless
encoding (i.e., a quality factor of 100) is slower to encode

TABLE III
CHOSEN JPEG XL PARAMETERS FOR THE SYSTEM ACCORDING TO

NETWORK CONDITIONS AND THE RESULTING IMAGE SIZE, ENCODING
TIME AND ACCURACY

Good Network
Conditions

Poor Network
Conditions

Quality Factor 100 90

Effort thunder, falcon cheetah or faster

Image Size (Kb) 443 108

Encoding Time (ms) 26 10

Accuracy 0.82 0.71

Fig. 4. Total inference time, in seconds, according to batch size in linear and
parallel processing with YOLOv5 on the edge server GPU.

than a lossy encoding (i.e., a quality factor below 100). We
believe that this is because a lossy image has more data to
encode. Moreover, in lossless encoding, the efforts "lightning",
"thunder" and "falcon" offer an encoding speed that is 8.5 to
74.9 times faster than the other efforts. We believe that this
is because these three efforts disable most or all coding tools
which greatly reduces the required processing. In Table III, we
select the optimal JPEG XL parameters for our system. The
accuracy refers to the results of the previous experiment.

C. YOLOv5 Processing Benchmark

In this experiment, we used the cropped images from the
previous experiment. The images were divided in batches of
1 to 60 images with a step of 5. An image can appear in
multiple batches. The upper bound of 60 corresponds to the
maximum number of images that the GPU can hold in memory
at the same time. For each batch, we ran the inference with
the x-large model on the edge server GPU and the robot CPU,
linearly (i.e., one image after the other) and in parallel (i.e.,
all the images at the same time). This experiment studies the



Fig. 5. Total inference time, in seconds, according to batch size in linear and
parallel processing with YOLOv5 on the robot CPU.

impact of the batch size on the total inference time and the
average inference time on the robot and the edge server.

Figs. 4 and 5 and Table IV show the results. In the linear
average inference time, the edge server GPU is about 13.3
times faster than the robot’s CPU. On the edge server’s GPU,
the total inference time is faster in parallel than linearly.
On the robot CPU, it is the opposite. In larger batch sizes,
a greater gap in the total inference time can be observed
between the two processing modes. We believe that this is
because YOLOv5 is a fully parallelized application optimized
for GPUs. In Table IV, in the linear average inference time,
the batch sizes 1 and 5 yield different results. This is because
the first image of each batch is always slower to infer. This
behavior raises the average in smaller batches. The results
show an interesting trade-off for the system. While processing
more images in parallel reduces the total inference time, the
response time increases.

V. DEMO PRESENTATION AND CONCLUSION

A demo of the offloading mechanism will be presented
using a prerecorded video. The robot offloads batches of tiles
to the edge server for inference. The inference result will
be shown by superimposing the identified objects of interest,
their estimated location and the confidence to the tiles. In
this article, we conducted benchmarks of the technologies
that support an edge offloading mechanism in an Edge IIoT
search and rescue use case. The results allow us to identify the
parameters that will enable the system to operate in real-time.

ACKNOWLEDGMENT

This work was supported in part by Mitacs and École de
technologie supérieure through the Mitacs Globalink program
and in part by Les Offices jeunesse internationaux du Québec.

TABLE IV
AVERAGE INFERENCE TIME PER IMAGE, IN SECONDS, ACCORDING TO
BATCH SIZE IN LINEAR AND PARALLEL PROCESSING WITH YOLOV5

Batch Size
Average Inference

Time (Linear)
Average Inference

Time (Parallel)

GPU CPU GPU CPU

1 0.096 0.777 0.101 0.774

5 0.075 0.740 0.377 3.899

10 0.074 0.747 0.683 7.615

15 0.074 0.771 1.026 11.559

20 0.074 0.765 1.386 15.531

25 0.074 0.766 1.727 19.658

30 0.074 0.756 2.028 26.882

35 0.074 0.763 2.363 30.002

40 0.074 0.762 2.707 33.397

45 0.074 0.772 3.057 36.894

50 0.074 0.764 3.372 41.755

55 0.074 0.767 3.691 47.236

60 0.074 0.761 4.08 49.773

This work was supported by the CHIST-ERA grant CHIST-
ERA-18-SDCDN-003 (DRUID-NET), and is co-financed by
Greece and European Union under the Operational Pro-
gramme ”Competitiveness, Entrepreneurship and Innovation”
(EPAnEK) through the Greek General Secretariat for Research
and Innovation (GSRI), grant number T11EPA4-00022.

REFERENCES

[1] D. Spatharakis, M. Avgeris, N. Athanasopoulos, D. Dechouniotis, and
S. Papavassiliou, “Resource-aware estimation and control for edge
robotics: a set-based approach,” IEEE Internet of Things Journal, pp.
1–1, 2022.

[2] M. Afrin, J. Jin, A. Rahman, A. Rahman, J. Wan, and E. Hossain, “Re-
source allocation and service provisioning in multi-agent cloud robotics:
A comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 2, pp. 842–870, 2021.

[3] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal
speed and accuracy of object detection,” 2020. [Online]. Available:
https://arxiv.org/abs/2004.10934

[4] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft
coco: Common objects in context,” 2014. [Online]. Available: https:
//arxiv.org/abs/1405.0312

[5] E. Kliuchnikov, E. Upenik, J. Wassenberg, J. Sneyers, J. Alakuijala,
L. Vandevenne, L. Versari, S. Boukortt, and T. Ebrahimi,
“Benchmarking jpeg xl lossy/lossless image compression,” in Optics,
Photonics and Digital Technologies for Imaging Applications VI,
2020. [Online]. Available: http://infoscience.epfl.ch/record/277420/files/
Submitted%20manuscript.pdf

[6] S. Chinchali, A. Sharma, J. Harrison, A. Elhafsi, D. Kang, E. Pergament,
E. Cidon, S. Katti, and M. Pavone, “Network offloading policies for cloud
robotics: a learning-based approach,” Autonomous Robots, vol. 45, no. 7,
pp. 997–1012, 2021.

[7] Z. Cai, Y. Qu, and C. Dong, “Edge intelligence-based uav human target
recognition with improved yolov5 algorithm,” in 2021 IEEE 23rd Int
Conf on High Performance Computing & Communications; 7th Int Conf
on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf
on Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys), 2021, pp. 861–868.

[8] G.-S. Xia, X. Bai, J. Ding, Z. Zhu, S. Belongie, J. Luo, M. Datcu,
M. Pelillo, and L. Zhang, “Dota: A large-scale dataset for object detection
in aerial images,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
http://infoscience.epfl.ch/record/277420/files/Submitted%20manuscript.pdf
http://infoscience.epfl.ch/record/277420/files/Submitted%20manuscript.pdf

	Overview
	Featured Software
	Featured Hardware

	Innovation
	Relevance to Meditcom
	Demo Summary
	YOLOv5 Accuracy Benchmark
	JPEG XL Benchmark
	YOLOv5 Processing Benchmark

	Demo Presentation and Conclusion
	References

