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ABSTRACT Machine Learning Operations (MLOps) is an approach to managing the entire lifecycle of a
machine learning model. It has evolved over the last years and has started attracting many people in research
and businesses in the industry. It supports the development of machine learning (ML) pipelines typical
in the phases of data collection, data pre-processing, building datasets, model training, hyper-parameters
refinement, testing, and deployment to production. This complex pipeline workflow is a tedious process of
iterative experimentation. Moreover, cloud computing services provide advanced features for managing ML
stages and deploying them efficiently to production. Specifically, serverless computing has been applied in
different stages of the machine learning pipeline. However, to the best of our knowledge, it is missing to
know the serverless suitability and benefits it can provide to the ML pipeline. In this paper, we provide
a systematic mapping study of machine learning systems applied on serverless architecture that include
53 relevant studies. During this study, we focused on (1) exploring the evolution trend and the main venues;
(2) determining the researchers’ focus and interest in using serverless on machine learning; (3) discussing
solutions that serverless computing provides to machine learning. Our results show that serverless usage is
growing, and several venues are interested in the topic. In addition, we found that the most widely used
serverless provider is AWS Lambda, where the primary application was used in the deployment of the
ML model. Additionally, several challenges were explored, such as reducing cost, resource scalability, and
reducing latency. We also discuss the potential challenges of adopting ML on serverless, such as respecting
service level agreement, the cold start problem, security, and privacy. Finally, our contribution provides
foundations for future research and applications that involve machine learning in serverless computing.

INDEX TERMS Serverless, FaaS, function as a service, machine learning, systematic mapping, systematic
literature review, SM, SLR.

I. INTRODUCTION

Cloud computing is beneficial to businesses of all sizes in the
marketing sector. It offers the abstraction of online services
hosted on the cloud rather than complex local infrastructure.
These services include everything from simple cloud storage
to cloud infrastructure platforms. Cloud computing offers dif-
ferent benefits i.e.,high speed, efficiency and cost reduction,
data security, scalability, back-up and data restore, control
and level access, and unlimited storage capacity [1]. These
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services are offered in different proportions according to the
provided service, such as Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), Software as a Service (SaaS),
Function as a Service (FaaS) or Serverless.

Moreover, these platforms have grown significantly over
the last decade and are widely adopted for the delivery of
computing services. In particular, serverless computing pro-
vides a simplified architecture in which code execution is
fully managed by the cloud provider , in such case, developers
can focus only on code writing, increasing their productivity.
Recently, serverless has been used as an infrastructure to build
total ML pipelines or partially with faster deployment and
elastic scalability.
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On the one hand, serverless popularity is increasing,
and it is receiving attention from developers, especially
after Amazon launched AWS Lambda in November 2014.!
Recently, Wen et al. [2] found that questions about Serverless
on StackOverflow have grown 380% from 2015 to 2020.
The size of the serverless market is estimated to grow from
3.33 USD Billion in 2018 to USD 31.53 Billion in 2026 [3].
On the other hand, ML has been widely used in cloud com-
puting, mainly when it is divided into a small pipeline stage
(ML as a Service). The need becomes to use Serverless since
the high cost of cloud resource management.

Thus, Serverless computing [4] is an interesting option
regarding the resolution of small tasks, mainly when compa-
nies cannot estimate the traffic of their ML applications, scal-
ability, and cost accurately [5]. Furthermore, several studies
are exploiting serverless computing to accomplish tasks of the
ML pipeline, such as training [6], hyperparameter tuning [7],
and model deployment [8].

This paper aims to map the current state-of-the-art to
understand how Serverless was used in the machine learning
pipeline and the challenges and opportunities for different
stakeholders.

For achieving this goal, we perform a systematic mapping
to answer three research questions by analyzing relevant
studies. First, our study identified, classified, and evaluated
the current state-of-the-art in machine learning on Serverless
architecture. Next, we selected 50 primary studies from the
Scopus database; then, we rigorously classified the studies to
precisely categorize research results on ML and Serverless
challenges.

The audience of this study is composed of both
(i) researchers interested in contributing to this research
area and (ii) practitioners interested in understanding exist-
ing research on machine learning applying Serverless
architecture.

The main contributions of this study is to respond these
research questions:

« WHAT ARE THE PUBLICATION TRENDS OF
RESEARCH STUDIES ABOUT SERVERLESS ON
MACHINE LEARNING?

« WHAT IS THE FOCUS OF RESEARCH OF
APPLIED MACHINE LEARNING ON SERVERLESS
COMPUTING ?

o WHAT ARE THE POTENTIAL CHALLENGES OF
ADOPTING MACHINE LEARNING ON
SERVERLESS COMPUTING?

The rest of the paper is organized as follows. In Section II
we set the stage by giving the basic concepts around machine
learning lifecycle and the serverless architecture. The design
of the study is presented in Section III, whereas its results
are elaborated in Sections IV. We have made a discussion
in Section IV-C where we broadened our perspective and
the potential implications for both researchers and practi-
tioners. Threats to validity and related work are described in

1 https://docs.aws.amazon.com/lambda/latest/dg/lambda-releases.html
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Sections V and VI. With Section VII, we close the paper and
discuss future work.

Il. BACKGROUND

This section provides background information on defining
Serverless and ML pipeline, as we found during our system-
atic mapping.

A. MACHINE LEARNING PIPELINE

Microsoft team members introduced a typical ML pipeline
[10], where they show a series of steps chained together to
form the machine learning workflow essential stages. These
stages include data and model-oriented artifacts from data
collection and cleaning until model evaluation deployment.
These stages construct an ML pipeline lifecycle. Recently,
with the commercial use of Al, the MLOps field has been
introduced, aiming to automate the ML pipeline [11]. A stan-
dard ML pipeline broadly consists of the following five stages
shown in Figure 1:

o Data retrieval: is the process of identifying and extract-
ing data from a database, based on a query provided by
the user or application.

o Data preparation: is the process of gathering, combin-
ing, structuring and organizing data.

o Model training: The process of training an ML model
involves providing the data features to an ML method or
algorithm to reduce errors and generalize the represen-
tations learned from the data.

e Model evaluation: is evaluating the built model against
certain criteria to assess its performance. Model per-
formance is usually a function defined to provide a
numerical value to help us decide the effectiveness of
any model.

o Hyperparameters tuning: is choosing a set of optimal
hyperparameters for a learning algorithm. A hyperpa-
rameter is a parameter whose value controls the learning
process.

e Model Deployment and monitoring: is the method by
which you integrate a machine learning model into an
existing production environment to make practical busi-
ness decisions based on data.

e Model Monitoring: is the close tracking of the perfor-
mance of ML models in production.

B. CLOUD PROVISIONING SERVICES

Cloud computing is a widely adopted paradigm for the deliv-
ery of computing services. Leading cloud platforms such as
AWS,2 Google Cloud,? and Microsoft Azure* offer a variety
of provisioning services that can be used for model serving.
In addition, they provide several architectures with different
access management. These are the list of the most common
cloud computing architecture.

2https ://aws.amazon.com/
3https://(:loud. google.com/
4https ://azure.microsoft.com/en-us/
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FIGURE 1. Typical ML pipeline [9].

o Infrastructure-as-a-Service (laaS). It provides only the
base infrastructure instances (VMs). The end-user must
configure and manage the platform and environment and
deploy applications.

e Container-as-a-Service (CaaS). It is a form of
container-based virtualization in which container
engines (e.g., Amazon ECS® and Google Kubernetes
Engine®), orchestration, and the underlying computing
resources are delivered to users as a service from the
cloud provider.

o Function-as-a-Service (FaaS). With FaaS, customers
run applications as serverless functions (e.g., AWS
Lambda’ and Google Cloud Functions®) and let the
cloud platform to handle resource provisioning and
management.

C. SERVERLESS COMPUTING

Serverless cloud computing is a model in which the ser-
vice provider handles many tasks to ease certain burdens
from the software developer(s). The provider is expected to
automatically handle the necessary administration, deploy-
ment, and management tasks with scaling up/down resources.
Furthermore, it is fully managed: engineers no longer have
to worry about building and maintaining any underlying
architecture and can delegate all responsibilities to the cloud
vendor. Serverless users are billed by execution and resource
consumption, not by an hourly or hardware-based rate [12].
However, compared to more traditional computing methods,
serverless includes a laggy startup known as cold start [13].

Ill. STUDY DESIGN
In this research, we follow the guidelines for systematic
mapping studies [14]. We present the procedure to review

5 https://aws.amazon.com/fr/ecs/
6https://cloud. google.com/kubernetes-engine
7https://github.com/aws/aws—lambcla—go
8https://cloud. google.com/functions

VOLUME 10, 2022

the literature on machine learning usage on serverless archi-
tecture. In the following, we present the design of our
study, including the search keywords, search technique, data
sources, and inclusion and exclusion criteria are explained.

A. RESEARCH QUESTIONS
We set the following list of research questions as a guideline
during the systematic mapping review:

RQI - WHAT ARE THE PUBLICATION TRENDS
OF RESEARCH STUDIES ABOUT SERVERLESS ON
MACHINE LEARNING?

By answering this research question, we aim to charac-
terize the intensity of scientific interest in using machine
learning on top of serverless architecture, the relevant venues
where academics publish their results on the topic and their
types of contribution over the years.

RQ2 - WHAT IS THE FOCUS OF RESEARCH
OF APPLIED MACHINE LEARNING ON SERVERLESS
COMPUTING ?

By answering this research question, we aim to provide
a solid foundation to classify existing research on machine
learning in a serverless architecture.

RQ3 - WHAT ARE THE POTENTIAL CHALLENGES
OF ADOPTING MACHINE  LEARNING  ON
SERVERLESS COMPUTING?

By answering this research question, our objective is to
profile the state-of-the-art on challenges and opportunities to
use machine learning on serverless architecture.

B. DOMAIN EXPLORATION

In the following, we describe the interesting domain covered

by this research during the systematic mapping study.
Cloud infrastructure: The types of cloud computing ser-

vices vary, they provide access to IT infrastructure, hardware,

and software resources. Cloud computing is all about deliv-

ering computing services like databases, software, analytics,
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FIGURE 3. Systematic literature mapping research focus.

servers, storage, networking, and intelligence. There are
many benefits of cloud computing, including cost savings,
scalability, and access to data centers around the world [15].
Cloud computing services fall into four main categories:
Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), Software as a Service (SaaS), and Functions as a Ser-
vice (FaaS) which is a relatively new Cloud service model.

Computing on machine learning pipeline: cloud ser-
vices are a good option for anyone looking to train and
deploy memory-intensive, complex Machine Learning/Deep
Learning models. Cloud services are a cost-effective solution
for both individual users and companies. The cloud allows
employees to access files on any device [16].

Serverless on Machine Learning: Serverless architec-
ture gives many opportunities and advantages to make the
machine learning model more efficient and smoother [17].
As shown in Figure 3, we focus on this systematic literature
mapping on collecting research papers on applying serverless
on machine learning.
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C. SEARCH AND SELECTION PROCESS

As shown in Figure 2, we present our search and selec-
tion process. We designed a two-stage process, a system-
atic search similar to a previous study [18], to identify the
current literature on serverless usage of machine learning.
On Stage 1, we performed an automated search since it is
the typical search strategy to identify relevant studies for a
Systematic Mapping [19].

Defining the review goal, keywords were carefully selected
to obtain relevant articles. In stage 1, several keywords
were formulated and later narrowed down based on the
research objectives. We designed our search query based
on “machine learning” and “‘serverless.” We executed the
following search query on Scopus”:

(““serverless ’’ OR ‘‘lambda
architecture ’’ OR ‘‘function as a
service ’’) AND

(‘ ‘machine learning ’’ OR °‘‘deep

learning > )

Since we are looking for a particular subject, we applied
the default automatic search, including the title, abstract, and
keywords. We executed the query in June 2022, where we
found 198 studies. The papers were either included among
the relevant articles or excluded as irrelevant for the review
by studying their titles, abstracts, conclusions and complete
content.

To extract only relevant articles for review, certain inclu-
sion (IC) and exclusion (EC) criteria were set, specifically:

o IC1: The study must be an article, conference paper,

or workshop;

o IC2: The study must be in the Computer Science area;

o IC3: The study must be a primary study;

9https://WWW.scopuS.com/
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TABLE 1. List of included peer-viewed studies.

# Reference | Title Year
PO1 [20] A Case for Serverless Machine Learning 2018
P02 [21] Exploring Serverless Computing for Neural Network Training 2018
P03 [12] Implementation of unsupervised k-means clustering algorithm within amazon web services lambda 2018
P04 [22] Pay-Per-Request Deployment of Neural Network Models Using Serverless Architectures 2018
P05 [23] Serving deep learning models in a serverless platform 2018
P06 [24] BARISTA: Efficient and scalable serverless serving system for deep learning prediction services 2019
P07 [25] Behavior analysis using serverless machine learning 2019
P08 [26] Cirrus: A Serverless Framework for End-To-end ML Workflows 2019
P09 [27] Distributed Machine Learning with a Serverless Architecture 2019
P10 [28] Function-as-a-Service Application Service Composition: Implications for a Natural Language Processing Application | 2019
P11 [29] Mark: Exploiting cloud services for cost-effective, slo-aware machine learning inference serving 2019
P12 [30] On the FaaS$ track: Building stateful distributed applications with serverless architectures 2019
P13 [31] Seneca: Fast and low cost hyperparameter search for machine learning models 2019
P14 [32] Serving machine learning workloads in resource constrained environments: A serverless deployment example 2019
P15 [33] Stratum: A serverless framework for the lifecycle management of machine learning-based data analytics tasks 2019
P16 [34] Towards a Serverless Platform for Edge Al 2019
P17 [35] TrIMS: Transparent and isolated model sharing for low latency deep learning inference in function-as-a-service 2019
P18 [36] A cloud-based framework for machine learning workloads and applications 2020
P19 [37] Automatic Tuning of Hyperparameters for Neural Networks in Serverless Cloud 2020
P20 [38] Batch: Machine learning inference serving on serverless platforms with adaptive batching 2020
P21 [39] Benchmarking Deep Neural Network Inference Performance on Serverless Environments With MLPerf 2020
P22 [40] Enabling Cost-Effective, SLO-Aware Machine Learning Inference Serving on Public Cloud 2020
P23 [41] FAASM: Lightweight isolation for efficient stateful serverless computing 2020
P24 [42] Implications of Public Cloud Resource Heterogeneity for Inference Serving 2020
P25 [43] Migrating Large Deep Learning Models to Serverless Architecture 2020
P26 [44] Prognostics by classifying degradation stage on lambda architecture 2020
P27 [7] Refactoring of Neural Network Models for Hyperparameter Optimization in Serverless Cloud 2020
P28 [45] STOIC: Serverless Teleoperable Hybrid Cloud for Machine Learning Applications on Edge Device 2020
P29 [46] Towards Federated Learning using FaaS Fabric 2020
P30 [6] A Hybrid Framework for Effective Prediction of Online Streaming Data 2021
P31 [47] A serverless gateway for event-driven machine learning inference in multiple clouds 2021
P32 [48] AMPS-Inf: Automatic Model Partitioning for Serverless Inference with Cost Efficiency 2021
P33 [49] Automatic Hyperparameter Optimization for Arbitrary Neural Networks in Serverless AWS Cloud 2021
P34 [50] Cross-Platform Performance Evaluation of Stateful Serverless Workflows 2021
P35 [51] Distributed double machine learning with a serverless architecture 2021
P36 [52] Dorylus: Affordable, scalable, and accurate GNN training with distributed CPU servers and serverless threads 2021
P37 [53] Edge-adaptable serverless acceleration for machine learning Internet of Things applications 2021
P38 [54] Experience Paper: Towards enhancing cost efficiency in serverless machine learning training 2021
P39 [55] FedLess: Secure and Scalable Federated Learning Using Serverless Computing 2021
P40 [56] Gillis: Serving large neural networks in serverless functions with automatic model partitioning 2021
P41 [8] High performance serverless architecture for deep learning workflows 2021
P42 [57] Leveraging the serverless paradigm for realizing machine learning pipelines across the edge-cloud continuum 2021
P43 [58] Performance and cost comparison of cloud services for deep learning workload 2021
P44 [59] SLA-Aware Workload Scheduling Using Hybrid Cloud Services 2021
P45 [60] Toward Sustainable Serverless Computing 2021
P46 [61] Towards Demystifying Serverless Machine Learning Training 2021
P47 [62] Towards situational awareness with multimodal streaming data fusion: Serverless computing approach 2021
P48 [63] You Do Not Need a bigger boat: Recommendations at Reasonable Scale in a (Mostly) serverless and open stack 2021
P49 [64] ADNN: Achieving Predictable Distributed DNN Training With Serverless Architectures 2021
P50 [65] Serverless Computing Approach for Deploying Machine Learning Applications in Edge Layer 2022
P51 [66] Stateful Serverless Computing with Crucial 2022
P52 [67] INFless: A native serverless system for low-latency, high-Throughput inference 2022
P53 [68] MLLess: Achieving Cost Efficiency in Serverless Machine Learning Training 2022

o IC4: The study should address machine learning prac- o ECI: The study is not written in English;
tices using serverless; o EC2: The study is duplicate;

VOLUME 10, 2022
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FIGURE 4. Published papers per year.

o EC3: The study is published as part of textbooks,
abstracts, editorials, and keynote speeches.

After applying the IC1, IC2, EC1, EC2, we obtained 147
studies. Then we analysed the title and abstract of each study
and, after filtering by IC3, IC4 and EC3, we kept 51 studies.
We read all 51 papers, filtering by IC3, IC4 and EC3 on
the full text; we obtained the seed data set with 44 studies.
In Stage 2, we used our seed data set to perform two rounds
of snowballing, backward and forward, detailed in 2. The
snowballing research comes out with 8 additional studies.
Thus, we identify in the final dataset 52 studies for this
systematic mapping (Table 1). Our work is shredded on a
public repository for study reproducibility.°

IV. RESULTS

The final set of publications presented in Table 1 was care-
fully read to answer the raised research questions. In the
following, we are addressing carefully (1) the evolution trend
of the set of papers and the different venues that were pub-
lished; (2) the focus of the set of researchers on applying
machine learning on Serverless architecture; (3) discussion of
the challenges and opportunities to use Serverless on machine
learning.

A. WHAT ARE THE PUBLICATION TRENDS OF RESEARCH
STUDIES ABOUT SERVERLESS ON MACHINE LEARNING?
This research question aims at (1) characterizing the intensity
of scientific interest and (2) the active publication venue on
the usage of machine learning on serverless architecture.

1) PUBLICATION FREQUENCY

The selected papers of this study were analyzed to deter-
mine the trends in publication and the thematic evolution.
Figure 4 shows the number of publications per year where
researchers start exploring machine learning usage on server-
less architecture. The results show that the average number of
publications per year is approximately 12 from 2018 to 2021,
starting with five papers in 2018 until 20 published papers
in 2021.

10https://github.com/AmineBarrak/Serverless—on-ML
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TABLE 2. Number of published papers per each venue type.

#Studies | Studies

P02, P04, P05, P06, P07, P09,
P11, P12, P13, P14, P15, P17,
P19, P20, P23, P26, P27, P28,
P32, P33, P35, P36, P38, P39,
P40, P42, P43, P46, P48, P50
P52

P18, P21, P22, P30, P31, P37,
P45, P49, P51, P53

Workshop paper 7 gg; P10, P16, P24, P29, P44,

P03, POS, P25, P34, P41

Venue type

Conference papers 31

Journal paper 10

Symposium paper 5

TABLE 3. List of journals (each of the following journals was mentioned
once in the set of reviewed articles).

Journal Full Name
Concurrency and Computation:
Practice and Experience

Acronym

Concurr Comput

IEEE Access IEEE Access

IEEE Software IEEE Software

Icligfdlgzﬁbﬁg IEEE Transactions on Cloud Computing
IEEE Trans Comput IEEE Transactions on Computers

J. Phys. Conf. Ser. Journal of Physics: Conference Series
IEEE Internet Comput. IEEE Internet Computing

Software Pract. Exper.
ACM Trans. Softw. Eng.
Methodol.

cs.DC

Journal of Software: Practice and Experience
ACM Transactions on Software Engineering
and Methodology

Distributed, Parallel, and Cluster Computing

Serverless computing has trended a significant engagement
over the past years [2]. This boost has been caused by indus-
try, academia, and developers for several reasons [69]. With
the appearance of MLOps that include continuous and repet-
itive tasks (i.e.,code integration, training, deployment [70]),
Serverless has started attracting ML developers.

2) PUBLICATION VENUE

Researchers have been contributing on the usage of server-
less on ML pipelines. Table 2 shows the various publication
venues we find in the selected research papers.

The percentages of publications in conference papers,
journal papers, workshop papers, and symposium papers
are approximately 60% (31/53), 16% (10/53), 14% (7/53),
and 10% (5/53), respectively. The topic Serverless for ML
practices has started attracting more researchers, we found
ten journal papers that were published which reveal the
subject relevance where more studies can present additional
contributions.

Following the interpretation of publications, the most pro-
ductive and primary journals, symposiums, conferences, and
workshop venues related to serverless computing can be clar-
ified. The list of journals we found is shown with their full
names in Table 3. All eight journal venues were mentioned
only once each.

The list of conferences is shown in Table 4. The “Cloud”,
“WOSC”, “ICPE”, “IC2E”, “USENIX”, “CCGRID”,

VOLUME 10, 2022
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TABLE 4. List of conferences.

TABLE 5. Serverless applied on machine learning pipeline.

International Symposium on Workload Characterization (IISWC)
International Conference on Information Networking (ICOIN)
Operating Systems Design and Implementation (OSDI)
Architectural Support for Programming Languages and
Operating Systems (ASPLOS)

U SN VRN (N VY (U (N

“Middleware”, “ATC” and “Big Data” are considered the
most active conferences held 19/42 (45%).

B. WHAT IS THE FOCUS OF RESEARCH OF APPLIED
MACHINE LEARNING ON SERVERLESS

COMPUTING ?

In this research question, our objective is to provide a solid
classification of the existing research.

1) RESEARCH STRATEGIES OF SERVERLESS USAGE
ON ML PIPELINE

Machine Learning pipelines are composed of four main
stages, as shown in Figure 1 (1) data processing, (2) model
training, (3) Hyperparameter tuning, and (4) model deploy-
ment. We examine the papers to determine the main goal
and the main solution each study proposes. As shown in
Table 5, the most recurrent usage targeted by the primary
studies are in deploying ML models on Serverless (33/53),
followed by model training (16/53), hyperparameter tuning
(9/53) and data preprocessing (9/53). There are (6/44) studies

VOLUME 10, 2022

Name _ _ #Venue ML pipeline #Studies | Studies
Intemaqonal Conference on Cloud Computmg (CLOUD) 3 ] POT, P07, PO, P10, P25, P26,
International Workshop on Serverless Computing (WoSC) 3 Data preprocessing 9 P34. P46, P48
International Conference on Performance Engineering(ICPE) 3 POI, POZ’ P03, POS. PO9. P23
International Conference on Cloud Engineering (IC2E) 2 . . ’ ’ ’ ’ ’ ’
International Middleware Conference (Middleware) 2 Training / Learning 16 P29, P30, P36, P38, P39, P46,

a P49, P50, P51, P53
USENIX Annual Technical Conference (ATC) 2 d 2 2
International Conference on Big Data (Big Data) 2 Hyp_erparameter 9 POL, P02, PO8, P13, P19, P27,
International Symposium on Cluster, Cloud and 2 Tuning P33, P35, P46
Internet Computing (CCGRID) P04, P05, P06, P10, P11, P12,
Service-Oriented Computing and Applications (SOCA) I P14, P17, P18, P20, P21, P22,
International Conference on Prognostics and Health | Model Deployment 33 P23, P24, P25, P28, P30, P31,
Management (ICPHM) (1nference) P32, P34, P35, P37, P40, P41,
International Conference on Information and 1 P41, P42, P43, P44, P45, P47,
Communication Systems (ICICS) P50, P51, P52
Innovation in Clouds, Internet and Networks End-to-end
and Workshops (ICIN) 1 ML pipeline 6 PO1, P08, P15, P16, P34, P42
International Conference on Parallel Processing (ICPP) 1
USENIX Operational Machine Learning (OpML) 1
USENIX Hot Topics in Edge Computing (HotEdge) 1 TABLE 6. Serverless platforms usage.
International Symposium on Software Reliability 1
Engineering Workshops (ISSREW) § i i
Pervasive Computing and Communications (PerCom) 1 Serverless provider #Studies | Studies
International Conference for High Performance ) P01, P02, P03, P04, POS, POS,
Computing, Networking, Storage and Analysis (SC) P09, P10, P11, P12, P13, P14,
North American Chapter of the Association for I P19, P20, P21, P22, P24, P25,
Computational Linguistics (NAACL) AWS Lambda 39 | P26, P27, P31, P32, P33, P34,
International Conference on Distributed | P35, P36, P37, P39, P40, P41,
Computing Systems (ICDCS) P43, P44, P45, P46, P47, P48,
High Performance Serverless Computing (HiPS) 1 P49, P51, P52
International Conference on Computing for 1 Apache OpenWhisk 4 P18, P29, P39, P42
Sustainable Global Development (INDIACom) IBM Cloud Functions 1 P07, P38, P39, P53
International Conference on Management of Data (SIGMOD) 1 Google Cloud Functions 3 P29, P39, P40
Symposium on Cloud Computing (SoCC) Azure Functions 3 P34, P39, P49
International Conference on Software OpenFaaS 3 P29 P39, P52
Engineering Workshops (ICSEW) - > z
Big Data in Emergent Distributed Environments (BiDEDE) Knative 2 P23, P50
Conference on Recommender Systems (RecSys) KNIX L P40
Neural Information Processing Systems (NeurIPS) Kubeless 1 P28

that tried to employ Serverless in the end-to-end ML pipeline.
These results confirm that the use of serverless benefits in the
different stages of ML is advantageous.

2) THE DIFFERENT SERVERLESS PROVIDERS

Table 6 presents the serverless platforms used in the con-
sidered research papers included in this study. It can be
noticed that “AWS Lambda’* has significant usage in 39 stud-
ies. We also found that “Apache OpenWhisk”, “IBM Cloud
Function” and “Google Cloud Function” are used with 4,
4, and three published papers, respectively. Each platform
has its own set of features and differs from others. We later
compare the different providers in RQ3 IV-C.

3) THE MAIN RESOLVED/DISCUSSED CHALLENGES
AND ISSUES

The main solved / discussed challenges are cost /
pricing (37/53) and resource scalability (30/53), as reported
in Table 7. The high number of studies that discussed
(1) cost/price and (2) scalability might indicate that Server-
less provides a fair price architecture that provides a pay-
per-use model that auto-scales in needs. Researchers seem
to be interested in using Serverless for model deployment
and make sure to keep a rational inference latency (22/53),
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TABLE 7. Machine learning & serverless challenges and issues.

TABLE 9. Type of machine learning algorithms used to train models.

ML & serverless

Challenges and Issues #Studies

Studies

P02, P03, P04, P05, P06, POS,
P09, P10, P11, P12, P14, P15,
P17, P20, P22, P23, P24, P25,
P30, P31, P32, P33, P34, P35,
P36, P38, P39, P40, P41, P43,
P44, P46, P47, P49, P51, P52,
P53

P01, P04, P05, POS, P11, P12,
P14, P17, P18, P19, P22, P23,
P25, P27, P29, P31, P33, P34,
P35, P36, P38, P39, P41, P43,
P44, P46, P47, P51, P52, P53
PO1, P04, POS, P06, P11, P15,
P16, P17, P20, P21, P22, P23,
P24, P25, P28, P30, P34, P40,
P42, P47, P50, P52

P03, P08, P09, P11, P17, P20,
16 P25, P26, P28, P32, P37, P38,

Cost and pricing 37

Resources scalability 30

Inference latency 22

Batching (varying

batch size) P41, P49, P52, P53

P05, P17, P21, P23, P25, P28,
Cold Start 10 P34, P40, P41, P52
Service Level 10 P06, P11, P20, P22, P24, P32,
Objective (SLO) P40, P44, P45, P52
Edge Computing 6 P15, P16, P28, P42, P45, P50
Storage Latency 6 P08, P12, P14, P26, P41, P51
Security 4 P23, P29, P33, P39
Privacy 4 P16, P29, P39, P50
Training Latency 2 P02, P34
End-to-end Latency 2 P37, P50
Network Latency 2 P17, P36
Portability 2 P18, P31

TABLE 8. Machine learning frameworks used in the studies.

ML frameworks | #Studies | Studies
P02, POS, P09, P11, P17, P19,

Tensorflow 2 P20, P21, P22, P23, P24, P25,
P27, P28, P29, P32, P37, P39,
P41, P49, P50, P52

Keras 10 P11, P19, P22, P27, P28, P32,
P33, P37, P39, P42
P05, P09, P11, P16, P17, P20,

MXNet K P22, P24, P40

Pytorch 8 P04, P14, P36, P38, P43, P44,
P46, P53

Scikit-learn 6 P10, P28, P34, P35, P37, P42

Numpy 5 P10, P23, P35, P42, P43

PyWren 4 PO1, POS, P12, P38

Spark ML 3 P08, P12, P26

OpenCV 3 P21, P25, P41

ONNX 2 P04, P14

Tesseract 2 P25, P41

Pandas 2 P35, P42

Bosen 2 P01, PO8

Pillow [73] 1 P32

Caffe 1 P17

MNIST 1 P50

in contracts (6/53), (2/53) and (2/53) focused on the storage,
network, and training latencies, respectively. There were pro-
posed solutions to reduce latency and improve performance
by varying the batch size; this solution was present in (16/53).
The cold start was discussed in (10/53) studies trying to
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Types of ML models #Studies | Studies
P02, P04, P13, P14, P17, P18,

Neural Network » P19, P21, P27, P28, P29, P32,

(DNN, CNN, RNN, GNN) P33, P36, P37, P40, P42, P43,
P44, P45, P49, P50

Supervised ML P01, P06, P07, P08, P12, P26,

(LR, RE, SVM ) 14 P30, P31, P34, P35, P42, P46,

T P51, P53

ResNet 2 P05, P06, P11, P17, P20, P22,
P24, P32, P40, P49, P46, P52

Inception 3 P06, P11, P17, P20, P22, P24,
P32, P40

LSTM 7 P11, P14, P19, P22, P30, P39,
P52

Stochastic Gradient

Descent (SGD) 6 P01, P09, P23, P38, P46, P53

MobileNet 5 P20, P32, P49, P46, P52

squeezenet 3 P05, P17, P24

NLP 3 P04, P10, P21

K-means 4 P03, P12, P46, P51

VGG 3 P06, P33, P52

Reinforcement

Learning (RL) 2 P09, P40

Federated Learning 2 P29, P39

NASNet 2 P11, P22

OpenNMT 2 P11, P22

Optical Character

Recognition (OCR) 2 P25, P4l

Yolo 2 P31, P47

Gym openAl 1 P09

Bert 1 P52

mitigate it since Serverless containers have start-up latencies
in the hundreds of milliseconds to several seconds, leading
to the cold-start problem [71]. A significant number of stud-
ies (10/53) discussed the Service Level Objective (SLO).
We mention that the SLO is an agreement set by a Server-
less provider where there is the pre-defined service mini-
mum response time [40]. Interestingly, few papers considered
security and privacy with (4/53) and (4/53), respectively.
However, only (2/53) paper mentioned the portability and
reproducibility of the run-time environment.

4) MACHINE LEARNING FRAMEWORKS USED IN
THE STUDIES

The machine learning frameworks helped the researchers
to test their proposed solution easily, without understand-
ing the underlying algorithms. Therefore, the choice of
framework depends on the complexity of the targeted
task. As reported in Table 8, the predominant ML frame-
works are: Tensorflow (22/53), Keras (10/53) and MXNet
(9/53). Indeed, other frameworks have been used in recent
studies such as Pytorch (8/53) since it can be used for
distributed training in parallel machines [61], Numpy (5/53)
and OpenCV (3/53).

5) TYPE OF MACHINE LEARNING ALGORITHM USED TO
TRAIN MODELS

The type of machine learning used to train the models
depends on the research goals. Table 9 shows what type of
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TABLE 10. Comparison between the most known providers for Function
as a Service (Serverless).

Function | Maximum Deployment
Serverless Provider | timeout Memory package
(second) | Allocation size
AWS 50MB zip
Lambda [75] 900 10.240MB 55 MB unzip
Apache
OpenWhisk 600 2048 MB 48 MB
Google Cloud 100MB zip
Functions 240 8560 MB 500MB unzip
1BM Cloud 600 2048 MB | 48 MB
unctions
OpenFaaS 300 42 MB IMB
Azure 600 1500MB | n/a
Functions
KNIX [76] 30 2000 MB 100 MB
Knative 600 200 MB 256 MB unzip

machine learning was used. The results show that neural
network models dominate the studies with (22/53). Neural
network models are more challenging to be used, especially
in distributed environment i.e.,distributed ML training [54].
Surprisingly, we found the use of supervised ML, such as
logistic regression, random forest, and SVM, in (14/53) stud-
ies. These models are not resources costly in the training
phase. Their usage is mostly for comparison purposes of the
proposed architecture [30]. There are several other machine
learning algorithms. We mention ResNet (12/53) and Incep-
tion with different versions (8/53). These models are based on
a conventional neural network used for intensive computing
i.e.,image recognition [73].

C. WHAT ARE THE POTENTIAL CHALLENGES OF
ADOPTING MACHINE LEARNING ON

SERVERLESS COMPUTING?

In this research question, our objective is to profile state of
the art on challenges of machine learning usage on serverless
architecture.

1) SERVERLESS PROVIDERS

It is interesting to see Serverless providers evolving their
services over the years. Carreira et al. [20] discussed about
the Serverless capacity as they were not able to run Tensor-
flow [76] or Spark [77] functions on AWS lambda due to size
limits (3GB RAM). Today the limit RAM size has increased
to 10 GB for each serverless function [78]. We present in
Table 10 the Serverless performance functionalities offered
by the different providers we found in the primary studies.
This table was filled in January 2022. We did not include
Kubeless in the comparison table, since it is not an active
project. In the previous RQ, we found that 77% of the studies
(34/44) were using AWS Lambda. We can explain that result
because this tool provides a high Random Access Memory
allocation to reach 10Gb. Moreover, since the serverless
function works only on demand, it has a timeout where the
instance is shutdown after a timeout set by the provider.
We can see that Amazon has the longest function timeout.
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We noticed that the deployment package size is small and
differs from one provider to another. It is the total size allowed
for the function source code i.e.,model. Providers offer the
possibility of hosting the deployed model in extra storage if
the model exceeds the limit for the serverless package size.
For example, there is an option to use an external database
or S3 bucket to store large payloads and pass the data iden-
tifier to the function calls. However, this option will cause
additional latency to the system.

For better services, the serverless providers may ensure
better user performance, especially the timeout function,
to keep the instance warm and avoid the cold start latency.

2) SERVICE LEVEL AGREEMENT/OBIJECTIVE

A Service Level Agreement/Objective is an agreement set by
the serverless provider. Cloud providers claim different SLAs
due to their unique technics. In such case, the performance
may vary for the same code from one cloud service provider
to another [40]. We found that all the studies discussing the
SLO agreement use the serverless for ML model deployment
[24], [29], [38], [40], [42], [48], [56], [67]. They ensured that
the inference model in their proposed solution was respected.
For example, Amazon SLO regarding inference latency is that
at least 98% of inference queries must be served in 200 ms.
However, failing to acquiesce with the SLOs results will lead
to compromised quality of service or even financial loss, e.g.,
end users will not be charged for queries not responded in
time [79]. Regarding the machine learning models inference,
the execution of small models (e.g., MNIST, Textcnn-69)
can respond within 50ms under each memory configuration,
but for the other large models, such as Bert-v1, ResNet-50
and VGGNet, a small memory configuration leads to quite
a long execution time (exceeding hundreds of milliseconds).
If configured with the maximum allowable memory size, the
execution time for a single request exceeds 200ms, which
makes it challenging to meet the latency SLO in the pro-
duction environment [67]. Therefore, providers should share
such agreements and statistics of service violations to help
customers choose the best one, leading to a competitive envi-
ronment for better services.

3) ENSURE RESOURCE SCALABILITY AND
PREDICTIVE SCALING

In general, serverless architecture provides autoscaling
features to handle workload spikes smoothly. Forecasting
resource usage is no longer necessary to ensure that we
always have the right amount of resources to host our appli-
cations. Compared with cluster computing, a serverless base
model enables a rapid adjustment on-demand of the number
of workers overtime [61]. Moreover, in multithread compu-
tation, a single-machine solution quickly degrades when the
number of threads exceeds the number of available cores,
while in a serverless base solution, the scale-up is faster
regarding the execution time [66].

However, serverless functions do not support customized
scaling. Barista uses predictive scaling to achieve low-latency
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inference serving in the serverless cloud [24]. Moreover,
a hybrid architecture between Serverless and VM is pro-
posed, and even machine learning models to predict scal-
ing to reduce over-provisioning to the best execution
environment [29], [40].

The machine learning inference services are commonly
latency critical, and the auto-scaling ability of serverless
computing could deal with bursty workloads well [8].
Yang et al. [67] presented a solution called INFLess that
reduces the allocation of resources for each serverless
instance to reach optimal performance in inference services.

The resource scalability is a critical property of any ML
training system since only the active workers at any given
time will be billed. ML training is typically an iterative
process in which a higher number of workers is desirable
during the first training steps to diminish loss. When loss
reduction stagnates and reaches convergence, the number of
workers scales down once the learning curve starts to flatten
out [54], [68].

4) SERVERLESS VS. laaS FOR ML SERVING

Several works in primary studies (37/53) developed the idea
of reducing costs by using serverless in their ML solu-
tion (deployment, testing, etc.) instead of an infrastructure
environment.

Serverless providers are proposing pay-as-you-go services,
only paying for those resource usage - compared to other
cloud resources such as the TaaS compute service AWS EC2,
where customers would be paying for the instance even when
there is no traffic. Concretely, it is not all the time that Server-
less is better than IaaS. When a company’s traffic is known
to deploy their model online, they must choose the service
that performs their business model. If the traffic is unknown,
it is better to use serverless since the payment is only for
executions [80]. A hybrid architecture can be considered as
an additional solution [29].

5) COLD START

Cold start in serverless is somehow expensive and causes
significant performance degradation for serverless func-
tions [81]. However, it is still better than other cloud resources
i.e., VM. There were several solutions for the cold start, for
example, periodically warming the instance [56] or predicting
the window timing where a request is expected, or scheduling
the tasks [45]. To reuse against the cold start, in [28] pre-
sented a switchboard architecture composed of 6 serverless
with the principle to warm the first function and trigger the
rest of the functions. Another proposed to keep the instance
warm for several minutes [82]. In [29], authors showed that
keeping the instance warm has a low cost. They explained
how $1 could spin up 7K inception-v3 Lambda instances,
which can serve more than 20K requests per second.
To avoid the cold start latency, Yang et al. [67] proposed a
Long-Short Term Histogram (LSTH) to track application idle
times and draw two histograms. The two histograms represent
the request patterns in the last short (e.g., 1 hour) and long
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durations (e.g., one day). By tracking the application, they
can select the pre-warming window to send inference requests
to continuously keep the function instance alive. Their
method helped to reduce resource waste while avoiding cold
starts.

6) SECURITY AND PRIVACY

Privacy and security are always major concerns in serverless
computing, especially for managing and analyzing sensitive
data, such as healthcare data.

We observed that it is essential to set roles for every cloud
function with specific security policies to provide only neces-
sary access and prevent non-permitted operations. For exam-
ple, Kaplunovich and Yesha [49] applied special protection
to the hyperparameter metadata spreadsheet, where metadata
is loaded directly during the startup and stored safely and
securely in the protected Cloud location.

The Federated Learning-based architecture was proposed
in the primary dataset [46], [55], [65]. This computing model
supports edge computing, where the processing edges can
learn from a shared machine learning model while keeping
the model training on remote clients, followed by global
aggregation of the updated model parameters. This keeps
the training data local, which provides privacy and security
benefits. Grafberger et al. [55] considers that the challenges
of FL systems, such as scalability, complex infrastructure
management, and wasted computing, can be solved with
the Function-as-a-Service (FaaS) paradigm. However, it is
necessary to be aware of the threats caused by malicious
participants. For example, Tolpegin et al. [83] showed that a
malicious subset of participants could decrease the accuracy
of the model by injecting poisoned data when sending updates
to the global model.

Several additional security measures can be applied, where
only authorized and authenticated entities can invoke client
functions. A practice of security between clients was applied
in [55], where the FL server allows clients authenticated to
read only from a shared global model and write back results
without access to other clients. Another security measure was
applied in [55], where HTTP function requests exchanges can
be encrypted using Transport Layer Security (TLS).

Rausch et al. [34] chose to transmit the base model to an
edge device to refine the base model locally using a serverless
function with the private data to ensure data privacy. The edge
computing paradigm allows training distributed machine
learning models between local edge data to secure data pri-
vacy and save resources in the cloud [65]. Bac ef al. [65]
applied a federated learning approach on serverless edge
computing, where they saved bandwidth and ensured the data
privacy of the edge nodes.

Moreover, Anthony S. Deese [12] handled the used access
by applying AWS Cognito and Identity Access Management
services. These services allow a user to access and mon-
itor only the lambda function instances he created, which
maintains the privacy of user training data and machine
results.
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7) BATCHING

Another essential factor that heavily impacts both the cost
and the performance of ML serving inference is batching.
For example, the batch size cannot be arbitrarily increased,
as it leads to longer queuing latency and batch inference
latency [84]. Tuning batch or resource configuration adap-
tively can improve the model performance. Clipper [84]
introduces caching, batching, and adaptive model selection
techniques to reduce the latency. INFaaS [85] automatically
adapts the model variant batch size and hardware according
to the required model performance.

For smaller batch sizes, the processing time increases lin-
early, but for larger batch sizes, it increases exponentially in
an on-premise environment [8]. Deese [12] used the batch
mode (maximum size) read and write requests within AWS
and found a significant speed increase from batch write
operations, but a relatively small benefit from batch reads.
Carreira et al. [26] finds that data fetching latency becomes
low when applied mini-batches buffers. Wang et al. [27]
considered that machine learning serverless functions should
have a different size of data batch since many training sam-
ples need to be processed by different workers in parallel.
Zhang et al. [29] showed that inference serving could benefit
significantly from batching using costly hardware accelera-
tors (e.g., GPU and TPU). The appropriate batch size with
GPU instances can achieve a lower cost and shorter inference
latency. However, serving inference queries using GPUs is
not economically justified when there is not enough load.
MLLess [68] kept the same mini-batch size in their dis-
tributed workers architecture to avoid changing the number of
workers incurring costly data repartitioning transfers to adjust
the mini-batch size.

Depending on the usage purpose of serverless computing in
the machine learning pipeline phase, batching size can play
an important role in reducing processing time, deployment
latency, and data fetching.

8) SERVERLESS PORTABILITY

When using platform services from public cloud providers,
there is a risk of dependence on the services and products
they offer. This case is named the ’vendor lock-in’ since
switching technologies and vendors can be costly due to tech-
nical incompatibilities. Naranjo et al. [47] proposed to use
open-source frameworks instead of public cloud providers.
Most open-source serverless platforms rely on Kubernetes
for orchestration and management of function pods, which
makes the portability task more affordable [86]. Unfortu-
nately, portability did not take enough chances in the set of the
studied papers. We found only two journal papers [36], [47]
that took into account the level of portability of the run-time
environment.

Portability is an important aspect; only when portability is
ensured is a helpful simulation to test if the function shows
better performance on another platform [69]. The Serverless
Framework [87] offers plug-ins to simplify the deployment
and execution of serverless functions across multiple clouds
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and FaaS environments. Junfeng Li et al. [86] compared the
performance of four open-source serverless platforms using
CloudLab testbed. Their work was provided to help devel-
opers to differentiate and select the appropriate serverless
platform for different demands and scenarios.

9) EDGE COMPUTING

Edge computing is a distributed computing paradigm that
brings computation and data storage closer to the data
sources, especially popular with IoT device architecture.
Edge computing has several benefits, such as reducing
latency and bandwidth associated with public cloud [53],
ensuring data privacy [34], and reducing computational
resources relative to public and private clouds [45].

The serverless edge computing platform that provides the
appropriate support to define Al workflow functions has
been extended to work at the edge of the network to reduce
response latency and bandwidth associated with the public
cloud [34], [53], [65].

The ML module can be placed on the edge devices, or it
can be placed on the Cloud or Fog layer for live or in-depth
analysis of the data [33]. Zhang et al. [45] proposed a hybrid
cloud system consisting of edge and cloud resources and
integrating GPU acceleration. The usage of edge computing
depends on the user requirements and the analysis of available
capacity.

10) COST REDUCTION

One of the primary purposes of using serverless with machine
learning is cost reduction. High service costs are the major
issue that papers try to reduce in different ways. Serverless
usage is adopted to reduce unnecessary costs and improve
manageability, like the allocation of virtual machines without
full resource usage. For example, Wang et al. [27] demon-
strated that a substantial amount of cost savings can be
achieved by replacing dedicated IaaS cloud clusters with
a serverless architecture. They proposed a solution called
SIREN to reduce the training cost compared MXNet architec-
ture. The AMPS-Inf achieves up to 98% cost savings without
degrading response time performance [48]. Chahal et al. [59]
presented an architecture based on load balancing the ML
inference workload to reduce costs.

Cost reduction is a primary concern for developers and
researchers. The cost is related to the design architecture,
computing, inference deployment, and read/write queries.
Depending on the machine learning project, a serverless-
based architecture could be an effective option to reduce the
cost.

11) INFERENCE LATENCY

Inference latency was well studied in the primary set of
papers. Yu et al. [56] showed that the inference latency
increases as the model grows. They proposed a serving model
and generated a parallelization scheme deployed on server-
less platforms to achieve optimal inference latency.
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Zhang et al. [39] required a benchmark analysis to find an
efficient inference workload. They found that the amount of
memory allocated for each serverless function instance plays
an important role in inference latency time reduction.

The latency can be influenced by the serverless cold start,
or continued serverless warming [43]. Moreover, the hard-
ware usage, such as GPU instances with the appropriate batch
size, can have shorter inference latency compared to the CPU
instances [29]. Gujarati et al. [88] proposed an autoscaling
framework that aims to minimize resource waste for ML
inference by using a predictive provision model. BATCH [38§]
designed a buffer layer on top of the serverless platform
and bundles requests with batching for cost-saving serverless
inference. Moreover, inference latency can be dominated by
data fetching when there are queries involving cross-machine
requests [22].

12) MLOps AND SERVERLESS

The MLOps is modeled to make the intersection between
machine learning, data engineering, and DevOps practices
that associate software developers (the Devs) with IT oper-
ations teams (the Ops) to collaborate [89].

The machine learning pipeline contains several repetitive
steps (data collection, data integration, data preparation and
cleaning, model retraining, predictions) that need special
operations to be automated in MLOps environments. The
serverless architecture can be used to (1) automate the infras-
tructure; (2) build event-driven applications; (3) build APIs
i.e., API with Amazon gateway.

Serverless with data preprocessing: The serverless can
be scheduled to pull data from the backend; trigger a
serverless function when objects are written in data buckets
i.e., AWS S3; build APIs to transform and clean data.

Serverless with model retraining: Schedule or trigger
new training when conditions are met.

Serverless with model inference: Schedule a serverless
function for batch predictions; use step functions for ensem-
ble predictions.

The serverless architecture can be feasible and optimal for
projects adapting the MLOps approach. We plan as future
work to explore how serverless can fit and optimise the
MLOps-based projects.

V. RELATED WORK
This section presents related work that realised a literature
review on serverless computing and cloud computing applied
to machine learning.

A. LITERATURE REVIEWS ON SERVERLESS

serverless computing is getting more popular. Wen et al. [2]
mined and analyzed serverless-based questions from Stack
Overflow to show an increasing popularity trend of the sub-
jectand presented a list of challenges that present an overhead
for developers during the usage of serverless computing, such
as programming language support, database connection, and
Resource Configuration to Security.
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Several studies have searched on serverless challenges.
For example, Khatri et al. [90] presented a review of the
potential bottleneck and measured the performance of server-
less computing. Their work was more related to serverless
limitations such as peak and spike scenarios, scalability, cold
start, and portability. They showed especially the difficulties
of testing and performance measurement of serverless appli-
cations and how machine learning can monitor and predict
performance. Moreover, Hassan et al. [69] applied a survey
including 275 research papers that examined the challenges
that serverless computing faces nowadays and how future
research could enable its implementation and usage. Further-
more, Wu et al. [91] presents several practical recommenda-
tions for data scientists on using serverless for scalable and
cost-effective model serving.

The main challenge in serverless computing is repro-
ducibility. Scheuner and Leitner [92] conducted a multivocal
literature review on the evaluation of function as a service
performance, covering 112 studies. They evaluated these
studies from the reproducibility perspective and found that
most studies do not follow reproducibility principles in
cloud experimentation. More challenges were discussed by
Sadagqat et al. [93]. They conducted a multivocal literature
review to define the core components of serverless comput-
ing, its benefits, and its challenges. They found that serverless
computing is a solution that allows users to create functions
that intercept and operate on data flows in a scalable manner
without the need to manage a server, discussing that vendor
lock-in, skilled workers, testing complexity, and monitor-
ing are the most recurrent challenges. They also presented
the expected evolution of serverless computing, such as the
adoption of serverless by companies and the expected market
growth.

Tiabi et al. [94] identified 32 patterns composing and
managing serverless functions by applying for a multivocal
literature review on 24 selected papers. They classified the
patterns as orchestration, aggregation, event management,
availability, communication, and authorization. They show
that depending on the serverless provider. The pattern may
not be the same, i.e., AWS lambda adapted their queue service
(SQS) to enable FIFO messages. However, FIFO messages
still need to be manually managed in Azure. They present
their work as a pattern catalog that provides a valuable basis
for practitioners and researchers on serverless computing.

The different challenges identified in the literature related
to the serverless were discussed in our set of papers on
machine learning perspectives.

B. LITERATURE REVIEWS ON MACHINE LEARNING &
CLOUD COMPUTING

Machine learning has been used in several architectures of
cloud computing. John et al. [95] conducted a systematic
literature review of 13 primary studies related to Al deploy-
ment in the context of edge/cloud/hybrid architectures. They
presented a list of practices and challenges of practition-
ers related to the design, integration, deployment, operation,
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and model evolution. They conclude their work by propos-
ing an end-to-end model deployment framework. Moreover,
Kuhlenkamp et al. [96] conducted a systematic literature
review on machine learning operationalization. They investi-
gate the techniques, tools, and infrastructures to operational-
ize ML models. They reviewed 24 studies that discussed
the presence of several tools for model operationalization
i.e.,Polyaxon,'! and MLflow.!? They found that cloud com-
puting is widely used in model deployment due to resource
hardware heterogeneity and the possible variety of network
connection quality. Furthermore, Jauro et al. [97] realised
a survey on the usage of deep learning algorithms to solve
complex problems in emerging cloud computing architec-
tures. Their study included 34 studies focusing on edge,
fog, serverless, volunteer, and software-defined computing.
During their study, they identified the strengths and limita-
tions of the different deep learning algorithms regarding their
suitability to the problem of solving i.e.,image processing,
time series, and regression. Distributed machine learning is
widely used, especially with IoT devices. Filho et al. [98]
realised a systematic literature review on 106 research papers
about the distributed machine/deep learning intelligent algo-
rithms in edge devices i.e.,IoT. They investigated the chal-
lenges of running ML/DL on edge devices in a distributed
way, such as limited resources, communication efficiency,
and ensuring data privacy and security. They found several
techniques to mitigate the challenges related to edge com-
puting i.e.,caching, training, inference, and offloading. Setti
Cassel et al. [99] analyzed 60 research papers on serverless
IoT devices during a systematic literature review. They find
that serverless computing is a promising technology for IoT
applications that can bring functions closer to the devices to
reduce latency and avoid unnecessary energy and resource
consumption.

In this work, we focus mainly on studies realised on
machine learning usage on top of serverless computing
architecture.

VI. THREATS TO VALIDITY

We applied Peterson guidelines to make our systematic map-
ping study [14]. However, threats to validity are unavoidable.
This section presents the main threats to the validity of our
study and how we mitigated them.

External validity.. External validity relates to the general-
izability of our results. The most severe external threat is that
finding all the relevant studies on machine learning applied
to serverless architecture from the designed query is absurd.
As a solution, we applied a search strategy to the initial set of
papers consisting of both automatic search and recursively
backward-forward snowballing. Additionally, we applied a
well-established peer-reviewed analysis to ensure that we
have high-quality publications. We carefully defined the

1 https://polyaxon.com/
12https ://mlflow.org/
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inclusion/exclusion rules that respect the requirements of our
study with the agreement of all authors.

Internal validity. Internal validity relates to the exper-
iment errors and biases. We mitigate the internal validity
threats caused by author bias when selecting and interpreting
data by applying well-assessed descriptive statistics of the
collected data. Several re-verification steps between authors
were performed to ensure a good classification dataset.

Construct validity. Construct validity is related to the
degree to which an evaluation measures what it claims.
We mitigated this potential bias by carefully defining the
research query on the Scopus database. This database was
preferred since it offers a more extensive list of modern
sources [100]. In the keywording process, we included differ-
ent taxonomies that can be mentioned to refer to the server-
less, i.e.,Jambda architecture, function as a service. Also,
we are fairly confident about constructing the search string
since the automatic search has been followed by snowballing.
Also, we rigorously selected the potentially relevant stud-
ies according to well-documented inclusion and exclusion
criteria. The first author performed this selection stage, and
randomly a sample set was verified by the second author and
agreement was ensured.

Conclusion validity. Conclusion validity is related to ran-
dom variations and inappropriate use of statistics. To mitigate
it, we rigorously defined and iteratively refined our classifica-
tion framework, such as suggested by [101], so that we could
reduce potential biases during the data extraction process.
In addition, we ensured that we aligned with our research
question and our main research objectives. We mitigated
potential threats to conclusion validity by applying the verifi-
cation agreement between authors in case of disambiguating
cases. We provide a public repository for the reproducibility
of the study to determine whether other researchers could
obtain similar results from this study.'3

VII. CONCLUSION

This study aims to provide a broader survey investigating
the relationships among research contributions on Machine
Learning usage on Serverless architecture. Specifically,
we performed a systematic mapping on 50 primary studies
and produced an overview of the state of the art on machine
learning applications on serverless architecture. We found
that (1) serverless usage on machine learning applications is
a growing field starting from 5 on 2018 until 20 published
papers on 2021, and more publication venues are interested
to the subject; (2) serverless was adopted on the different
ML pipeline, especially on ML model deployment with 33/53
papers. The most used serverless provider is usually AWS
lambda, and the used ML model was the neural network.
The main challenge of using serverless on ML was reducing
cost and pricing (37/53), ensuring enough scalable resources
(30/53), and reducing inference latency (22/53). There are
several potential challenges of adopting ML on serverless,

13 https://github.com/AmineBarrak/Serverless-on-ML
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such as respecting the service level agreement, serverless
provider, cold start problem, security and privacy, serverless
portability, resource scalability, batch size, edge computing,
cost reduction, and inference latency.

Depending on the targeted architecture and the solution,
a trade-off between inference latency, serverless cold start,
cost, scalability, batch size, and portability must be consid-
ered. For example, an open source provider would be a good
solution if portability is essential. The results of this study will
benefit both researchers willing to contribute further to the
area and practitioners willing to understand existing research.

In future work, we plan to explore the effectiveness of
serverless benefits with MLOps practices, especially in a
distributed computing environment. Moreover, hybrid cloud
architecture for machine learning pipeline phases can be a
subject to study its validity depending on the user objectives
and their data flow type.
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