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Abstract: The purpose of this study is to provide an efficient method for the selection of input–output
indicators in the data envelopment analysis (DEA) approach, in order to improve the discriminatory
power of the DEA method in the evaluation process and performance analysis of homogeneous
decision-making units (DMUs) in the presence of negative values and data. For this purpose, the
Shannon entropy technique is used as one of the most important methods for determining the
weight of indicators. Moreover, due to the presence of negative data in some indicators, the range
directional measure (RDM) model is used as the basic model of the research. Finally, to demonstrate
the applicability of the proposed approach, the food and beverage industry has been selected from
the Tehran stock exchange (TSE) as a case study, and data related to 15 stocks have been extracted
from this industry. The numerical and experimental results indicate the efficacy of the hybrid data
envelopment analysis–Shannon entropy (DEASE) approach to evaluate stocks under negative data.
Furthermore, the discriminatory power of the proposed DEASE approach is greater than that of a
classical DEA model.

Keywords: data envelopment analysis; Shannon entropy; input/output selection; discriminatory
power; stock market; negative data

1. Introduction

Data envelopment analysis (DEA) is a non-parametric approach based on mathemati-
cal programming and multi-criteria decision making (MCDM) that is capable of evaluating
the performance, ranking, classification, and benchmarking of a set of homogeneous
decision-making units (DMUs), according to the desired inputs and outputs [1–6]. The
DEA approach is one of the most powerful, applicable, and effective methods in the field
of performance evaluation among researchers and is widely used in various fields such as
agriculture, airline, airport, bank, gas, hospital, hotel, information technology, insurance,
manufacturing, mutual fund, power, production system, research and development, school,
sport, stock exchange, supply chain, university, water, etc. [7–27].

The main advantages of the DEA approach are as follows: it needs no knowledge about
the production function and its constraints; able to use multiple inputs and multiple outputs
simultaneously; needs no knowledge about the weight of each input and output indicator;
able to use various inputs and outputs with different measurement scales; compares
inefficient DMUs with reference sets directly; ranks decision-making units; and benchmarks
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for inefficient DMUs. The main disadvantages of the DEA approach can be summarized
as follows: it measures relative efficiency instead of absolute efficiency; finds it difficult
to solve large problems due to high computational value; experiences many deviations in
results due to measurement error; potential change in performance evaluation results due
to change in type and number of inputs and outputs; difficulty of statistical tests including
hypothesis test due to its non-parametric nature; fragility of performance obtained due to
the sensitivity of the results to sample change [28–35].

In addition to the above advantages and disadvantages, the lack of general agreement
on the selection and determination of input and output variables is one of the most im-
portant challenges in applying the DEA method in various applications [36–41]. Another
important point that should be considered in using the DEA approach is to increase the
discriminatory power of the model in evaluating the performance of DMUs, and to differ-
entiate as much as possible their performance results. Accordingly, in the current study,
the hybrid data envelopment analysis–Shannon entropy (DEASE) approach is proposed.
Notably, the proposed DEASE can be employed under negative data and values.

The rest of this paper is organized as follows. The concepts, definitions, and expla-
nations of the Shannon entropy technique are introduced in Section 2. Then, the steps of
the hybrid data envelopment analysis–Shannon entropy approach as a proposed approach
of the current research is presented in Section 3. In the following, the proposed DEASE
approach is implemented in a real-world case study from the Tehran stock exchange (TSE),
and the experimental results are analyzed in Section 4. Finally, the conclusions and future
research directions are discussed in Section 5.

2. Shannon Entropy Technique

Determination of the relative weights of indicators in multi-criteria decision making
(MCDM) is always one of the basic and required steps in the problem-solving process. It
should be noted that among the well-known and widely used methods in determining
the weights of indicators, expert opinions-based approaches, least squares method, special
vector technique, and Shannon entropy can be mentioned. In the following, the Shannon
entropy technique is introduced as one of the most important methods for determining the
weight of criteria.

Entropy in information theory is a measure of the amount of uncertainty, and it is
expressed by a discrete probability distribution [42–47]. Notably, in entropy method, more
fluctuations and scattering in the values of criterion indicate its greater importance factor
and weight [48–53]. Accordingly, the steps of the Shannon entropy technique to determine
the weights of the indices are as follows:

Step (1) First, the decision matrix is created with m alternatives and n criteria in the
form of Equation (1), which xij is the value of ith alternative in terms of jth criterion.

X =
[
xij
]

m×n =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn

 (1)

Step (2) The decision matrix is normalized using Equation (2). By dividing the value
of each column by the sum of its column, the normalized value pij is obtained as follows.

Pij =
xij

m
∑

i=1
xij

∀i, j (2)

Step (3) The entropy of each criterion Ej is calculated using Equation (3). A constant
value keeps the value of Ej between 0 and 1.



Mach. Learn. Knowl. Extr. 2022, 4 690

Ej = −ω
m

∑
i=1

[
(Pij)ln(Pij)

]
∀j, k =

1
ln(m)

(3)

Step (4) The degree of deviation dj from the information that is generated for jth

criterion is calculated from Equation (4). The degree of deviation indicates the amount of
useful information that the relevant criterion provides to the decision maker.

dj = 1− Ej ∀j (4)

Step (5) Finally, the weight wj is calculated from Equation (5), in which the weight of
jth criterion is obtained by dividing dj by the sum of dj.

wj =
dj

n
∑

j=1
dj

∀j (5)

Thus, the criterion with more weight wj is chosen, because less weight indicates that
the effect of the criterion is almost the same for all the alternatives.

3. The Proposed Approach

In this section, the process of proposing and implementing the hybrid data envel-
opment analysis–Shannon entropy approach is presented to the input/output selection
to improve the discriminatory power of the model for performance measurement of the
DMUs. In order to be more comprehensive and applicable to the proposed approach, the
basic steps of this approach, by assuming the presence of negative values and data, are
presented as follows:

Step (1) Modifying Indicators with Negative Values: As observed in the steps of the
Shannon entropy technique, the existence of a function ln for computation of pij means
the entropy method is used only for positive indicators and quantities. Therefore, to solve
this problem, a suggested method is used in this research. In this way, first, in the criterion
column whose values are negative for some alternatives, the largest and smallest numbers
are determined, and then their difference from each other (Max − Min) is calculated.
Then, the value of Max−Min + 1 and 1 are assigned to the largest column number and
the smallest column number, respectively. The values of the other column numbers are
obtained using the relation Value−Min + 1. Thus, using the suggested method, all the
values that are related to the criterion are presented in a positive value.

Step (2) Implementing the Shannon Entropy Technique: After modifying and re-
viewing to change the amplitude of negative values in the previous step and preparing a
new data structure, the Shannon entropy approach for each of the input and output groups
that have similar indicators is implemented and calculated.

Step (3) Selecting of Inputs and Outputs: According to the values of the Shannon
entropy technique, in each of the input and output groups, among the similar indicators in
each group, the criterion with more weight as the final input or output of the DEA model
is selected.

Step (4) Checking the Isotonicity Relations between Inputs and Outputs: Since the
inputs and outputs used in DEA should satisfy the condition that greater quantities of
inputs provide increased output, the appropriateness of the inputs and outputs that were
included in the previous step was tested by conducting an isotonicity test [54–59]. An
isotonicity test involves the calculation of all inter-correlations between inputs and outputs
for identifying whether increasing amounts of inputs lead to greater outputs [60–66].

Step (5) Choosing the Data Envelopment Analysis Model: After determining the
inputs and outputs, the data envelopment analysis model should be selected. In this study,
due to the presence of negative data, the range directional measure (RDM) model [67]
is used. Now, suppose that there are g homogeneous decision-making units that con-
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vert v inputs θk = (θ1k, θ2k, . . . , θvk) into u outputs ϕk = (ϕ1k, ϕ2k, . . . , ϕuk). Finally, the
envelopment form of the RDM model is Model (6).

Max Ψ (6)

S.t.
g

∑
k=1

λkθαk ≤ θαq −Ψξαq, ∀α

g

∑
k=1

λk ϕβk ≥ ϕβq + Ψξβq, ∀β

g

∑
k=1

λk = 1

λk ≥ 0

Ψ∗ expresses the measurement of inefficiency, and the efficiency of the DMU under
evaluation is equal to 1−Ψ∗ and 1/(1+ Ψ∗) in the input-oriented model and output-oriented
model, respectively. Moreover, ξαq and ξβq in Model (6) are the range of possible improvements
for the DMU under evaluation, which are defined as Equations (7) and (8), respectively.

ξαq = θαq −Min
k
{θαk; k = 1, . . . , g}, ∀α (7)

ξβq = Max
k

{
ϕβk; k = 1, . . . , g

}
− ϕβq, ∀β (8)

Step (6) Calculating the Efficiency Scores of DMUs: Finally, the research data envel-
opment analysis model is implemented for the extracted data and related to the selected
input and output indicators, and the performance assessment results of the decision-making
units are calculated and analyzed.

4. Case Study

In order to implement the proposed DEASE approach, 15 stocks from the food and
beverage industry of the Tehran stock exchange are selected as a case study for the research.
It should be noted that in order to evaluate the stocks fundamentally and comprehensively,
15 indicators in the form of five groups (including liquidity, asset utilization, leverage,
profitability, and growth) have been considered [68–73]. By applying the Microsoft Excel
Software, the Shannon entropy technique is implemented, and the obtained results are
presented in Table 1. A description of all the financial parameters is introduced in Table 2.

Table 1. Classification of financial indicators with Shannon entropy values.

Groups Perspective Financial Parameters Ej dj wj

Current ratio (CUR) 0.980 0.020 0.089
1 Liquidity Quick ratio (QUR) 0.952 0.048 0.218

Cash ratio (CAR) 0.846 0.154 0.694

Inventory turnover (INT) 0.983 0.017 0.126
2 Asset utilization Receivable turnover ratio (RTR) 0.895 0.105 0.766

Total assets turnover (TAT) 0.985 0.015 0.108

Solvency ratio-I (SRI) 0.981 0.019 0.058
3 Leverage Solvency ratio-II (SRII) 0.788 0.212 0.635

Leverage ratio (LER) 0.897 0.103 0.307

Net profit to sales (NPS) 0.937 0.063 0.273
4 Profitability Return on assets (ROA) 0.927 0.073 0.314

Return on equity (ROE) 0.904 0.096 0.413
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Table 1. Cont.

Groups Perspective Financial Parameters Ej dj wj

Earnings per share growth rate (EPSGR) 0.871 0.129 0.336
5 Growth Total revenue growth rate (TRGR) 0.930 0.070 0.183

Profit margin growth rate (PMGR) 0.815 0.185 0.482

Table 2. The description of all financial indicators in the current study.

Parameters Description

CUR Total current assets divided by total current liabilities
QUR Subtract inventory from total current assets divided by total current liabilities
CAR Cash and marketable securities divided by total current liabilities
INT Revenues for the period divided by inventories
RTR Net receivable sales divided by average net receivables
TAT Revenues for the period divided by total assets
SRI Total liability divided by total assets
SRII Total liability divided by shareholders equity
LER Total assets divided by shareholders equity
NPS Net profit after tax divided by sales
ROA Net income divided by the total assets
ROE Net income generated per unit of common shareholders’ equity
EPSGR Current quarter’s EPS divided by the previous quarter’s EPS minus one
TRGR Current quarter’s total revenue divided by the previous quarter’s total revenue minus one
PMGR Current quarter’s profit margin divided by the previous quarter’s profit margin minus one

Then, in each of the five groups related to different financial ratios, the criterion with
more weight is selected from the three criteria. Concerning the Shannon entropy technique,
the inputs and outputs of the data envelopment analysis model are presented in Figure 1.
In the DEA approach, performance metrics can be classified as the larger the better for the
outputs, and the smaller the better for the inputs. In other words, positively connoted (the
more the better) factors are used as outputs; conversely, negatively connoted (the fewer the
better) factors are classified as inputs [74,75].
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Now, after determining the selected variables of the DEA model, the information re-
lated to the mentioned indicators in the form of two inputs and three outputs for 15 stocks
that are active in the food and beverage industry is presented in Table 3. Pearson’s cor-
relation is taken to test the isotonicity relationship between the chosen input and output
parameters. Accordingly, the inter-correlations of all the indicators are positive and signifi-
cant, suggesting that the specification of the DEA model is valid.

Table 3. Data set for 15 stocks from Tehran stock exchange.

Stocks
Inputs Outputs

I (1) I (2) O (1) O (2) O (3)

Stock 01 4.98 0.83 54.47 −22.37 0.86
Stock 02 44.74 1.31 44.82 −39.67 0.15
Stock 03 8.87 1.04 22.93 17.01 0.13
Stock 04 8.35 1.09 48.34 −8.84 0.06
Stock 05 11.89 0.29 55.86 −30.66 0.83
Stock 06 97.36 12.25 205.27 3.47 0.07
Stock 07 42.98 1.51 12.23 92.04 0.04
Stock 08 68.52 1.75 33.72 −47.46 0.07
Stock 09 60.87 2.33 46.72 −50.78 0.15
Stock 10 40.46 1.77 8.64 199.24 0.06
Stock 11 19.77 0.48 71.89 −28.33 0.68
Stock 12 71.00 0.70 57.86 −20.91 0.19
Stock 13 117.57 3.08 37.01 10.31 0.31
Stock 14 54.46 0.82 32.55 −38.06 0.22
Stock 15 16.87 0.58 53.31 17.08 0.36

Min 4.98 0.29 8.64 −50.78 0.04
Max 117.57 12.25 205.27 199.24 0.86

Finally, using the range directional measure model and LINGO Software, the perfor-
mance of all 15 stocks is calculated based on the data that are extracted from the Tehran
stock market. The results can be seen in Table 4.

Table 4. The final results of the implementation of range directional measure model.

Stocks
Inefficiency Efficiency

Ψ* 1−Ψ* 1/(1+Ψ*)

Stock 01 0.000 1.000 1.000
Stock 02 0.161 0.839 0.861
Stock 03 0.000 1.000 1.000
Stock 04 0.021 0.979 0.979
Stock 05 0.000 1.000 1.000
Stock 06 0.000 1.000 1.000
Stock 07 0.124 0.876 0.890
Stock 08 0.219 0.781 0.820
Stock 09 0.206 0.794 0.829
Stock 10 0.000 1.000 1.000
Stock 11 0.000 1.000 1.000
Stock 12 0.062 0.938 0.942
Stock 13 0.194 0.806 0.838
Stock 14 0.179 0.821 0.848
Stock 15 0.000 1.000 1.000
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According to stock market experts’ views, the proposed DEASE approach is an ef-
ficient, applicable, and powerful approach with the ability to calculate performance and
evaluate all stocks in the presence of negative data. Similar to the findings of Xie et al., [47],
the experimental results also indicate the acceptable discriminatory power of the hybrid
data envelopment analysis–Shannon entropy approach. Notably, the results that are ob-
tained from the DEASE approach can be applied for the construction of desirable investment
portfolios in the stock market by recognizing good stocks and filtering bad stocks.

5. Conclusions and Future Research Directions

Humans have always been interested in performance measurement. Efficiency is
a criterion for performance measurement. There are two main methods for efficiency
measurement: parametric methods that use different statistical methods and econometrics
in order to estimate a certain production function, and non-parametric methods, which
do not need any production function. DEA is a non-parametric method that calculates
the relative efficiency of a set of DMUs. The DEA method uses the inputs and outputs
of these units, and they are classified as efficient and inefficient. In this paper, the hybrid
data envelopment analysis–Shannon entropy approach is presented with the aim of in-
put/output selection and increasing the discriminatory power of DEA models, in order
to evaluate the performance of DMUs under negative data. Notably, the main limitation
of the study is that the proposed DEASE approach is not capable to be used under data
uncertainty. Accordingly, for future research, the DEASE approach can be proposed under
uncertain data, including fuzzy [76–90], stochastic [91–102], and interval [103–113] data.
Additionally, the DEASE approach can be combined with machine learning approaches
for the prediction of input and output data, and consequently, evaluation of the future
performance of DMUs [114–125].
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