
Citation: Almansoury, F.; Kpodjedo,

S.; El Boussaidi, G. Game

Development Topics: A Tag-Based

Investigation on Game Development

Stack Exchange. Appl. Sci. 2022, 12,

10750. https://doi.org/10.3390/

app122110750

Academic Editors: Robertas

Damaševičius, Sanjay Misra and

Bharti Suri

Received: 17 July 2022

Accepted: 20 September 2022

Published: 24 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Game Development Topics: A Tag-Based Investigation on
Game Development Stack Exchange
Farag Almansoury *,†, Segla Kpodjedo *,† and Ghizlane El Boussaidi †

École de Technologie Supérieure (ÉTS), University of Quebec, Montreal, QC H3C 1K3, Canada
* Correspondence: farag.almansoury.1@etsmtl.ca (F.A.); segla.kpodjedo@etsmtl.ca (S.K.)
† These authors contributed equally to this work.

Abstract: Video-game development, despite being a multi-billion-dollar industry, has not attracted
sustained attention from software engineering researchers and remains understudied from a software
engineering perspective. We aim to uncover, from game developers’ perspectives, which video
game development topics are the most asked about and which are the most supported, in order
to provide insights about technological and conceptual challenges game developers and managers
may face on their projects. To do so, we turned to the Game Development Stack Exchange (GDSE),
a prominent Question and Answer forum dedicated to game development. On that forum, users
ask questions and tag them with keywords recognized as important categories by the community.
Our study relies on those tags, which we classify either as technology or concept topics. We then
analysed these topics for their levels of community attention (number of questions, views, upvotes,
etc.) and community support (whether their questions are answered and how long it takes). Related
to community attention, we found that topics with the most questions include concepts such as 2D
and collision detection and technologies such as Unity and C# , whereas questions touching on concepts
such as video and augmented reality and technologies such as iOS, Unreal-4 and Three.js generally lack
satisfactory answers. Moreover, by pairing topics, we uncovered early clues that, from a community
support perspective, (i) the pairing of some technologies appear more challenging (e.g., questions
mixing HLSL and MonoGame receive a relatively lower level of support); (ii) some concepts may be
more difficult to handle conjointly (e.g., rotation and movement); and some technologies may prove
more challenging to use to address a given concept (e.g., Java for 3D). Our findings provide insights
to video game developers on the topics and challenges they might encounter and highlight tool
selection and integration for video game development as a promising research direction.

Keywords: video-game development; empirical study; stack exchange

1. Introduction

The video-game industry is one that has been thriving and growing, from around USD
1B in revenue in 1971 to USD 43B in 2000 and USD 180B in 2020 (https://www.marketwatch.
com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-
to-the-pandemic-11608654990 (accessed on 1 October 2021)). The field has steadily grown
and evolved with technology: from arcades dominating the 1970s and 1980s to game
consoles, handheld devices, and PCs becoming the main platforms in the 1990s and early
2000s. Since 2011, mobile devices are the dominant platform; they represent 48% of the
gaming market, followed by Personal Computers (25%), game consoles (19%), and emerg-
ing technology such as Virtual Reality headsets (3%). Despite such growth and dynamism,
the video game industry has yet to receive appropriate and lasting levels of interest from
the software engineering research community [1,2].

Prior research from the software engineering community has investigated possible
differences between the development of video-games vs. non-video-game software prod-
ucts. Video-games have distinctive features that make them complex to design and test.

Appl. Sci. 2022, 12, 10750. https://doi.org/10.3390/app122110750 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122110750
https://doi.org/10.3390/app122110750
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5224-9658
https://orcid.org/0000-0001-6145-774X
https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990
https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990
https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990
https://doi.org/10.3390/app122110750
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122110750?type=check_update&version=3

Appl. Sci. 2022, 12, 10750 2 of 28

They require developing teams with very specific and diverse skills, and their inherent
complexity can result in defects which negatively impact players’ experience [3,4].

Furthermore, unlike some other types of software projects (e.g., Customer Relationship
Management or Enterprise Resource Planning software), game development attracts many
indie developers, many of whom have only a partial view of what it entails (https://www.
gamesindustry.biz/articles/2018-10-02-its-time-we-stopped-encouraging-indies (accessed
on 1 October 2021)). Game development involves diverse skills and a wide variety of
concepts to master and technologies to use. Game developers, especially independent
ones, thus have to navigate a wide range of concepts (e.g., sound, physics, animation,
gameplay, etc.) and technologies (e.g., game engines, libraries, programming languages) in
order to build their products. In this context, question and answer forums are privileged
places where game developers can find solutions or information relevant to their sometimes
unique challenges. One such prominent forum is the Game Development Stack Exchange
(GDSE), from the well known the Stack Exchange network of Q&A websites. Much like the
more well-known Stack Overflow, GDSE—for which the target audience is “professional
and independent game developers”—allows its users to ask questions to which other users
may respond. The questions on GDSE are often tagged with keywords that provide crucial
information (on the issue, the circumstances, the development environment etc.), which can
be analysed to provide insights as to which topics (concepts and technologies) are relevant
or challenging for game development.

The present paper reports on the results of an empirical study of GDSE questions
that aims at investigating topics (concepts and technologies) encountered in video-game
development. In our study, we consider that tags represent topics, and we aim to answer
the three following questions:

RQ1: Which video-game development topics received the most community attention?
An answer to this question could help developers identify topics they may have to handle
on their game development projects. In our study, we measure community attention
through metrics related to the number of questions, views, upvotes, downvotes, and
bookmarks associated with a tag in GDSE.

RQ2: Which video-game development topics receive the most/least community
support? An answer to this question could help developers identify early the topics for
which they are more/less likely to receive community help. In our study, we measure
community support through metrics related to whether a question receives an answer that
is accepted by the person who asked it and how long it took to receive said answer.

RQ3: Which combinations of video-game development topics receive the most/least
community attention and support? An answer to this question could inform the choices of
game developers, from a community support perspective, when it comes to (i) selecting
the “best” technology for a given concept, (ii) selecting the “best” technology to add to
their existing technology stack, and (iii) obtaining insights on the challenges raised by the
handling of two concepts. For this question, we reuse metrics from RQ2, with a focus on
the differences of support when a topic is mixed with another.

To the best of our knowledge, our study is the first to uncover and analyse the common
issues reported by video-game developers using Q&A websites. The results of our study
provide an empirical look at the landscape of video game development topics as they are
perceived and handled by GDSE, one of the most prominent video-game development
communities. We found, through our first research question, that prominent topics/tags
include frameworks and languages such as Unity, C#, OpenGL, GLSL, Android, Game-Maker,
and Lua but also concepts such as 2D, collision detection, mathematics, and game design.
Through our second research question, we found that, on average, half the questions are
not satisfactorily answered (no accepted answer by the asker), and when they are, it
generally takes between 3 and 6 h. Finally, our third research question considered pairs of
tags and investigated whether questions with a particular tag pair X|Y generally receive
more (or less) support than questions tagged with X or Y. The results expose many such
instances and provide early insights as to which pairings of topics gain in community

https://www.gamesindustry.biz/articles/2018-10-02-its-time-we-stopped-encouraging-indies
https://www.gamesindustry.biz/articles/2018-10-02-its-time-we-stopped-encouraging-indies

Appl. Sci. 2022, 12, 10750 3 of 28

support relatively to the topics taken separately (e.g., the pairs HLSL|Directx11, 2D|rotation,
and 3D|XNA) and which pairings receive reduced support (e.g., HLSL|XNA, 3D|collision
detection, and 3D|Java). We believe these results bear potential as decision helpers for indie
game developers and game development teams, particularly those about to embark on a
game development project and still deciding on which technologies and techniques meet
their needs.

The rest of the paper is organized as follows: Section 2 introduces the background.
Section 3 reviews the literature related to our study. Section 4 outlines our empirical study
setup. Answers and discussion on our three RQs are provided in Sections 5–7. Section 8
provides additional analysis, after which Section 9 discusses some threats to validity. Finally,
Section 10 provides concluding remarks and discusses future work.

2. Background

In this section, we provide general background information on the Game Development
Stack Exchange website and its metadata schema that we leverage in the study.

2.1. Game Development Stack Exchange

Stack Exchange is a network of dedicated Q&A websites on which users can ask
questions, share their expertise by answering questions, or just leave comments; the sites
are self-moderated through a reputation award system that applies to the questions, the an-
swers, the users, and even the comments. In this paper, we focus on Game Development
Stack Exchange (GDSE), which is an exclusive Q&A website for video-game developers.
When posting a question, the game developer is prompted to tag it to allow other devel-
opers or users to find them easily. Figure 1 presents an example of a question posted on
GDSE. The title of the post is “How can I create a ‘flaming’ effect like in Ocarina of Time’s title
screen?”. The word “graphic-effects” is the only tag provided by the user; the body of the
post lies in between and gives a detailed description of the issue. The margins of the post
contain some other meta-data relevant for our research, such as the score (103), the number
of favourites (65), and the number of views (13,934).

Figure 1. Example of a question on Game Development Stack Exchange.

Appl. Sci. 2022, 12, 10750 4 of 28

Game Development Stack Exchange users are encouraged to participate as they can
earn points towards their reputation and other privileges (e.g., editing), for being actively
involved on the site. Users can vote for questions and answers, with both upvotes (positive
feedback) and downvotes (negative feedback) allowed; the number of upvotes minus the
number of downvotes represents the score. For a given question, only one answer can receive
the status of “Accepted Answer”, meaning that the user who posted the question designated
it as a satisfying answer to his problem. GDSE posts (questions and answers) are archived
in a database, primarily in a table Post, the schema of which can be seen in Table 1.

Table 1. Schema of the Post table.

Name Description

Id Post ID
PostTypeId Post type: 1 for questions and 2 for answers
AcceptedAnswerId ID of the accepted answer post
ParentId ID of the parent element, if relevant
CreationDate The date when the post was created
DeletionDate The date when the post was deleted
Score Number of upvotes minus number of downvotes.
ViewCount Number of views for the question post
Body Content of the question post
Title Title of the question post
Tags Tags provided for the post
AnswerCount Number of answers received for the question post
CommentCount Number of comments received for the question post
FavoriteCount Number of users who marked the question post as favorite

3. Related Work

In this section, we provide a short review of game development from a software
engineering research perspective. Then, we present some of the previous relevant work
conducted on Stack Overflow, the most prominent Stack Exchange website.

3.1. Research on Video Game Development

The study [1] investigated software engineering practices in video-game development
and found that video game developers generally adopted and adapted traditional methods
of software engineering but would benefit from more elaborate empirical methods. A few
years later, ref. [5] carried out a study to pinpoint the differences between software develop-
ment and game development. They found that video game requirements are substantially
different from other software products since fun and entertainment are the sole goal of the
former; for instance, maintaining a game means changing some of its content (e.g., new
quests, characters, or add-ons) rather than just features in a traditional sense. Furthermore,
testing and quality assurance in both industries present significant differences. More re-
cently, the study [4] reported on distinctive features of video-games and non-video game
software through the analysis of open source software of both types. They explained that
these distinctions lie in the tools used in both industries, the range of expertise found in
developers’ teams, the testing of the products, the way bugs are dealt with and the release
and follow up of the products.

Other research works [6–11] aimed at uncovering issues in video-game developments
through the analysis of postmortem retrospectives of various games. Postmortems of video
game projects are often published by video game development managers on gaming forums
such as Gamasutra (https://gamasutra.com/ (accessed on 1 October 2021)) and are useful
sources to analyse issues arising in game development projects. In the research work [6],
the authors concluded from their analysis that many of the reported issues could be traced
back to inadequate requirements of engineering. They zoomed in on media and technology
integration (interaction of game assets and game engines, artists, and programmers), non-
functional requirements, and game play requirements (hard to prototype). They noted

https://gamasutra.com/

Appl. Sci. 2022, 12, 10750 5 of 28

how dependent games were on technology, which can be cutting-edge and which game
projects often have to pioneer or develop internally. A few years later, ref. [7] proposed
a comparative analysis of video game development issues versus those in traditional
software development. The paper surveyed development project problems from research
literature and postmortems. Even though the paper appears to highlight management
problems stemming from inappropriate handling of needed features (unrealistic scope,
features creep, or feature reduction), various problems linked to technology and tools
(notably from third parties) account for more than 60% of issues reported in the analysed
postmortems. Interestingly, ref. [8] propose a similar perspective, with an emphasis on
management problems but extensive discussion on the selection and integration of third-
party technology, notably game engines. Most recently, ref. [11] proposed a dataset of video
game development problems extracted from 200 game project postmortems spanning over
20 years (1998 to 2018). They found 1035 problems related to software engineering, which
they grouped into 20 different types such as Tools, Testing, Monetization, and Marketing,
which in turn are classified into three groups (Production, Management, and Business).
A subsequent study by the same authors [12] further analyzed that database; the top five
most common types of issues were technical (11%), related to game design (11%), team
(8%), tools (7%), and planning (7%). Production issues, on the whole, account for 46% of
the problems, even though technical and game design problems have been decreasing over
the years.

3.2. Research Studies Based on Stack Overflow

As stated above, the Stack Exchange network regroups different Q&A websites, of
which Stack Overflow (SO) is the most popular and the top Q&A website for software
developers. SO contains more posts, covers a variety of programming topics, and has
attracted a much more substantial quantity of software engineering research work. In the
following, we review research studies centered on SO that are the most relevant to our
current study.

The study by [13] considered questions asked over a period of 15 days and found that
Stack Overflow seemed effective at providing help for code reviews, while how-to questions
and questions about unexpected behaviors were the most popular. A later study by [14]
used Latent Dirichlet Allocation (LDA) to identify topics, then proceeded to analyze their
popularity and trends. They found that popular topics range from jobs to version control
to specific language syntax, with web and mobile development trending up the most.

Many research studies have narrowed their analysis of Stack Overflow on specific
areas, such as mobile development [15–17], web development [18–20], web3D technologies (Three.js
and WebGL) [21], testing [22,23], and security [24–27].

On mobile development, we can cite [15], which used LDA and reported notably on
the popularity of general questions and device compatibility issues, with more specific
topics such as crash reports and database connection reported as attracting less attention.
The study [16] performed a manual analysis on the top 450 Android-related posts on SO
and found that most common questions could be classified as “How to?” and “What is the
problem?”, while “User Interface” and “Core Elements” are the most discussed issues. More
recently, [17] took, in addition to questions, interest in provided answers and analyzed
over 13 million posts. They found that most popular questions involved app distribution,
mobile tools, and user interface development, and also found that mobile-related questions
were relatively harder to answer than non-mobile-related questions.

On web development, a first paper of note would be [18], which used data from Stack
Overflow to obtain a better understanding of the challenges faced by web developers. Their
results show, among other things, that there was an uptrend in the number of questions
related to web-development, concurrently with a downtrend for cross-browser related posts.
Another study by [19] collected data from Stack Overflow to investigate web developers
concerns pertaining to Web APIs. They found that ’Known issue/bug’ is a particularly
dominant topic of discussion, and observed that discussions are usually (three times out of

Appl. Sci. 2022, 12, 10750 6 of 28

four) about occasional concerns that disappear quickly, which would suggest that “Web
API providers tend to timely address most problems encountered by client developers”.

Various other concepts were explored using SO. Testing-related issues were studied,
notably by [22,23], with a focus on Selenium-related questions. Security-related issues were
investigated by [24], which classified these issues into five categories (i.e., web security,
mobile security, cryptography, software security, and system security), with web security
questions being the most common ones. Questions on passwords, hashes, signatures,
and SQL injection were reported as the most frequent ones when it comes to security-
related discussions on Stack Overflow.

A great body of research that used data from Stack Exchange can be found in [28].
To the best of our knowledge, with the exception of a recent 2019 paper on GDSE with
a narrow focus on “serious games” [29], there have been no studies that used Stack Ex-
change Game Development forum, nor has there been any research that investigated game
development topics using Stack Overflow.

4. Empirical Study Setup
4.1. Study Overview

Briefly put, our study is centered on identifying video-game development topics with
the highest (or lowest) levels of community attention and support.

Our goal is to give game developers and managers insights about the technological and
conceptual challenges they may face on their project. To achieve that goal, we conducted
a study on GameDev and aim to answer three research questions: (i) which video-games
topics receive the most attention, (ii) which video-games topics receive the most/the least
support, and (iii) which combinations of topics receive the most/least community attention
and support. Each research question is answered through various metrics, detailed in
Section 4.2.

Our community of interest is GDSE, the question and answer website dedicated to
video-game developers in the popular Stack Exchange network. As previously presented
in Section 2.1, questions in GDSE come with user-defined tags that help to categorize
them. For this first study, we rely on these tags as a way to aggregate questions into more
generic topics. Doing so allows for a clean and reliable way to assess the topics of interest
for game developers using GDSE. Furthermore, a cursory analysis of the tags present in
the GDSE site reveals that they generally fall into two categories: (i) general topics or
concepts (e.g., animation) and (ii) specific technology choices (e.g., Unity, the popular game
engine). Preliminary analysis of GDSE questions pointed to a need to make such distinction
for the tags or otherwise end up mostly with tags about technologies that dominate the
game development market. Thus, in the following, we will refer to concepts and techs to
denote these two categories. Furthermore, we will use italics for tags and reserve capital
letters for techs. Examples 1 and 2 display questions centered on concept tags and tech
tags, respectively.

Example 1. (https://gamedev.stackexchange.com/questions/149031/ (accessed on 1 October 2021))
Title: How do I get players to say “no” when they are afraid of missing out on sidequests or

XP?
Body: In my RPG, I have a companion npc who is overconfident in his abilities and lacks

self-control. ... So how do I get players to say "no" when they are afraid of missing out on sidequests
or XP?

Tags: game-design, rpg, npc
Viewed 156k times, score: 156, favorite: 36

Example 2. (https://gamedev.stackexchange.com/questions/96014/ (accessed on 1 October 2021))
Title: What is Vulkan and how does it differ from OpenGL?
Body: Khronos Group (the standards body behind OpenGL) has just announced Vulkan:

Vulkan is the new generation, open standard API for high-efficiency access to graphics What

https://gamedev.stackexchange.com/questions/149031/
https://gamedev.stackexchange.com/questions/96014/

Appl. Sci. 2022, 12, 10750 7 of 28

exactly is Vulkan’s relationship to OpenGL? Its previous name “glNext” (short for “Next Generation
OpenGL Initiative”) makes it sound like a replacement.

Tags: OpenGL, Vulkan
Viewed 130k times, score: 156, favourite: 45

4.2. Research Questions and Metrics

In this section, we present our research questions, their motivation, and the metrics
associated with each of them.

RQ1: Which video-game development topics receive the most community atten-
tion?

Motivation: An answer to this question gives developers an overview of the topics they
are likely to encounter when they embark on developing a game.

Metrics: This first research question (RQ1) explores various popularity metrics (view
counts, favourite counts, score, number of questions) for a single tag (single tag here does not
refer to a tag used alone for a question, but rather in opposition to the tag pair analysis of
RQ3), with consideration to tech tags and concept tags. More specifically, we retrieved top
concept and tech tags according to metrics such as the number of questions in which they
were present, the cumulative (and average) number of views these questions generated,
the cumulative (and average) score of these questions and the cumulative (and average)
the number of times these questions were bookmarked as favourites.

RQ2: Which video-game development topics receive the most/least community
support?

Motivation: An answer to this question could help developers identify early topics
for which they are more/less likely to receive community help. In particular, this RQ
aims to provide insights on issues that are more likely to stall a project or require more
resources, in the sense that community help (in this instance, from GDSE) is lacking.
In short, and somewhat colloquially, game developers facing these kinds of issues may be
on their own.

Metrics: This second research question (RQ2) explores various community support
metrics associated to a single tag, also separately for tech tags and concept tags. We consider
that, from the perspective of an asker, a question that does not receive an accepted answer
is a failure. Furthermore, in successful cases, we take interest in the wait time between the
moment a question is asked and the moment an accepted answer is provided. To evaluate
the community support for a topic, we thus consider all the questions associated with its
corresponding tag and collect two metrics:

1. Its failure rate: the percentage of questions that do not have an accepted answer;
2. Its median (success) wait time: in other words, the median time for satisfactory answers

(in these cases, where the question received an answer that its asker accepted).

More specifically, we considered, for each tag, (i) the number of questions that use it,
(ii) its failure rate (the percentage of these questions that do not have accepted answer),
and (iii) its wait time (the median time for an accepted answer when there is indeed one).

RQ3: Which combinations of video-game development topics receive the most/
least community attention and support?

Motivation: An answer to this question could inform the choices of game developers
when it comes to, for instance, selecting technologies that have high support for a given
concept or technologies that work well together or not. This third research question (RQ3)
goes further in analysing the community support of tags, by focusing on two tags at a
time instead of one. A key motivation for such investigation comes from the observation
that some key tags, such as “Unity” (https://unity.com/ (accessed on 1 October 2021)),
are present in a lot of questions. Thus, we have an interest in unveiling which questions
within that Unity “universe” may be more popular or difficult. More broadly, studying
pairs of tags can provide valuable information for both researchers and game developers,
when it comes to community support, about (i) which technologies are the most/the least
challenging to combine (tech–tech), (ii) which concepts are harder/easier to conjointly

https://unity.com/

Appl. Sci. 2022, 12, 10750 8 of 28

address (concept–concept), and (iii) the worst/best choices when choosing a technology to
handle a given concept (tech–concept).

Metrics: RQ3 reuses the same metrics as RQ1 and RQ2. To account for computational
issues related to query execution success (see Section 4.3), we limited the tags considered
in this RQ to the top 1000 tags per number of questions in our dataset.

For all RQs, we considered only tags and pairs of tags for which there were at least
30 questions. We settled on 30 based on the view that a sample size of 30 is valid for most
research investigations [30].

4.3. Data Collection and Processing

The data used in our study is extracted through T-SQL queries executed on the Stack
Exchange Data Explorer (https://data.stackexchange.com/ (accessed on 1 October 2021)),
which is an open source tool for running queries against public data available from the
Stack Exchange network.

A key table in that database is the Post table (see Table 1), which proposes data (title,
body, tags, dates, and various popularity counts) for both questions (PostTypeId = 1) and
answers (PostTypeId = 2). In particular, each question can be linked to an accepted answer
through the field AcceptedAnswerId, with a null value indicating that the question does
not have any accepted answer. For the purpose of our study, we considered data over
a five year period, from 1 January 2014 to 31 December 2018, thus collecting a total of
25,534 questions, of which 22016 received at least one answer and 12,912 received an
accepted answer. The data set is available at [31]

Over the five-year span, 982 distinct tags were used by the GDSE community. For the
purpose of this study, we only considered tags that occurred at least 30 times, which is
344 tags (96 tech tags and 248 concept tags). The tags in our study relate to a variety
of areas. There were 248 concept tags, referring to generic areas of interest for game
developers (concepts such as animation, textures, etc.), and 96 tech tags, referring to a
specific technology/library offering, be it frameworks, languages, libraries (such as Unity,
C#, or DirectX). As stated before, the distinction between tech and concept tags is an
important one to separate tags that reflect game development concerns (“concepts”) from
those that may be used to specify the development environment, and which “popularity”
may merely reflect market dominance.

5. Results of RQ.1: Community Attention per Topic

We took particular interest in the top 10 tags for each of the metrics in RQ1, which
resulted in 27 concept tags and 26 tech tags. As announced in Section 4, we consider the
results for techs and concepts separately. Tables 2 and 3 summarize our results for techs
and concepts, respectively, and present the tags found in the top 10 for at least one of
the metrics. In general, for a given tag, the more questions associated with it there are,
the more views and the better the cumulative score or number of stars (Pearson correlations
between these metrics range from 0.91 to 0.99). So, for concision, our tables only present
the averages for views, scores, and favourites. For each of the tags, we indicate the raw
value of each of the considered metrics, as well as the relative ranking (with respect to the
category: tech or concept). We use, in the table, Q, AvgV, AvgS, AvgF for the number of
questions, the average number of views, the average score, and the average number of
favourites, respectively, while R-Q, R-AvgV, R-AvgS, and R-AvgF stand for their respective
ranks. In both tables, tags are sorted based on the number of questions associated with
them: the ones with the most questions are presented first.

Looking at Tables 2 and 3, we can see that some tags present significant differences
depending on which popularity metric is examined. A simple Pearson correlation analysis
reveals that the averages do not correlate with the number of questions (correlation values
ranging from 0.02 to 0.08), but there is some small correlation between the average number
of views and the average score (−0.44) and a large correlation between the average score
and the average number of favorites (0.86). From our perspective, the numbers of questions

https://data.stackexchange.com/

Appl. Sci. 2022, 12, 10750 9 of 28

or views associated with a tag can be seen as audience metrics (implicit relevance), while
score and stars would be favourability indices (explicit endorsement).

Table 2. Top 10 tech tags for all the considered metrics.

Tag Names Q R-Q AvgV R-AvgV AvgS R-AvgS AvgF R-AvgF

Unity 9029 1 1202 10 1.17 49 0.29 32
C# 4212 2 1074 18 0.97 73 0.25 45

OpenGL 2185 3 870 27 1.62 13 0.4 15
C++ 2013 4 837 30 1.4 20 0.4 15
Java 1930 5 734 41 1.06 59 0.25 45

libGDX 1798 6 821 32 1.28 36 0.29 32
Android 1134 7 1100 14 1.2 44 0.29 32

XNA 787 8 512 77 1.1 55 0.22 55
Javascript 738 9 711 47 1.08 57 0.26 39

MonoGame 572 10 556 72 1.15 52 0.19 68
GLSL 491 11 842 29 1.64 9 0.42 12

Game-Maker 328 15 678 52 2.47 5 0.86 3
Unityscript 302 16 1436 7 0.81 86 0.22 55
Windows 126 35 652 56 1.64 9 0.29 32

Phaser 114 37 1121 11 1.84 6 0.43 11
Lua 110 38 831 31 1.64 9 0.84 4

SpriteKit 91 41 696 50 1.66 8 0.45 9
Google-Play-Services 89 42 1365 8 1.21 41 0.38 17

Three.js 75 49 1440 6 1.23 39 0.6 7
Google-Play 72 51 3136 2 3.17 4 0.78 6

Steam 65 57 1582 5 3.55 3 0.83 5
Godot 54 65 588 66 1.67 7 0.09 91

Facebook 45 70 1223 9 0.8 87 0.38 17
JSON 42 74 1008 20 1.36 22 0.45 9
UDP 40 75 1717 4 3.77 2 1.27 2

Eclipse 34 85 1812 3 1.06 59 0.26 39
Oculus 33 89 612 62 1.64 9 0.3 28
Vulkan 32 90 3910 1 5.41 1 1.63 1

Q: Number of Questions. R-Q: Rank per Questions. AvgV: Average number of Views. R-AvgV: Rank per Average
number of Views. AvgS: Average Score. R-AvgS: Rank per Average Score. AvgF: Average number of Favourites.
R-AVgF: Rank per Average number of Favourites.

5.1. Tech Tags: Technology/Library Choices

Looking at the tech tags in Table 2, we observe that, with respect to the number of
questions, the game engine Unity is, with 9029 questions, the top tag by far, followed by the
programming language ‘C#’ (4212 questions), which is unsurprising, since it is the language
of choice for Unity. Aside from Unity, frameworks and technologies such as the API for
high performance graphics OpenGL (https://www.OpenGL.org/ (accessed on 1 October
2021)), the game development framework libGDX (https://libgdx.badlogicgames.com/
(accessed on 1 October 2021)), Microsoft’s game framework XNA, and the platform Android
generate the most questions. Aside from C#, languages such as C++, Java, and, to a lesser
extent, Javascript lead for the number of questions.

A ranking by average number of views presents a very different picture, with Unity
barely making it into the top 10 (1202 views on average) while a narrower aspect of it,
UnityScript, its now deprecated scripting language, is ranked seventh (1436 views on
average). It should be noted that, although the average number of views is not correlated
with the number of questions, 8 out of 10 of the top tags per average number of views
have under 100 questions. We used average as a metric aggregate, following [17,24] in that
regard, but high averages could be the result of one or two exceptionally popular questions.
For instance, the top tech in this category is Vulkan, a “low-level, cross-platform graphics API”;

https://www.OpenGL.org/
https://libgdx.badlogicgames.com/

Appl. Sci. 2022, 12, 10750 10 of 28

it has one of the top viewed question in GDSE (130K), but most of its questions have less
than 1K views.

When it comes to average score and favorites, Vulkan is again the top tech, also in part
because of the same very popular question. Other notable tags with high average score
and favourability include UDP (we decided to classify UDP as a tech tag, but it is such
a standard that a classification as a concept could be valid too), Steam, Google-Play, Lua,
Game-Maker and SpriteKit.

Beyond the specific technologies that appear to be receiving the most attention from
game developers, our data suggest that game engines and development frameworks (e.g.,
Unity) are the most common topics attached to questions in GDSE. Then come graphics
APIs and programming languages, with the most prominent being the ones associated
wtih the top game engines. Aside from Android, specific platforms on which the games
will be played are rarely mentioned. A possible explanation is that very popular game
engines such as Unity offer advanced cross-platform support, making it less of an issue for
game developers.

Table 3. Top 10 of all concepts tags for all the considered metrics.

Tag Names Q R-Q AvgV R-AvgV AvgS R-AvgS AvgF R-AvgF

2D 1593 1 1142 55 1.75 129 0.52 110
collision-detection 1173 2 774 160 1.31 185 0.34 161

physics 1021 3 746 166 1.64 142 0.46 128
shaders 980 4 957 94 1.91 110 0.58 96

mathematics 824 5 800 154 2 92 0.62 85
3D 779 6 850 136 1.62 143 0.47 124

textures 745 7 894 120 1.44 168 0.3 178
animation 685 8 1011 84 1.32 184 0.34 161

game-design 664 9 1476 21 5.79 9 1.88 11
rendering 610 10 909 111 2.15 72 0.52 110

terminology 122 66 3039 2 8.75 3 2.09 7
graphic-effects 101 85 1419 28 5.38 12 2.46 3

level-design 89 96 1371 34 5.49 11 1.96 9
user-experience 55 142 1805 9 7.2 5 1.36 18

publishing 51 151 1760 10 1.98 95 0.45 129
balance 50 154 2892 3 12.42 1 3.82 1
levels 49 156 1192 47 5.2 13 1.9 10

marketing 47 164 1257 41 7.11 6 1.15 30
licensing 46 168 1862 8 3.83 21 0.72 61

file-format 43 183 905 114 6.3 7 2.07 8
puzzle 41 188 1396 32 5.59 10 1.61 12

cross-platform 36 208 2122 5 5.83 8 1.22 26
file 36 208 2767 4 2.11 78 0.64 80

strategy 34 217 1432 25 5.12 14 2.35 4
aspect-ratio 31 236 4483 1 4.06 16 2.61 2

npc 31 236 2010 6 8.35 4 2.1 6
monetization 30 243 1913 7 8.93 2 2.23 5

Q: Number of Questions. R-Q: Rank per Questions. AvgV: Average number of Views. R-AvgV: Rank per Average
number of Views. AvgS: Average Score. R-AvgS: Rank per Average Score. AvgF: Average number of Favourites.
R-AVgF: Rank per Average number of Favourites.

5.2. Concept Tags: Game Development Aspects

Table 3 presents the top 10 concept tags relative to the metrics described earlier.
As stated before, these tags refer to generic terms encompassing various aspects relevant
to game development: handling of shaders (shaders are computer programs that run on
graphics hardware and provide a high degree of control over how scenes are rendered),
textures, sprites, rendering, and graphics in general, as well as collision detection, animation,
and physics in general.

Appl. Sci. 2022, 12, 10750 11 of 28

With respect to the number of questions, the tag 2D is the most used (1593 questions)
and dominates 3D (sixth with 779 questions) across all metrics. It is followed by collision-
detection (second with 1173 questions), physics (third with 1021 questions), and shaders
(fourth with 980 questions).

Here again, using the average number of views helps to highlight a different set of
tags, mostly with fewer questions. The top tag here is aspect-ratio (with an average of 4483
views), followed by terminology (second with an average of 3039 views), balance, file, and
cross-platform.

When it comes to favourability and score, the top tags include balance, monetization,
terminology, file-format, and npc (non-player characters). In addition, the average metrics
bring into light a number of tags related to publishing and advertising the games, with tags
such as publishing, marketing, and monetization.

Most of the concept tags in our dataset are related to the rendering and animation of 2D
(or 3D) characters or scenes, along with fundamental notions from physics and mathematics.
However, some concepts are exclusively about gaming: mostly game genres (card game,
puzzle, role playing game, etc.) but also aspects such as game design, leaderboards, and
controllers. Among game genres, role playing games (rpg) are the most asked about (154
questions) followed by massively multiplayer online and real-time strategy games. Overall,
concepts exclusively about gaming appear as tags for 3203 questions, which is only about
12.5% of our dataset. These questions have an average score of 3 and are viewed 1292 times
on average, which is representative of concept tags as a whole.

The findings from RQ1 can be summarised as follows:

• Topics that receive the most attention include technologies such as Unity, C#, Android,
and Vulkan and concepts such as 2D, 3D, collision detection, animation, game design,
and terminology.

• The average number of questions per technology is higher than that of concepts, but
questions attached to concepts are twice more upvoted or marked as favourite.

• Most game development questions are not about gaming elements per se; in fact, only
about one question out of eight is tagged with a concept that refers to some gaming
aspect, with game genres appearing the most.

6. Results of RQ.2: Community Support per Topic

It is important to first note that, when considering all the questions in GDSE (from 2014
to 2018), we found that only about 50% of the questions had an accepted answer, with a
median wait time of 189 minutes. These numbers appear worse than what is reported in [17]
for mobile-related questions in Stack Overflow (55%, 55 min average wait time), and even
more so when compared to all of Stack Overflow (70%, 21 min average wait time) [17,32]
(This is not a perfect comparison, as the years and aggregate metric somewhat differ.).

As in RQ1, we investigated tech tags and concept tags (as stated earlier, we only
considered tags with 30 questions or more) separately, but this time through two main
metrics: (i) the failure rate, which refers to the percentage of questions that do not have
an accepted answer, and (ii) the median wait time, which refers to the median time for
receiving satisfactory answers. Tech tags have, on average, a failure rate of 51.5% and a
median wait time of 359 min. Concept tags also have, on average, a 51% failure rate but a
better median wait time of 194 min.

Our findings are reported in Figures 2–7. The x-axis represents the median wait time
it took, for a given tag, to receive an accepted answer for questions it is associated with.
The y-axis represents, for a given tag, its percentage of questions without an accepted
answer: the failure rate. Each tag is represented as a bubble, with the size of the bubble
indicating its number of questions; the bigger the bubble, the more questions there are with
the tag. An intuitive way to read these figures, relative to the x and y axes, can be summed
up as follows: “For a given tag, y% of its questions do not have an accepted answer, but when
they do, it takes about x min for an accepted answer to be submitted.” Furthermore, we use in
Figures 2 and 6 reference lines to indicate medians for both the failure rate and the wait

Appl. Sci. 2022, 12, 10750 12 of 28

time. Thus, we define four zones of relative difficulty of receiving answers, with respect to
median values (the reference line in the figure): Easier-Faster (Bottom Left), Easier-Slower
(Bottom Right), Harder-Faster (Top Left), and Harder-Slower (Top Right). The results
reported in these figures will be discussed in detail in the following subsections.

Figure 2. Community support for tech tags. Reference point is based on median values (51% for the
Failure Rate, 351 min for the Wait Time). Circle sizes indicate the number of questions of the tag.

6.1. Community Support for Tech Tags

Figure 2 presents the community support metrics for tech tags. We can clearly see on
the figure that the tag with the highest failure rate is, with around 85%, Blueprints, which is
described in GDSE as “a visual, node-based scripting model used by Unreal Engine-4.” Three.js,
a JavaScript 3D library, is by far the tag for which the wait time (5129 min) is the longest.
(This is why it is not displayed in the figure.) In contrast, Unity, the most popular tag, bears
a relatively low wait time of 152 min and a failure rate of 53%.

Vuforia (https://developer.vuforia.com/ (accessed on 1 October 2021)), an “augmented
reality system developed by Qualcomm”, not only has the second highest failure rate (above
80%) but also bears, at about 40 h, one of the longest median wait times for accepted
answers. The few questions about Vuforia are mostly not receiving answers, and in the few
instances when they do, it takes about 2 days. This may signal, with some caveats (i.e., a
quick check of Vuforia tagged questions in Stack Overflow does show a less severe failure
rate (at 55%), and the developer forums hosted by Vuforia seem quite active), to Vuforia
project managers the need to allocate some resources to community support for game
developers on GDSE. More generally, the Harder-Faster quadrant includes Unity, some
desktop OSs (such as MacOS, Linux), some 3D software (Blender, 3DS Max), and various
programming languages (such as Python, HTML5, PHP, .NET). The Easier-Faster quadrant,
especially in the lower tier, includes various languages and notation formats (C, C#, XML,
JSON) as well as graphics libraries such as GLSL and XNA-4.0. On the Easier-Slower side,
there are fewer elements, and they are relatively diverse (from Windows to Eclipse, Oculus,
and jMonkeyEngine). Finally, the Harder-Slower quadrant, which stands for tags with
higher failure rate and higher wait time, includes tags such as iOS, Facebook, Google-Play-
Service, etc.

In the following, we contextualize our analysis of the data with respect to various
categories and the top tech tags identified in RQ1.

https://developer.vuforia.com/

Appl. Sci. 2022, 12, 10750 13 of 28

Game Engine and Development Frameworks: Figure 3 presents data on game en-
gines, game development frameworks, and libraries. Questions about Cocos2d, including
Cocos2d-X (a cross-platform port) and Cocos2d-iPhone (iOS only), seem significantly more
challenging to answer on all fronts, with a failure rate around 70% and median wait-times
of 1567 min (Cocos2d-x) and 2634 min (Cocos2d-iPhone). Also outstanding are questions
about Unreal-4, with a very high failure rate (around 68%) but a relatively low median time
(around 400 min), and jMonkeyEngine, with a high median wait time (around 30 h) but a
relatively low failure rate (around 46%). On the definitely easier side are questions about
Simple DirectMedia Layer (SDL) (https://www.libsdl.org/ (accessed on 1 October 2021)),
which appears to be the least challenging both in failure rate and median wait-times. The
most popular engine, Unity, is unsurprisingly among the ones with the best community
support, with an average failure rate and a lower wait time.

unity; 9029

libgdx; 1798

unreal-4; 299

pygame; 175

andengine; 67

sfml; 218

box2d; 394

monogame; 572

cocos2d-x; 126

cocos2d-iphone; 55

godot; 54

game-maker; 328

phaser; 114

jmonkeyengine; 32

sdl2; 236

30

35

40

45

50

55

60

65

70

75

80

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

Fa
ilu

re
 R

at
e

 %

Median wait time in minutes

Figure 3. Failure Rate and Median Wait Time for Game Engines and Development Frameworks.

Three-dimensional software for asset creation: When it comes to 3D software used
to create assets, established software such as Blender, 3DS Max, and Maya all have a failure
rate upwards 60%. In particular, nearly 75% of questions tagged with Maya do not have
accepted answers.

Graphics APIs: Among graphics APIs, WebGL seems to be the most challenging when
it comes to receiving community support, with a 56% failure rate and a wait-time around
13 h. Comparatively, DirectX, which is a set of multimedia APIs from Microsoft, and its
versions DirectX 9.0 and DirectX 11 fare slightly better, with respective failure rates of 46%
and 51% and median wait times around 4 and 6 h. As for the low-level, cross-platform
graphics API Vulkan, its failure rate is only 34%, but its median wait time stands at more
than 15 h.

Desktop and Mobile OS: In the mobile OS category, iOS (63%, 726 min) has the worst
community support. Comparatively, Android-related issues fare better, with 56% of failure
and a median wait time of 403 minutes. Windows Phone fares better than either iOS or
Android, but at 34 questions, its data sample is way lower. As for desktop OS, Windows
questions have a lower failure rate but take more time to answer while Linux and MacOS
questions have virtually the same level of support, with a relatively high failure rate (low
to mid-60s) but lower wait-times (around 200 min). A deeper analysis of tags specifically

https://www.libsdl.org/

Appl. Sci. 2022, 12, 10750 14 of 28

tied to these OSs suggests that iOS-related (more generally Apple technology) issues lag
in terms of community support on GDSE. It starts with the tag iOS (63%, 726 min) but
extends to tags such as Swift (70%, 979 min), iPhone (75%, 1753 min), Xcode (60%, 2811 min),
Cocos2d-iPhone (“a free open-source framework for building 2D games, demos, and other
graphical/interactive applications for iOS”) (69%, 2634 min), etc. Most questions related to
iOS stand out negatively in terms of effective and fast community support on GDSE.

Programming Languages: Figure 4 presents data on the programming languages. C#
is the dominant language and benefits from the second best support (after C), with lower
failure rate (48%) and median wait time (155 min). Swift and Objective-C are the least
popular languages and present the highest failure rates (70% and 57%, respectively) and
longest wait times (979 and 1145 minutes, respectively). The popularity level does not
always translate to equivalent support level; however, as we can see, C has a modest
number of questions but the best support.

c#; 4212

c++; 2013

java; 1930

javascript; 738

html5; 204

python; 238

c; 108

swift; 55

php; 53

lua; 110
objective-c

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200

Fa
ilu

re
 R

at
e

 %

Median wait time in minutes

Figure 4. Failure Rate and Median Wait Time for Programming Languages.

As for data formats, JSON seems to have more solid support (33% failure rate, wait
time of 79 min) than XML (40% failure rate, wait time of 289 min.)

Integrated Development Environments: In this category, Visual Studio (https://
visualstudio.microsoft.com/ (accessed on 1 October 2021)) is quite popular (138 ques-
tions) and arguably the IDE with the highest support (50%, 94 min). Eclipse is somewhat
close support-wise, but the number of questions associated with it is low (34). Xcode-related
questions fare the worst.

Support for top tech tags: Looking at Figure 5, which features the top techs, we note
that most of these tags have a failure rate around 50% (± 10%), with Unreal-4, iOS, and
Phaser as notable exceptions. The wait time spreads over a wide range (from around 2 to
7 h). Questions related to programming languages (C#, C++, Python, Javascript, Java) seem
to receive higher support than, for instance, questions related to operating systems (Android
and iOS).

https:// visualstudio.microsoft.com/
https:// visualstudio.microsoft.com/

Appl. Sci. 2022, 12, 10750 15 of 28

unity; 9029

c#; 4212

opengl; 2185

c++; 2013

java; 1930

libgdx; 1798

android; 1134

xna; 787

javascript; 738

monogame; 572

glsl; 491

directx; 473

box2d; 394 game-maker; 328

unityscript; 302

hlsl; 302

unreal-4; 299
ios; 297

lwjgl; 256

python; 238

sdl2; 236 sfml; 218

html5; 204

blender; 194

phaser; 114

lua; 110

google-play; 72

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800 900

Fa
ilu

re
 R

at
e

 %

Median wait time in minutes

Figure 5. Failure Rate and Median Wait Time of most popular techs.

6.2. Community Support for Concept Tags

Figure 6 presents the distribution of concept tags along the failure rate and wait-time
axes of analysis. A few tags, such as licensing (32%, 35 min), storage (33%, 85 min), and
security (39%, 72 min), stand out as particularly well supported, but many more stand out
as challenging.

Figure 6. Community support for concept Tags. Reference point is based on median values (51% for
the Failure Rate, 195 minutes for the Wait Time). Circle sizes indicate the number of questions of
the tag.

Appl. Sci. 2022, 12, 10750 16 of 28

Some tags, such as controllers, combat, and leaderboards, refer to concepts that are
specifically about gaming, not merely 2D or 3D design. Among these, modding (66%,
731 min) stands out as the least supported. (Interestingly minecraft-modding (58%, 330 min)
is a tag of its own and is the fourth most supported concept per failure rate.) Other weakly
supported concepts include character (60%, 187 min) and multiplayer (56%, 179 min). On the
other end of the spectrum, questions tagged with concepts such as savegame (43%, 79 min),
and npc (35%, 190 min) appear easier to answer.

Some other tags explicitly refer to the handling and rendering of 2D or 3D elements
that are featured in any typical game. In this category, the tags video (75%, 1682 min)
and blending (70%, 517 min) stand out as lacking support in contrast to side-scroller (35%,
140 min), which has the best support. Unsurprisingly, 3D (55%, 172 min) is harder than 2D
(48%, 175 min).

The rendering of game scenes and such often requires concepts taken from disciplines
such as mathematics and physics. Among the tags that are heavier on mathematics or
physics, questions on rigging (76%, 189 min) or separating-axis-theorem (72%, 164 min)
are clearly the least supported. Also lacking support are questions on skeletal-animation
(66%, 711 min) and collider (63%, 698 min). Other tags of note include animation (60%,
383 min), physics (52%, 290 min), collision-resolution (56%, 464 min), and collision-detection
(54%, 270 min). It is worth noting that some of the more purely mathematical concepts
seem to have relatively good support: geometry (48%, 150 min), movement (48%, 149 min),
rotation (48%, 246 min), and mathematics (45%, 141 min). In particular, trigonometry (36%,
76 min) has one of the highest community support.

Finally, some tags are quite generic, whether they come from larger computer/science
terminology (e.g., inheritance, bug, debugging) or even broader (technology-related or not)
vocabulary (e.g., art, marketing). According to our data, the least supported tag here is
augmented reality (82%, 1887 min); another trending technology that is not well supported
yet isvirtual reality (69%, 851 min). These are, with synchronization (74%, 307 min), the top 3,
by far, least supported tags. Also lacking support are questions about advertisements (63%,
364 min) and monetization (63%, 218 min). Conversely, some related tags such as copyright
(59%, 100 min) and licensing (32%, 35 min) show stark differences, with licensing questions
being way more supported.

2d; 1593

collision-detection; 1173
physics; 1021

shaders; 980

mathematics; 824

3d; 779
textures; 745

animation; 685
game-design; 664

rendering; 610

terminology; 122

graphic-effects; 101

level-design; 89
user-experience; 55

publishing; 51

balance; 50

levels; 49

marketing; 47

licensing; 46

file-format; 43

puzzle; 41

cross-platform; 36

file; 36
strategy; 34

aspect-ratio; 31
npc; 31

monetization; 30

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

Fa
ilu

re
 R

at
e

 %

Median wait time in minutes

Figure 7. Failure Rate and Median Wait Time for most popular concepts.

Appl. Sci. 2022, 12, 10750 17 of 28

Support for top concept tags: Looking at Figure 7, which features the concepts that
command the most attention, we note that most of these tags have a failure rate around
50% (± 10%) and a median wait time from 30 min to 6 h. The tag graphic-effect stands out
with a wait time of around 20h. Although many of the most supported concepts (licensing,
terminology, publishing, etc.) seem peripheral to game development activities, there is no
clear pattern; for instance monetization (63%, 218 min) has a fairly high failure rate compared
to more technical tags such as collision-detection (54%, 270 min).

The findings from RQ2 can be summarised as follows:

• For both concept and tech tags, popular tags generally have a failure rate around 50%
(± 10%) and a median wait time between 30 min and 6 h (for concept tags) and 2 and
7 h (for tech tags).

• We uncovered some clear differences of support between technologies occupying the
same space: for instance, Unreal-4 has a much lower support than its rival Unity, while
Android-related tags are generally better supported than iOS-related tags.

• For concept tags, we found that 3D questions have, unsurprisingly, less support than
2D, whereas purely mathematical concepts generally have good support; additionally,
relatively new paradigms such as virtual reality and augmented reality seem to be trailing
in community support.

7. Results of RQ.3

A first result of this RQ relates to community attention and stems from the analysis
of the number of questions covered by the pairs of tags found on GDSE. Such numbers
provide a window into which tags appear most often together, that is, which topics are
most associated with one another in GDSE questions. It is not uncommon to see some
tags reoccurring together. In fact, 67 pairs of tags appear at least 100 times in GDSE
questions. The pair Unity|C# is the most frequent, with more than 3000 questions, followed
by pairs such as Java|libGDX, 2D|Unity, C++|OpenGL, and C#|XNA. With respect to the
distinction between concept and tech tags, we can report that, out of the top 100 pairs of
tags per number of questions, thirty-four (34) involve only tech tags, twelve (12) involve
only concepts, and fifty-four (54) were a mix. Moreover, some specific insights can be
gained with respect to a given technology or concept. For instance, when considering the
number of questions associated to pairs of tags, Unity’s top 10 topics are C#, 2D, shaders,
animation, physics, collision detection, gui, Android, UnityScript, and camera, whereas OpenGL
co-occurs with shaders, Java, textures, LWJGL, rendering, 3D, graphics, DirectX, matrix and
lighting. Similarly, we can uncover that a concept tag such as 3D is most associated with
Unity, OpenGL, C#, mathematics, 2d, rotation, C++, Java, rendering, and XNA, in that order.

Our focus in this RQ is on community support. For each pair of tags, we take interest
in the differences between failure rates and wait times when considering the pair versus
one of its constituents. In particular, to simplify our analysis, we focus on failure rates and
highlight cases where a pair X | Y has a failure rate that is five (5) points higher or lower
than both X and Y. In other words, we focus on cases where a pair receives notably higher
or lower community support than its constituents, thus indicating that it is easier or harder
to receive support for these situations when both tags are present.

We report the results of our analysis in Figures 8–10. In these figures, upwards
(respectively, downwards) triangles indicate cases where the pair has a failure rate at least
5 points higher (respectively, lower) than both of its constituents. The size of the triangles is
indicative of the number of questions for the tag pair. Colours indicate the relative support
of the pair in the set of pairs, as presented in RQ2.

Note that, in the following, we will sometimes use the notation (±F%, ±W) as a
shorthand, where ±F% represents the average difference between the failure rate of a pair
and those of its constituents and ±W represents the average difference between the median
wait time of a pair and those of its constituents.

Appl. Sci. 2022, 12, 10750 18 of 28

7.1. Tech–Tech Pairs: Integrating Two Technologies

Looking at Figure 8 and considering failure rates, we can see that pairs with notably
lower failure rates than both their constituents are almost all below the median line and
with failure rates between 30% and 50%. They also have relatively low wait times (within 2
and 11 h). On the other hand, pairs with notably higher failure rates fit within a 50–70%
failure rate but are way more spread out in terms of wait time (from 1 to 26+ hours). Pairs
with better support include C++|HLSL, Java|OpenGL, and Android|iOS.

Figure 8. Community support for Tech|Tech pairs. Upwards (resp. downwards) triangles indicate
cases where the pair has a failure rate at least 5 points higher (resp. lower) than any of its constituents.
The size of the triangles is indicative of the number of questions for the tag pair. Colors indicate the
relative support of the pair in the set of tech tech pairs.

Beyond the figure, we analysed failure rate differences to obtain a better sense of
the data. The combination with the most improved support is Box2D and C++, with a
failure rate of only 32%, which improves on that of C++ (48%) and Box2D (50%), albeit
with much worse time (594 min) relative to C++ (178 min). A similar phenomenon occurs
for questions tagged with both Android and iOS, with a failure rate reduced by 12.5 on
average (−9 relative to Android, −16 relative to iOS) but slightly higher (+4 h) wait times
relative to Android. Staying with Android, its pairing with C# is the second worst in terms
of failure rates (+10 relative to Android, +18 relative to C#), and the wait times are also
inflated (+638 min relative to Android, +886 min relative to C#). Also worth mentioning,
Unity questions mixed with some other tech tend to receive lesser support; such is the case
for when Unity is mixed with OpenGL (+5.5%, −113 min) or Visual Studio (+8.5%, −52 min).

The most noteworthy case here is that of the library HLSL, which receives significantly
better support when combined with DirectX11 (on average −12% and −71 min) or C++ (on
average −12% and −76 min) but receives significantly degraded support when combined
with XNA (+16.5%, +684 min; the worst degradation) and MonoGame (+7%, +1113 min).
Except for C++, all these technologies are firmly in the Microsoft universe. Considering
that HLSL is a shading language developed for use with Direct 3D, a component of DirectX,
it is unsurprising that HLSL meshes well with DirectX and even C++, the most prominent
language for DirectX. MonoGame is the open source implementation of XNA, which was

Appl. Sci. 2022, 12, 10750 19 of 28

often viewed as the .NET analog to DirectX. Our results suggest there is a deficit in support
for projects trying to mix HLSL with C#/MonoGame vs. DirectX/C++.

Manual analysis showed that most tech|tech tag pairs come from questions actually
addressing both technologies. However, it is worth noting that this is not always the case.
In the case of Android|iOS, most questions were not cross-platform questions but generic
questions about mobile game development, with Android and iOS used together because
of their duopoly on that market. As for the pair C#|UnityScript, it comes more often than
not from questions where the asker wants to perform a specific task (with Unity) and is
mentioning both languages, maybe out of ignorance of what to precisely do. Only a few
questions are really about translations or focus on both languages. Finally, some cases
involve pairings of versions/variants of the same technology. Such is the case for the pair
OpenGL-ES and OpenGL, for which it is not clear why both tags would be used, since,
as the OpenGL variant for embedded systems, OpenGL-ES already involves OpenGL. We
could only speculate that these are attempts to get answers from the bigger (more generic)
OpenGL crowd rather than just people interested into OpenGL-ES. This could also indicate
a lower level of confidence of the asker as to which specific variant his question is more
relevant for. Note that there were, however, some questions that are really and explicitly
about both OpenGL and OpenGL-ES.

7.2. Concept–Concept Pairs: Handling Conjointly Two Concepts

When it comes to pairs of concept tags (Figure 9), the most obvious observation is that
3D is often involved for cases in which support is degraded. The worst combination is 3D
and collision-detection, which results in increases in failure rates of about 16.5% for both tags,
albeit with some upside in wait time (−99 min). This holds for tags as varied as rendering
(+14.5%, −130 min), mathematics (+10%, +22 min), physics (+9.5%, +97 min), and graphics
(+6.5%, +19.5 min), with the notable exception of camera, with camera|3D ranking as one of
the most improved pairs (−11%, +227 min), although with worse wait times. Alternatively,
many of the most improved combinations involve the tag 2D, be it with sprites (−7%,
+0 min), vector (−9%, −30 min), movement (−10%, −11 min), or rotation (−14%, −28.5 min).

Figure 9. Community support for concept–concept pairs. Upwards (resp. downwards) triangles
indicate cases where the pair has a failure rate at least 5 points higher (resp. lower) than any of its
constituents. The size of the triangles is indicative of the number of questions for the tag pair. Colours
indicate the relative support of the pair in the set of concept–concept pairs.

Appl. Sci. 2022, 12, 10750 20 of 28

Figure 10. Community support for tech–concept pairs. Upwards (resp. downwards) triangles
indicate cases where the pair has a failure rate at least 5 points higher (resp. lower) than any of its
constituents. The size of the triangles is indicative of the number of questions for the tag pair. Colours
indicate the relative support of the pair in the set of tech–concept pairs.

Also worth highlighting is the combination of movement and rotation, which is the sec-
ond worst combination; it increases by 16% the failure rate of both tags and augments their
wait times by 510 min on average. In GDSE, movement stands for translation (“the change of
position of an entity typically on the route of going from point A to point B”). The combination of
such translations and rotations appears to be, unsurprisingly, more challenging. The tag
rotation is also involved in another worse-off combination: with matrix, it results in a 5.5%
additional failure rate and 964 more minutes to wait for an answer.

As we did for tech–tech tags, we investigated cases where the tags are very related,
with one implying the other. The only case here is collision-detection and physics: an analysis
of the questions suggests that these are deeper questions involving physics engine and more
advanced collision detection techniques.

7.3. Tech–Concept Pairs: Handling a Concept with a Given Technology

Figure 10 displays our results. The most difficult pair here is 3D|Java (+17.5%,
+249 min), much worse than 3D|C++ (+4.5%, + 315 min) and on the opposite side of
3D|C# (−2.5%, −5.5 min) or 3D|XNA (−14%, −40 min), which is one of the pair with
the most improved support. These observations are undoubtedly indicators of interest
for game developers about to embark on a 3D game project and looking for the best lan-
guages/technologies. The same kind of observations can be made for concepts such as (i)
rotation, which seems easier to perform with Unity (−5.5%, −45 min) than with OpenGL
(+15%, −22 min) or (ii) textures, seemingly way easier with OpenGL (−13.5%, −3 min) than
Unity (+6%, +52 min) or libGDX (+14.5%, +71 min).

Conversely, we can infer from our data some strengths and weaknesses of the various
technologies. For instance Unity questions related to optimization, multiplayer, tilemap, and
terrain appear way more challenging than those related to mathematical concepts such as
random, quaternion, transformation, and rotation. Similarly, C++ questions related to collision-
detection have significantly less support than those related to shaders, textures, and rendering.

Appl. Sci. 2022, 12, 10750 21 of 28

The findings from RQ3 can be summarised as follows:

• We uncovered technologies that, from a community support standpoint, seem to work
well together (e.g., C++ and Box2D, HLSL and C++) and some others that receive less
support when present together (e.g., Android and C#, HLSL and XNA).

• We found that, from a community support standpoint, some game development
concepts mesh well (e.g., 2D and movement, 2D and rotation) and some others not at all
(e.g., movement and rotation, 3D and collision detection).

• Finally, we uncover, from a community support standpoint, hints about which tech-
nologies may work better (e.g., XNA for 3D, OpenGL for textures) or worse (e.g., Java
for 3D, libGDX for textures) when used for a particular concept.

8. Discussion
8.1. RQ1 Discussion

A first obvious line of inquiry relates to the comparison of concepts and technologies
in the attention they command from the GDSE community. Our data show that when it
comes to the number of questions, top tech tags are way ahead of top concept tags. This
is unsurprising and suggests that most questions on that Q&A website are grounded in
specific struggles with respect to a technological offer. In particular, one has to go down to
the seventh top tech tag (Android) to find a tech tag with less questions than the top concept
tag (2D). When it comes to averages, top concept tags fare way better, with a slight edge
on average views and a very clear lead on favorites and score. This suggests that while
many questions contain information about the environment or technology being used,
the concepts (what people are trying to achieve) tend to attract more endorsements. In fact,
based on all the 344 tags, techs have an average of 354 questions vs. 137 for concepts, but
they lag in terms of average number of views (812 vs. 958 for concepts) and are about twice
less favoured (1.28 vs. 2.15 for the score and 0.3 vs. 0.61 for the favorites).

In this RQ, we computed, for each tag, metrics that, we believe, inform about the
community attention they command. An alternative way of investigating community
attention could have consisted of analysing top questions and taking note of which tags
appear the most often. Therefore, to complement our analysis, we considered the top 100
questions per number of views, score, and favourites and analysed the top 10 tags for
both techs and concepts. We found that techs (such as Unity and C#) dominate on the
ranking by number of views, while concepts (such as game design, terminology, level design,
mathematics) dominate on the rankings by score and favorites. It should be noted that only
a few concepts such as gui, architecture, game mechanics, and performance were not already
present in the top concepts identified in Table 3 by our analysis.

Furthermore, we analysed in detail the top 10 questions per number of views, score,
and favourites. Questions with the most views can be classified into (i) general inquiries
(“what is”, “is it possible”) about a technology (e.g., “What is Vulkan?” or “Is it possible to
use C++ and Java for Unity”) or a concept (e.g., “What is the difference between alpha and beta
release”) and (ii) specific questions (“where is”, “how to”) about some specific task (e.g.,
“Where is the Android sdk folder?” or “How to rotate the camera?”). Somewhat similar to most
viewed questions, questions with the highest scores often (4 cases out of 10) deal with
inquiries inviting discussion and clarifications about some element (“what are”, “why is”)
but also ask for help about how to accomplish some task (6 cases out of 10). Questions
most marked as favourite overlap significantly with the most upvoted questions, but in
our sample, they seem to have a higher share of "how to" questions (80%) than questions
inviting discussions.

8.2. RQ2 Discussion

The results presented for RQ2 may suggest that the more questions a tag has attached
to it, the higher its community support. However a correlation analysis found no such
phenomenon. In fact, the various figures above also show many cases where tags with a
small number of questions are actually well supported.

Appl. Sci. 2022, 12, 10750 22 of 28

Beyond tags and their number of questions, we considered individual questions and
the relation between their score and views and whether they receive accepted answers or
not. We divided the questions into two sets (i.e., those with an accepted answer and those
without) and computed their 5-number summary (minimum, first quartile, median, third
quartile, maximum) plus the mean and standard deviation. Table 4 suggests that questions
with accepted answers (AA) have slightly higher scores and number of views than those
without (noAA).

To obtain some statistical confidence, we use the Mann–Whitney–Wilcoxon test
(MWW), which is a non-parametric test able, in short, to tell us whether scores (or view
counts) of questions with accepted answers are higher than those of questions without
accepted answers. Additionally, to quantify the magnitude of such possible difference,
we compute the effect size using another non parametric test, the Vargha–Delaney A
(VD.A) [33]. We found that both scores and view counts of questions with accepted an-
swers were indeed statistically higher but with negligible effect (VD.A of 0.51 for scores
and 0.52 for views). This suggests that questions without accepted answers are not just the
result of a lack of views or fewer upvotes.

Table 4. Scores and views for questions with accepted answers vs. those without accepted answers.

min Q1 Median Q3 max avg std

Score noAA −18 0 1 2 132 1.52 3.93
AA −10 0 1 2 209 2.14 6.83

Views noAA 17 163 424 1046 77,003 1110.79 2581.83
AA 15 168 472 1301 129,994 1547.20 4423.81

noAA: No Accepted Answer, AA: Accepted Answer.

To better understand the data, we further analysed questions without accepted an-
swers by considering their top 10 with respect to score and views.

Top scoring questions without accepted answers tend to be open-ended or asking
for explanations, as illustrated below:

• What are “affordances” in game design?
• What is an optimum failure rate that will keep people coming back to my game?
• How to avoid players getting lost in and/or bored by the meta game?
• Why do some games persistently have mostly one viable strategy, while others can have many?

Out of the top 10 (score-wise) questions without accepted answers, only one referred to
a specific technology : “How do you handle aspect ratio differences with Unity 2D?”. (That
question also stands out because, unlike the others, which generally receive an answer
within the first two hours, that one took almost 6 days before a first answer.) The same
question is also the most viewed question without an accepted answer. In fact, this fits into
a larger pattern: unlike top scoring unanswered questions, top viewed questions without
accepted answers are tied to a specific technology (Unity in most cases but also Python and
C#). A few examples below:

• Pygame for python 3.5?
• How to detect that user has touched UI canvas in Unity 4.6?
• How can i export Unity games to Android?
• How do I have a camera follow my object in Unity?

Conversely, we looked at questions with accepted answers. For both score and views,
the observations made above hold: questions with the highest scores tend to be high-level,
open-ended, and centered on concept tags while questions with the most views are tied to
a specific technology. This is unsurprising, as popular technologies tend to obtain more
views but may be ultimately less specific to users’ needs.

Appl. Sci. 2022, 12, 10750 23 of 28

8.3. RQ3 Discussion

In a software development context where software is often the meeting of demands/re-
quirements for a domain with the available technological offers, it is particularly important
to analyse how well different requirements or concerns mesh (concept–concept), how well
different technologies answer these demands (tech–concept), and, finally, how well these
technologies can work together (tech–tech). Our analyses of pairs of tags and their findings
provide a first step towards tooling that could help project developers, maintainers, and
managers decide on which choices provide better community support.

To further our understanding, from an academic research perspective, of the interac-
tions between tags, we conducted a preliminary additional investigation into combinations
of tags. We looked into cases where questions were tagged only with concepts, only with
techs, or with a mix of both. We found that about 22% were tagged with only concepts,
22% were tagged with only techs, and 56% had a mix of tech and concept tags. Questions
tagged with only concepts are outstanding in a number of ways: in comparison to the other
questions, they are slightly less viewed but have scores that are on average 2–3 times higher.
Moreover, their failure rate is slightly lower.

To obtain a better understanding of the data and the tag combinations, we took interest
in the top 100 questions by score. There were six tech-only questions, and they all received
accepted answers; a few examples: “What is Vulkan and how does it differ from OpenGL?”,
and “What happens when Time.time gets very large in Unity?”. Only seventeen questions
have a mix of concept and tech tags, two of them without accepted answers. Examples
of answered mixed questions include: “How can I create a “see behind walls" effect?” [tags:
Unity, shaders, graphics effects], “Is UDP still better than TCP for data-heavy realtime games?”
[tags: c++, networking, udp, realtime]. The two mixed questions without accepted answers
are: “How do you handle aspect ratio differences with Unity 2D?”, “Why do tutorials use different
approaches to OpenGL rendering?”. Regarding concept-only questions, 60 questions out of
the 77 received accepted answers, including “How can I store game metadata in a .png file?”,
“Why is it so bad to optimize too early?”. Concept-only questions without accepted answers
include: “How to avoid players getting lost in and/or bored by the meta game?” and “What is
an optimum failure rate that will keep people coming back to my game?”. The vast majority of
top scoring questions are relatively open-ended or asking for opinions, and we could not
uncover any clear pattern that distinguishes questions that receive accepted answers from
those that do not.

The above analysis highlights that questions that are detached from specific technology
offerings generally score higher than those which are tethered to a given technology. In a
way, it is not really surprising since answers to these questions may help developers,
regardless of the different technology choices they may have already made. Nonetheless,
we could not find in the data strong indications that questions focusing on concepts get
significantly higher community support.

8.4. Alternative Classification

To further our analysis, we considered grouping the tags according to the classification
in groups and types provided in [12], which is the most recent paper on video game
development problems, as mined from postmortems. We used the categories Design,
Implementation, and Business, which we derived from the papers, as follows. Design,
which refers to game design without technical details, is taken from the group Production as
is. Implementation is primarily about tools but also includes the types Technical and Testing
from the group Production in [12]; we decided to have that single category for technical
aspects because it was not feasible to separate those without looking at every single
question. Our category Business is a group in [12], which includes the types Monetization
and Marketing. We went through each tag in our data and assigned it to the above
categories. Some tags belong to more than a single category. In particular, game genres
were often a mix of Design and Implementation questions. The vast majority of tags (95%)
are related to Implementation, including virtually all the tech tags. They account for 97% of

Appl. Sci. 2022, 12, 10750 24 of 28

the questions, are viewed on average 1301 times, and have an average score of 1.7 and a
failure rate of 49.45%.

Around 10% of the tags (the percentages of the different categories add up to more
than 100, since some tags belong to more than one category), such as balance, character,
game design, and level design, are related to Design; these include tags whose questions
often blend Design and Implementation questions, typically game genres. They account
for 11% of the questions, are viewed on average 1334 times, and have an average score of
3.22 and a failure rate of 47.73%. Examples of the top scoring questions in that category
include: “How do I get players to say “no" when they are afraid of missing out on sidequests or
XP?”, “Is it unethical to make a game AI that is secretly non-competitive?”, and “What is the
design rationale behind melee retaliations in turn-based games?”. Top scoring questions with no
accepted answers include questions such as “How to avoid players getting lost in and/or bored
by the meta game?”, “What are the advantages of putting cheat codes into a game?”, and “What is
an optimum failure rate that will keep people coming back to my game?”

Around 3% of the tags, such as advertisements, copyright, marketing, monetization, and
Steam, are related to Business. They account for 2.2% of the questions, are viewed on
average 1696 times, and have an average score of 3.35 and a failure rate of 49.3%. Examples
of the top scoring questions in that category include: “Should I worry about Youtube Let’s Plays
when I’m creating a story-heavy game?”, “Making an indie with friends: Legal considerations”,
and “Do I need an Indie Studio Name?”. All the above questions received accepted answers.
Looking specifically at top-scoring Business questions without accepted answers, we can
highlight questions such as “Why are microtransactions more or less universally hated?” or
“What do I need to legally use copyrighted music in my game?”.

The analysis above shows that questions from GDSE are, perhaps unsurprisingly,
mostly about technical aspects and implementation. Unlike in the postmortems analysed
in [12], management issues, whether about features or people, are rarely asked about in
GDSE. Nonetheless, roughly 10% of the questions are related to aspects that focus on the
design of the game, and 2–3% are about business aspects. Notably, the questions about
Design are more popular and receive satisfactory answers at a higher rate than technical
questions. Overall, we believe that our study provides a complementary lens to the work
conducted on postmortems, such as in [12], from the perspective of Q&A forums. Our
emphasis is clearly more on technical aspects and at a lower granularity, but it is noteworthy
that game design aspects in both [12] and this study account for roughly 1 out of 10 issues.

8.5. Implications

Implications for Video Game developers: Video Game development is attractive
to many software programmers or engineers, who sometimes try it out without a clear
picture of the topics they may encounter. Our empirical study focuses on a prominent game
development Q&A forum (GDSE) and conveys, from that perspective, insights to new and
seasoned game developers on concepts they may have to understand and technologies
they may have to use. While around 10% of the questions are about game design aspects
that are not necessarily technical, most questions on GDSE involve game engines, libraries,
and languages. In that sense, the careful selection of the tools and technologies, for any
given game development project, is thus of the utmost importance. Our identification of
concepts, technologies, and their co-occurrences provide game developers a preliminary
understanding of the challenges they may face when they will be trying to implement a
given concept using a given technology or when they will be trying to integrate different
technologies. In this paper, we highlighted some cases that we found most meaningful, but
we made our dataset available, so that game developers can use it to seek insights relatively
to their specific context.

Implications for Video Game Researchers: To the best of our knowledge, post-
mortems of video game development projects have, so far, been the only source of empirical
data used to understand video game development issues from a software engineering per-
spective. Our study establishes Q&A websites as valuable data sources that can be used for

Appl. Sci. 2022, 12, 10750 25 of 28

insights on game development topics and issues. While such data heavily skew technical,
we believe they are very much needed for analyses at a finer granularity, with details about
technologies used and specific concepts implemented by game developers. Our study
provides the video game research community with some statistics that can inform future
research as to which tools and concepts are worth dedicated studies.

We uncovered or confirmed the dominance of technologies such as Unity, but we also
put the spotlight on concepts such as collision detection, and animation. We notably found
that concepts that can only be found in a gaming context, such as leaderboards, or non-player
character, only appear in about one-eighth of the questions. Nevertheless, we believe that,
most importantly and from a software engineering perspective, our study documents the
significant differences in community attention and support for related concepts or rival
technologies. We believe that our study lays the foundation for future research work
on recommendation approaches for tool selection and tool integration in a video game
development context. Furthermore, our data on degraded community support when some
specific technologies are involved (such as HLSL and MonoGame) could be the starting
point of studies dedicated to further exploration of tool integration issues in a video game
development context, and possibly beyond.

9. Threats to Validity

We now outline the potential threats to the validity of our results.
Internal Validity: For this study on the topics and issues faced by game developers, we

relied on tags assigned to questions posted on the online forum Game Development Stack
Exchange. Our reliance on tags makes this study vulnerable to possible tag omissions by
question askers. However, we believe alternatives such as topic analysis through techniques
such as LDA come with their own pitfalls, notably an oversized dependence on chosen
parameters and human post-processing. Overall, we were willing to trade the possibly
higher recall of advanced topic discovery techniques for the better precision and reduced
noise that can be delivered through tag analysis.

Construct Validity: Our study initially set out to investigate popularity and difficulty
of game development issues by focusing on various metrics computed on tags assigned
to questions by posters. However, we ultimately decided against using prominently
either term: popularity or difficulty. First, popularity may not be the best term as we are
in a context of developers encountering problems. However, aside from that semantic
problem, there could be questions about whether the metrics we used and proposed really
measure popularity and difficulty. To mitigate these concerns, we substituted popularity for
community attention and difficulty for community support. About community attention,
we believe we used a wide variety of metrics that paint an accurate picture of which issues
come up the most (number of questions, views) and are the most relevant (score, number
of times the questions are marked as favourite). As for community support, we used the
failure rate and median wait time for questions related to a given tag (or pair of tags). Still,
lack of community support may occur for specific reasons pertaining more to the questions
than the tags they involve: the questions could be badly formulated or duplicates, etc.
However, the statistical analysis we conducted in Section 8.2 shows that questions without
accepted answers are only marginally less endorsed (lower score) than those with accepted
answers, suggesting that bad community support goes beyond "bad" questions.

External Validity: A potential external validity threat for our study is that we exclu-
sively relied on data from the GDSE community. Such a choice allows for more control and
certainty about the data analysed, but the GDSE community is relatively small compared
to the Stack Exchange flagship that is Stack Overflow. However, game development is a
relatively orphaned topic in software engineering, and we wanted this preliminary study to
avoid the noise that would come with the (even targeted) analysis of more general-purpose
forums. It is also worth stressing that as a self-described “question and answer site for
professional and independent game developers”, GDSE represents a community more

Appl. Sci. 2022, 12, 10750 26 of 28

committed to game development than users on Stack Overflow. That being said, we plan on
conducting a follow-up study on other programming forums, in particular Stack Overflow.

10. Conclusions and Future Work
10.1. Conclusions

Video-game development has been reported by software engineering (SE) research
to be of a different nature than the traditional software development in terms of design,
build, testing, and release. Even though video-game development is a big and expanding
segment of the development market and a 100-plus billion-dollar industry, it has attracted
only marginal attention from SE researchers. In this work, we analysed data from the Stack
Exchange Q&A website dedicated to game development (GDSE), to identify the topics
which receive the most attention and support from a prominent community of video-game
developers. Our framework analysis is based on tags explicitly assigned to questions
and the distinction between technologies used (techs) and game development concerns
(concepts). Our study seeks to shed more light on video game development by highlighting
the topics game developers address on Q&A websites dedicated to game development. We
believe our findings can help game developers on what to expect and on which concepts
and technologies are the most popular and the most supported. As for researchers, this
study aims to provide them with complementary perspective and data, aside from game
development postmortems, to investigate this understudied domain and address topics of
interest for game development communities.

Our analysis revealed that community attention goes to technologies and languages
such as Unity, C#, OpenGL, Windows, and Lua,as well as concepts such as 2D, 3D, collision
detection, shaders, level design, and monetisation. As for community support, we found, for
instance, that the game engine Unreal-4 has a much lower support than its rival Unity, while
Android-related tags are generally better supported than iOS-related tags. As for concept
tags, we found that 3D questions have unsurprisingly less support than 2D, whereas
purely mathematical concepts generally have good support; additionally, relatively new
paradigms such as virtual reality and augmented reality lack community support. For both
concept and tech tags, popular tags generally have a failure rate around 50% (± 10%) and
a median wait time between 30 min and 6 h (for concept tags) and 2 and 7 h (for tech
tags). Finally, we considered interactions between tags and analysed pairs of tags involving
two tech tags, two concept tags, or mixing techs and concepts. We found that analysis
particularly insightful and consider this particular look a major contribution of the present
paper. In the context of community support for video game development, we were able to
highlight technologies that work well together (e.g., C++ and Box2D, HLSL and C++) or
not (e.g., Android and C#, HLSL and XNA), game development concerns that mesh well
(e.g., 2D and movement, 2D and rotation) or not (e.g., movement and rotation, 3D and collision
detection) but also hints about which technology may work better (e.g., XNA for 3D, OpenGL
for textures) or worse (e.g., Java for 3D, libGDX for textures) with a particular concern.

10.2. Future Work

We plan to extend our work as follows. First, we intend to work on a fine-grained
mapping of concepts and technologies relevant to game development. We would use this as
a first step towards a recommendation approach able to orient, from a community support
perspective, game developers towards technologies that correspond to their needs and
integrate well. Longer term, our vision is that of a tool which would take input from game
developers and managers as to the concepts they want to handle and the technologies they
are eyeing and which would return the additional concepts they may have to consider and
the tools that would complement their existing set. Such a tool could make use of advanced
machine learning techniques to predict the likelihood of fast and effective community
support for a given software development stack.

With respect to next-generation computing and emerging areas, as outlined in [34],
such as cloud computing, artificial intelligence, and virtual reality, the data from GDSE do

Appl. Sci. 2022, 12, 10750 27 of 28

not validate them as major concerns among game developers. With the possible exception
of artificial intelligence, which does appear in many questions, these areas are not very
prominent in the GDSE forum. A possible reason is that these emerging technologies are
still either very niche and/or require resources and investments beyond those of most
gaming projects.

More broadly, and not restricted to game development, we plan to conduct similar
tag-based analyses on Stack Overflow and investigate what kinds of insights it can yield,
particularly with respect to tag interactions and what they suggest about technology and
concept compatibility.

Author Contributions: Conceptualization, methodology, investigation, data curation, writing—
original draft preparation, F.A.; conceptualization, methodology, investigation, data curation, writing
the manuscript, reviewing, editing, supervision, S.K.; conceptualization, supervision, reviewing and
editing, G.E.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council of
Canada (NSERC) RGPIN-2015-03858 .

Data Availability Statement: The data that support the findings of this study are available at [31].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ampatzoglou, A.; Stamelos, I. Software engineering research for computer games: A systematic review. Inf. Softw. Technol. 2010,

52, 888–901. [CrossRef]
2. Aleem, S.; Capretz, L.F.; Ahmed, F. Game development software engineering process life cycle: A systematic review. J. Softw. Eng.

Res. Dev. 2016, 4, 1–30. [CrossRef]
3. Lewis, C.; Whitehead, J.; Wardrip-Fruin, N. What went wrong: A taxonomy of video game bugs. In Proceedings of the Fifth

International Conference on the Foundations of Digital Games, Monterey, CA, USA, 19–21 June 2010; pp. 108–115.
4. Pascarella, L.; Palomba, F.; Di Penta, M.; Bacchelli, A. How Is Video Game Development Different from Software Development in

Open Source? In Proceedings of the 2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR),
Gothenburg, Sweden, 27 May–3 June 2018; pp. 392–402.

5. Murphy-Hill, E.; Zimmermann, T.; Nagappan, N. Cowboys, ankle sprains, and keepers of quality: How is video game
development different from software development? In Proceedings of the 36th International Conference on Software Engineering,
Hyderabad, India, 31 May–7 June 2014; pp. 1–11.

6. Callele, D.; Neufeld, E.; Schneider, K. Requirements engineering and the creative process in the video game industry. In
Proceedings of the 13th IEEE International Conference on Requirements Engineering (RE’05), 29 August–2 September 2005;
pp. 240–250.

7. Petrillo, F.; Pimenta, M.; Trindade, F.; Dietrich, C. What went wrong? A survey of problems in game development. Comput.
Entertain. (CIE) 2009, 7, 1–22. [CrossRef]

8. Kanode, C.M.; Haddad, H.M. Software engineering challenges in game development. In Proceedings of the 2009 Sixth
International Conference on Information Technology, New Generations, Las Vegas, NV, USA, 27–29 April 2009; pp. 260–265.

9. Washburn, M., Jr.; Sathiyanarayanan, P.; Nagappan, M.; Zimmermann, T.; Bird, C. What went right and what went wrong:
An analysis of 155 postmortems from game development. In Proceedings of the 38th International Conference on Software
Engineering Companion, Austin, TX, USA, 14–22 May 2016; pp. 280–289.

10. Politowski, C.; Fontoura, L.; Petrillo, F.; Guéhéneuc, Y.G. Are the old days gone? A survey on actual software engineering
processes in video game industry. In Proceedings of the 5th International Workshop on Games and Software Engineering, Austin,
TX, USA, 16 May 2016; pp. 22–28.

11. Politowski, C.; Petrillo, F.; Ullmann, G.C.; de Andrade Werly, J.; Guéhéneuc, Y.G. Dataset of video game development problems.
In Proceedings of 17th International Conference on Mining Software Repositories, Seoul, Korea, 29–30 June 2020; pp. 553–557.

12. Politowski, C.; Petrillo, F.; Ullmann, G.C.; Guéhéneuc, Y.G. Game industry problems: An extensive analysis of the gray literature.
Inf. Softw. Technol. 2021, 134, 106538. [CrossRef]

13. Treude, C.; Barzilay, O.; Storey, M.A. How do programmers ask and answer questions on the web?: Nier track. In Proceedings of
the 2011 33rd International Conference on Software Engineering (ICSE), Honolulu, HI, USA, 21–28 May 2011; pp. 804–807.

14. Barua, A.; Thomas, S.W.; Hassan, A.E. What are developers talking about? an analysis of topics and trends in stack overflow.
Empir. Softw. Eng. 2014, 19, 619–654. [CrossRef]

15. Linares-Vásquez, M.; Dit, B.; Poshyvanyk, D. An exploratory analysis of mobile development issues using stack overflow.
In Proceedings of the 10th Working Conference on Mining Software Repositories, San Francisco, CA, USA, 18–19 May 2013;
pp. 93–96.

http://doi.org/10.1016/j.infsof.2010.05.004
http://dx.doi.org/10.1186/s40411-016-0032-7
http://dx.doi.org/10.1145/1486508.1486521
http://dx.doi.org/10.1016/j.infsof.2021.106538
http://dx.doi.org/10.1007/s10664-012-9231-y

Appl. Sci. 2022, 12, 10750 28 of 28

16. Beyer, S.; Pinzger, M. A manual categorization of android app development issues on stack overflow. In Proceedings of the
International Conference on Software Maintenance and Evolution (ICSME), Victoria, BC, Canada, 29 September–3 October 2014;
pp. 531–535.

17. Rosen, C.; Shihab, E. What are mobile developers asking about? a large scale study using stack overflow. Empir. Softw. Eng. 2016,
21, 1192–1223. [CrossRef]

18. Bajaj, K.; Pattabiraman, K.; Mesbah, A. Mining questions asked by web developers. In Proceedings of the 11th Working
Conference on Mining Software Repositories, Hyderabad, India, 31 May–1 June 2014; pp. 112–121.

19. Venkatesh, P.K.; Wang, S.; Zhang, F.; Zou, Y.; Hassan, A.E. What do client developers concern when using web apis? an empirical
study on developer forums and stack overflow. In Proceedings of the 2016 IEEE International Conference on Web Services
(ICWS), San Francisco, CA, USA, 27 June–2 July 2016; pp. 131–138.

20. Mehrab, Z.; Yousuf, R.B.; Tahmid, I.A.; Shahriyar, R. Mining Developer Questions about Major Web Frameworks; Sience and
Technology Publications: LdaSetùbal, Portugal, 2017; pp. 191–198.

21. Almansoury, F.; Kpodjedo, S.; Boussaidi, G.E. Investigating Web3D topics on StackOverflow: A preliminary study of WebGL and
Three. js. In Proceedings of the The 25th International Conference on 3D Web Technology, Virtual Event, Korea, 9–13 November
2020; pp. 1–2.

22. Kochhar, P.S. Mining testing questions on stack overflow. In Proceedings of the 5th International Workshop on Software Mining,
Singapore, 3 September 2016; pp. 32–38.

23. Shariff, S.M. Investigating Selenium Usage Challenges and Reducing the Performance Overhead of Selenium-Based Load Tests.
Doctoral Dissertation, Queen’s University, Kingston, ON, Canada, 2019.

24. Yang, X.L.; Lo, D.; Xia, X.; Wan, Z.Y.; Sun, J.L. What security questions do developers ask? a large-scale study of stack overflow
posts. J. Comput. Sci. Technol. 2016, 31, 910–924. [CrossRef]

25. Fischer, F.; Böttinger, K.; Xiao, H.; Stransky, C.; Acar, Y.; Backes, M.; Fahl, S. Stack overflow considered harmful? the impact of
copy&paste on android application security. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose,
CA, USA, 25 May 2017; pp. 121–136.

26. Meng, N.; Nagy, S.; Yao, D.; Zhuang, W.; Argoty, G.A. Secure coding practices in java: Challenges and vulnerabilities. In
Proceedings of the 40th International Conference on Software Engineering, Gothenburg, Sweden, 27 May 2018; pp. 372–383.

27. Lopez, T.; Tun, T.T.; Bandara, A.; Levine, M.; Nuseibeh, B.; Sharp, H. An investigation of security conversations in stack overflow:
perceptions of security and community involvement. In Proceedings of the 1st International Workshop on Security Awareness
from Design to Deployment, Gothenburg, Sweden, 27 May 2018–3 June 2018; pp. 26–32.

28. Vasilescu, B. Academic Papers Using Stack Exchange Data. 2020. Available online: https://meta.stackexchange.com/questions/
134495/academic-papers-using-stack-exchange-data (accessed on 26 June 2020).

29. Tamla, P.; Böhm, T.; Nawroth, C.; Hemmje, M.; Fuchs, M. What Do Serious Games Developers Search Online? A Study of
GameDev StackExchange. In Proceedings of the CERC, Darmstadt, Germany, 29–30 March 2019; pp. 131–142.

30. Sekaran, U.; Bougie, R. Research Methods for Business: A Skill Building Approach; John Wiley & Sons: Hoboken, NJ, USA, 2016.
31. Almansoury, F.; Kpodjedo, S. Game Developers Issues. 2020. Available online: https://zenodo.org/record/3908627#.Yy7U_

ORBxPY (accessed on 1 January 2020).
32. Mamykina, L.; Manoim, B.; Mittal, M.; Hripcsak, G.; Hartmann, B. Design lessons from the fastest q&a site in the west. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–12 May 2011;
pp. 2857–2866.

33. Vargha, A.; Delaney, H.D. A critique and improvement of the CL common language effect size statistics of McGraw and Wong. J.
Educ. Behav. Stat. 2000, 25, 101–132.

34. Singh Gill, S.; Xu, M.; Ottaviani, C.; Patros, P.; Bahsoon, R.; Shaghaghi, A.; Golec, M.; Stankovski, V.; Wu, H.; Abraham, A.; et al.
AI for Next Generation Computing: Emerging Trends and Future Directions. Internet Things 2022, 19, 100514. [CrossRef]

http://dx.doi.org/10.1007/s10664-015-9379-3
http://dx.doi.org/10.1007/s11390-016-1672-0
https://meta.stackexchange.com/questions/134495/academic-papers-using-stack-exchange-data
https://meta.stackexchange.com/questions/134495/academic-papers-using-stack-exchange-data
https://zenodo.org/record/3908627#.Yy7U_ORBxPY
https://zenodo.org/record/3908627#.Yy7U_ORBxPY
http://dx.doi.org/10.1016/j.iot.2022.100514

	Introduction
	Background
	Game Development Stack Exchange

	Related Work
	Research on Video Game Development
	Research Studies Based on Stack Overflow

	Empirical Study Setup
	Study Overview
	Research Questions and Metrics
	Data Collection and Processing

	Results of RQ.1: Community Attention per Topic
	Tech Tags: Technology/Library Choices
	Concept Tags: Game Development Aspects

	Results of RQ.2: Community Support per Topic
	Community Support for Tech Tags
	Community Support for Concept Tags

	Results of RQ.3
	Tech–Tech Pairs: Integrating Two Technologies
	Concept–Concept Pairs: Handling Conjointly Two Concepts
	Tech–Concept Pairs: Handling a Concept with a Given Technology

	Discussion
	RQ1 Discussion
	RQ2 Discussion
	RQ3 Discussion
	Alternative Classification
	Implications

	Threats to Validity
	Conclusions and Future Work
	Conclusions
	Future Work

	References

