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ABSTRACT

Cancer immunotherapies have revolutionized the treatment of numerous cancers, with exciting results often superior to conventional
treatments, such as surgery and chemotherapy. Despite this success, limitations such as limited treatment persistence and toxic side effects
remain to be addressed to further improve treatment efficacy. Biomaterials offer numerous advantages in the concentration, localization and
controlled release of drugs, cancer antigens, and immune cells in order to improve the efficacy of these immunotherapies. This review
summarizes and highlights the most recent advances in the use of biomaterials for immunotherapies including drug delivery and cancer
vaccines, with a particular focus on biomaterials for immune cell delivery.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0125692

NOMENCLATURE

ACT Adoptive cell therapy
APC Antigen-presenting cells
BSA Bovine serum albumin
CAR Chimeric antigen receptor
CDN Cyclic dinucleotides

CpG ODN (Cytosine–guanine) oligonucleotides
CTLA-4 Cytotoxic T lymphocyte antigen-4

DC Dendritic cells
GM–CSF Granulocyte–macrophage colony-stimulating factor

ICI Immune checkpoint inhibitors
IL-2 Interleukin 2

MHC Major histocompatibility complex
MSR Mesoporous silica rod
MSM Mesoporous silica microspheres
NK Natural killer cells

PBMC Peripheral blood mononuclear cells
PCL Polycaprolactone
PD-1 Programmed cell death protein 1

PD-L1 Programmed death-ligand 1
PEI Polyethyleneimine
PIC Polyisocyanopeptide

PLGA Poly (lactide-co-glycolide) acid
ROS Reactive oxygen species

STING Stimulator of interferon genes
TIL Tumor-infiltrating lymphocytes
TLS Tertiary lymphoid structure

T-VEC Talimogene laherparepvec

I. INTRODUCTION

Despite continuous progress in detection and treatment, cancer
remains one of the leading causes of death worldwide.1 Cancer immu-
notherapy—where cancer treatment is achieved by harnessing and
assisting patients’ own immune systems—has revolutionized oncology,
allowing previously impossible precision in targeting tumor cells com-
pared to conventional treatments and showing impressive results in
the previously untreatable disease.2 Immunotherapy exploits the
inherent response of the host immune system, which can detect the
foreign antigens created by cancerous cells and recognize and elimi-
nate malignant cells.

Cell-mediated immunity is the most relevant part of the immune
system in the response to cancer, which in innate immunity consists of
polymorphonuclear cells (neutrophils, eosinophils, basophils, and
mast cells), phagocytic cells [monocytes, macrophages, and dendritic
cells (DCs)], and natural killer (NK) cells. B and T lymphocytes (com-
monly referred to as B and T cells)—of which there are multiple sub-
types—are the primary immune cells involved in adaptive immunity.
Immunotherapy relies on the interaction of cells, such as T cells,
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B cells, DC, and NK cells, with cancers3–7 briefly explained in Fig. 1.
This process has been described as the cancer immunity cycle, where
antigens from necrotic or apoptotic cancer cells are captured by
antigen-presenting cells (APCs). The APC subsequently stimulate
cytotoxic T lymphocytes to specifically target and destroy the associ-
ated tumor cells via apoptosis.8 Unfortunately, alone, its efficacy is
often limited by the inhibitory effect of the tumor microenvironment
and hence the evasion of the immune system by cancer cells.

Numerous immunotherapies have been developed based on this
principle of stimulating and augmenting the immune system. Some
are based on drugs enhancing the T cell response, such as Interleukin
2 (IL-2), or immunomodulatory drugs targeting immune checkpoint
inhibitors (ICIs). Some treatments encourage the development of
immune cells specialized against the tumor (so-called cancer vac-
cines9). Oncolytic viruses (OVs) can both directly destroy cancer cells
and produce immunostimulatory cytokines.10 Others consist of the
injection of cytotoxic T cells, referred to as adoptive cell therapy
(ACT).11 There are countless ongoing clinical trials, of which it is not
possible (and not the aim of this review) to summarize here. Selected
FDA-approved immunotherapies are highlighted in Fig. 2 and are
explained in detail where relevant in Sec. II.

Despite promising results and numerous clinical studies, the
efficacy of these strategies is still limited due to diverse factors,
which will be summarized later. A current trend is to combine

multiple therapies, particularly a combination of anti-programmed
cell death protein 1 (PD-1) and either anti-cytotoxic T lymphocyte
antigen-4 (CTLA-4)12 or the newly approved ICI targeting
lymphocyte-activation gene 3 (LAG-3),13 or the combination of
these checkpoint inhibitors with ACT for melanoma and ovarian
cancers.14,15 These combinations are a major focus for current
clinical trials with the goal of establishing best practice, and it
seems likely that future gold-standard treatments will comprise
multiple immunotherapies, perhaps alongside conventional treat-
ments, as combination therapies. Another trend is the increasing
use of biomaterials to improve the efficiency of immunotherapies
and decrease their toxic effects. This review will focus on the
potential of biomaterials (as cell scaffolds or controlled delivery
systems for antibodies or tumor antigens) to further enhance the
efficacy and decrease the toxicity of immunotherapy.

II. BIOMATERIALS IN IMMUNOTHERAPY
A. Introduction and rationale

Biomaterials, defined as “materials designed to take a form that
can direct, through interactions with living systems, the course of any
therapeutic or diagnostic procedure”17 have long been widely studied
in numerous biomedical applications.18 We can differentiate biomate-
rials by their source (natural or synthetic), their class (metals, ceramics,

FIG. 1. Summary of the main immune cell types relevant to cancer immunotherapy and their functions. GzmB: granzyme B, TNFa: tumor necrosis factor a, IL-2: interleukin-2,
IFNc: interferon c, TCR: T cell receptor, MHC: major histocompatibility complex.
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or polymers), and their stability (permanent or biodegradable).
Biomaterials have been used in several oncology treatments, for exam-
ple, for local administration of chemotherapy in urothelial carci-
noma19 or the embolization of blood vessels for palliative treatment of
hepatic cancers,20 to name just a few. In the present review, we will
limit ourselves to immunotherapies. While only comparatively
recently have developments in immunotherapy supported their use in
oncology, biomaterials offer numerous possibilities to augment the
efficacy of immunotherapies or limit their harmful side effects, as sum-
marized in Fig. 3. In brief, they can achieve this through controlled
spatial and temporal release of the cells and immunotherapeutic
agents, which can result in dose-dependent and off-target toxicities in
current immunotherapies.21 They can also create a “niche” for the
activation of endogenous or exogenous APC, with potential addi-
tional anti-tumor efficacy coming from the biomaterial itself, such
as their pro-inflammatory effects or reactive oxygen species (ROS)
generation.22

Due to the interlinked nature of the immune system, there is
extensive crossover in the components and mechanisms of action of
immunotherapeutic biomaterials. However, two broad categories that
can be proposed are cell-delivery biomaterials, directly incorporating
cells such as lymphocytes and DC as localized immunotherapies,23

and cell-free biomaterials, which can incorporate a combination of
immune adjuvants, antigens and even additional cancer therapeutics
such as chemotherapeutic agents alongside the inherent immunomod-
ulatory effects of certain biomaterials.22,24 This review will focus on
biomaterials in these categories with a particular focus on lymphocytes
as antitumoral agents, either through direct administration and stimu-
lation of lymphocytes or by their indirect stimulation by other cells or
immunomodulatory components.

B. Cell-free biomaterials

1. Aim and design criteria

The aim of cell-free scaffolds for immunotherapies is to provide,
either through their own chemical composition or through attached or
encapsulated biological factors, cellular cues to direct and encourage a
favorable immune response toward a given stimulus, or alternatively
to locally deliver anti-cancer drugs. In the case of a biomaterial for can-
cer immunotherapy, this would implicate either the inclusion of
immune agonists and/or immunotherapeutic drugs, within a material
matrix suitable for the administration and controlled delivery of these
factors, such that a strong anti-cancer response is achieved, and/or the
utilization of the inherent immune response to a particular matrix to
recruit and activate APC.

These systems should be composed of a biocompatible mate-
rial, which according to the definition of biocompatibility must not
elicit adverse biological effects (cytotoxicity, carcinogenicity,
hypersensitivity, etc.), but should promote an “appropriate host
response in a specific application,”17 namely, here help recruit and
activate the APC or be at least immunologically inert to allow the
function of its immunomodulatory components. Indeed, in this
particular case detailed here, provoking some immune response is
deemed beneficial in the anti-cancer response and some inflamma-
tion could even be encouraged.

Such a material should also be:

• Injectable through a small needle to enable minimally invasive
procedures.

• Persistent over the necessary timescale for maximum efficacy of its
drug or molecule of choice and ideally be degraded afterwards.

FIG. 2. Timeline of selected FDA-approved cancer immunotherapies. Adapted with permission from Cancer Research Institute, see https://www.cancerresearch.org/fda-
approval-timeline-of-active-immunotherapies for “FDA Approval Timeline of Active Immunotherapies-Cancer Research Institute 2022.”16
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• For drug delivery, the release rate must be well controlled by the
scaffold properties and degradation rate.

• The use of simple materials, potentially already used in FDA-
approved medical devices or therapies, is generally desired for
easier regulatory approval.

Sections II B 2–IIB 5 detail the principles and review the cases of
biomaterials used for cancer vaccines and controlled release of OV or
immunotherapeutic drugs.

2. Biomaterials for cancer vaccines

Cancer vaccines can include dead tumor cells or lysate, DC, anti-
gens, or nucleic acids, such as mRNA, with DC the most widely stud-
ied form of cancer vaccine to date.25 Whatever their component, the
vaccines—generally administered subcutaneously, intramuscularly, or
intravenously—act to supplement or improve tumor-specific lympho-
cyte activity via improved antigen presentation, lymphocyte activation,
and localization of the immune response to the tumor.9 A summary of
cancer vaccine mechanisms is shown in Fig. 4.

Exogenous cells can be added to the antigens injected, to ensure
the formation of activated DC. This is the case of Sipuleucel-T
(ProvengeVR ), the first immune cell therapy approved by the FDA as a
cancer treatment.26 Sipuleucel T improved antitumor CD8þ cell
response and survival in a clinical trial in patients with castration-
resistant prostate cancer.27 Despite this initial success, limited progress
has since been made in the clinical use of cancer vaccines, with other

candidate vaccines failing to demonstrate clinical efficacy and leaving
Sipuleucel-T as still the only FDA-approved cancer vaccine.28

Nevertheless, research continues with recent developments, such as
neoantigen vaccines, which target patient-specific antigens rather than
tumor-associated antigens that are common between patients and
associated with higher immune tolerance.

To be effective, cancer vaccines must have two main properties.
First, they must stimulate the appropriate specific immune responses
against the correct target. Second, the immune responses must be
powerful enough to overcome the barriers that cancer cells use to pro-
tect themselves. Therefore, sustained delivery (to avoid rapid clear-
ance) and an appropriate structure for the APC to interface with the
vaccine component is key.

Biomaterials have thus been used to create a physical structure
loaded with vaccine components which stimulate APC cells in situ.
These will then disperse to lymph nodes and activate resident T cells
which then travel to the tumor site and eliminate malignant cells. We
can distinguish between implantable and injectable scaffolds. Figure 5
describes the two main approaches, while Table I summarizes the
main biomaterials used for the different vaccines.

Biomaterial vaccines were among the first biomaterial-delivered
immunotherapies to be researched, with pioneering work from
Mooney’s group being essential in this field and influential in its
development.

The first development was an implantable PLGA scaffold incor-
porating tumor lysate antigens (from destroyed cancer cells),
GM–CSF as a stimulatory cytokine for DC and (cytosine–guanine)

FIG. 3. Summary of immunotherapies and the potential role of biomaterials.
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oligonucleotides (CpG ODN) a toll-like receptor 9 (TLR-9) agonist
that also activates DC.29 The interconnected pores in the scaffold cre-
ate an environment in which infiltrating DC are activated and pro-
cess the tumor lysate antigens before migrating to lymph nodes
where they can prime antigen-specific T cells. The scaffold also regu-
lates the release of antigens and adjuvants to encourage a persistent
immune response. This biomaterial-based vaccine paved the way for
future developments in biomaterial immunotherapies and has the
distinction of being the first such biomaterial to enter clinical trials,
where the above vaccine is being tested in a phase I clinical trial to
determine its safety and feasibility and to confirm its biological activ-
ity when used to treat metastatic melanoma.43 The study completion
date is in 2022. The group has further developed the scaffold, show-
ing that the vaccine is even more effective in combination with
checkpoint inhibitors.30 Furthermore, alternative vaccine adjuvants,
such as monophosphoryl lipid A and polyinosinic:polycytidylic acid,
also preventively and therapeutically reduced tumor growth in
mouse melanoma models.31

Later, the team developed an MA–alginate “cryogel” scaffold
functionalized with RGD binding sites and using the same immuno-
modulatory factors, which demonstrated both therapeutic and preven-
tative effects in mice melanoma models, with a further benefit of

injectability as opposed to the previous PLGA scaffold.32 However,
this requires quite large diameter needles (16G). According to in vitro
tests, approximately 80% of the encapsulated vaccine compounds
(GM–CSF and CpG ODN) were released within the first 4 days, fol-
lowed by slow and sustained release over the next month. The inter-
connected macroporous structure allowed cellular infiltration and
immune cell trafficking in situ. Further work interestingly showed that
the vaccine maintained its efficacy regardless of whether the injection
site was adjacent or distal to the tumor and draining lymph nodes.33

This group also developed a similar cryogel using a combination of
MA–alginate and PEG to eradicate established acute myeloid leukemia
in mice.34 Lu et al. developed a relatively similar cryogel, which incor-
porates tumor cell lysates during hydrogel preparation and signifi-
cantly reduced the growth of a secondary tumor after surgical
resection of the primary tumor.35

All these 3D biomaterials are, however, fabricated ex vivo and
require either surgical placement in the body or large invasive needles
for implantation. Moreover, they are not biodegradable and their pre-
formed structures could limit the capability of host cells to organize
themselves.36

To solve this issue, Mooney’s group proposed self-assembling
mesoporous silica rods (MSR) that are more easily injectable (18G

FIG. 4. Cancer vaccine mechanisms. Tumor antigens from tumor cell death or administered vaccines are taken up by dendritic cells for priming of tumor-specific T cells, which
can then specifically eliminate cancer cells, continuing the cycle.
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FIG. 5. Principles of biomaterial vaccines. Biomaterials containing tumor lysates, antigens, cytokines, and adjuvants are implanted or injected. Antigens and adjuvants are
released in a controlled manner and DC infiltrate the biomaterial niche where antigen uptake can occur. DC then migrate to lymph nodes where T cell priming occurs.

TABLE I. Biomaterials used for cancer vaccines.

Materials Therapeutic agents Injectable?
Immunotherapy model and

outcomes References

Poly (lactide-co-glycolide) acid
(PLGA)

Tumor lysate antigens, GM-
CSF, (cytosine-guanine) oligo-
nucleotides (CpG ODN), PD-1
or CTLA-4, monophosphoryl
lipid A, polyinosinic:polycyti-

dylic acid

No Mouse melanoma models 29–31
Up to 90% survival increase with
vaccine þ GM-CSF þ CpG ODN
Enhanced effect in combination

with PD-1 or CTLA-4

Methacrylated alginate
(MA-alginate)

Tumor lysate antigens,
GM–CSF, (cytosine–guanine)
oligonucleotides (CpG ODN)

Yes Mouse melanoma models 32, 33
Up to 80% survival with biomate-
rial vaccine þ GM–CSF þ CpG
ODN vs 60% with bolus vaccine

MA–alginate þ methacrylated
polyethylene glycol (MA–PEG)

Tumor lysate antigens,
GM–CSF, (cytosine–guanine)
oligonucleotides (CpG ODN)

Yes Mouse leukemia models 34
100% survival with chemotherapy

þ biomaterial vaccine
Alginate þ tumor lysate Tumor lysate antigens,

GM–CSF, anti-PD-1
No Mouse pancreatic cancer model 35

Five-fold decrease in tumor volume
compared to treatment with PBS,
additive effect with anti-PD-1

Mesoporous silica rods (MSR) Tumor antigen, GM–CSF, anti-
PD-1, polyethyleneimine (PEI)

Yes Mouse lymphoma, melanoma, and
lung cancer models

36–38
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needle), biodegradable, and create more macroporous 3D structures
for better interaction with immune cells. The MSRs are injected with a
needle and spontaneously assemble in vivo, degrading over time and
allowing a slow release of vaccine antigens and adjuvants.36 These self-
assembled MSR scaffolds increased the number of recruited cells com-
pared to previously reported preformed macro-porous polymer scaf-
folds, with 20 � 106 cells in the MSR vaccine after 5 days in vivo vs
only 6 � 106 in the MA–alginate cryogel vaccine after 6 days. In later
work, the MSR vaccine was coated with polyethyleneimine (PEI) to
enhance the effect of neoantigen peptides.37 MSR–PEI vaccines signifi-
cantly enriched the DC population, roughly doubling the number of
recruited DC, and enhanced host DC activation and T cell responses
compared to the existing MSR vaccine. The MSR vaccines eradicated
established E7-ovalbumin (OVA) tumors in 80% of mice and showed
efficacy in reducing tumor growth in melanoma and carcinoma cell
lines, with an additive effect when combined with CTLA-4 injection,
demonstrating the potential of biomaterials-based vaccines to function
alongside other immunotherapies such as checkpoint inhibitors.37

Further work using MSR vaccines has applied the same principle for
alternative peptide antigens, such as gonadotropin-releasing hormone
(GnRH) and HER2/neu, implicated in multiple cancers including
breast cancer.38

Other groups have developed biomaterial vaccines with similar
stimulatory molecules, using other commonly used biomaterials such
as chitosan, polycaprolactone (PCL), and even bovine serum albumin
(BSA). For example, Sun et al. developed an injectable thermosensitive
PCL–PEG–PCL hydrogel encapsulated GM–CSF and chitosan-coated
ovalbumin (OVA) nanoparticles to create the immune cell niche for
DC activation,39 where the chitosan itself may induce DC maturation
via the Stimulator of Interferon Genes (STING) signaling pathway.44

STING is a transmembrane protein that interacts with cyclic dinucleo-
tides (CDNs) produced in response to cytosolic double-stranded
DNA, resulting in the production of IFN-b and other cytokines that
promote the in vivo anti-tumor T cell response.45 In another study by
Giang Phan et al., BSA was crosslinked with a similar PCL–PEG–PCL

hydrogel to deliver a DNA vaccine against the amyloid-b Alzheimer
antigen.40 Both PCL–PEG–PCL hydrogel vaccines induced strong
immune responses and improved DC recruitment. Note that hydrogels
are particularly interesting as they often present shear-thinning behavior.
Moreover, some can undergo reversible volume phase transitions or sol-
gel phase transitions in response to external physical or chemical stim-
uli—such as temperature, pH, ionic strength, light, and electromagnetic
radiation—called stimuli-sensitive or intelligent hydrogels and allowing
in situ gelation and hence minimally invasive treatment.

Chitosan seems to be gaining popularity for use in cancer vac-
cines, with an injectable gel formed by a Schiff base reaction between
CpG-modified carboxymethyl chitosan and partially oxidized mannan
increasing DC infiltration and maturation and significantly reducing
tumor growth in a B16-F10 mouse melanoma model.41 Furthermore,
though not tested in tumor models, an OVA-antigen-containing
“nanosheet” was formed through the simple mixing of catechol-
modified chitosan, PBS, and CaCl2.

42 The nanosheet significantly
increased DC activation and antigen presentation compared to free
antigen and so could be another promising future carrier of antigens
as a cancer vaccine. Carroll et al. showed that chitosan, a cationic poly-
mer, can engage the cGAS-STING pathway to mediate the selective
production of type I IFN and interferon-stimulated genes, which were
then responsible for mediating the activation of DC and induction of
cellular immunity.44 More generally, these studies show that the choice
of the biomaterial composition and porosity of the scaffold is key to
induce successful recruitment and activation of DC. Moreover, hydro-
gels have the advantage of being injectable and can play the dual role
of being a vaccine carrier with sustained release and a platform for
recruiting DCs.

While clinical results are still absent, all these results suggest that
biomaterials will play a key role in the development of cancer vaccines
and that, alongside other immunotherapies, vaccines will have a role
to play in therapeutic cancer treatment. Furthermore, while still at an
early stage, the prophylactic vaccination of cancers with known anti-
gens, such as human epidermal growth factor receptor-2-positive

TABLE I. (Continued.)

Materials Therapeutic agents Injectable?
Immunotherapy model and

outcomes References

Increased DC recruitment and sur-
vival with MSR vaccines

PCL–PEG–PCL GM–CSF, OVA nanoparticles Yes Improved DC recruitment in vivo,
increased T cell response to EG7-

OVA in vitro

39

Bovine serum albumin (BSA)
þ PCL–PEG–PCL

DNA vaccine Yes Improved DC recruitment and
increased T cell response to
amyloid-b Alzheimer antigen

in vivo

40

CpG-modified carboxymethyl
chitosan and partially oxidized
mannan

OVA antigen Yes Mouse melanoma model 41
Reduced tumor growth and

improved survival with gel vaccine
Catechol chitosan þ calcium
phosphate nanosheet

OVA antigen Yes Increased DC activation and anti-
gen presentation

42
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breast cancers, is an intriguing possibility.46 Prophylactic vaccination
could be targeted to genetically high-risk populations, or alternatively
used to prevent cancer recurrence and metastases.47 Cancer vaccines
may also be pioneering precursor technologies, demonstrating the
benefit of antigens, adjuvants, and DC, which can then be included as
additional components of other immunotherapies.

3. Oncolytic viruses

OV are genetically modified to infect and lyse only cancer cells
that sacrifice their normal antiviral defenses in order to grow more
rapidly.10 OV can, thus, selectively infect and kill cancer cells, while
leaving surrounding non-cancerous cells unharmed. While the precise
mechanisms of their anti-tumor effect remain to be defined, they
include direct tumor cell lysis, recruitment of APC, and tumor infil-
trating lymphocytes as well as the release of pro-inflammatory cyto-
kines from lysed tumor cells (Fig. 6). In addition, some OV have been
genetically modified to express these cytokines in order to augment
their anti-tumor activity.48 They are a somewhat niche area of cancer
immunotherapy, with only one OV to date approved by the FDA: tali-
mogenelaherparepvec (T-VEC), a herpes simplex virus that showed a
significant clinical response in the treatment of unresectable mela-
noma, with the virus modified to also express granulocyte–macro-
phage colony-stimulating factor (GM–CSF).49 Recent work has
proposed the use of biomaterials in the form of nanofibers50 or nano-
particles51 for targeted delivery of OV, with bulk biomaterials for OV
delivery summarized in Table II and subsequently explained further.

Choi et al. used an alginate gel to encapsulate OV which was
shown to double their accumulation in the tumor and reduced tumor
growth by half compared to non-encapsulated OV in mouse xenograft
models of human C33A (cervical) and U343 (glioma) cancer cell lines.

Gel encapsulation also reduced OV accumulation in off target tis-
sues.52 Work from Yun’s group showed similar improvements in OV
efficacy, with a gelatin-hydroxyphenyl propionic acid (GHPA) hydro-
gel also showing a twofold increase in anti-tumor efficacy, reduced
accumulation in off target tissues, and a reduced anti-OV immune
response in hamster models with the HaP-T1 hamster pancreatic car-
cinoma cell line.53 In murine xenograft models of localized OV deliv-
ery, both a recombinant silk elastin-like hydrogel in a head and neck
cancer model and a polyurethane-sulfamethazine injectable hydrogel
in a lung cancer model also reduced tumor growth by around half
compared to non-encapsulated OV. Histological analysis also demon-
strated greater persistence of the OV at the tumor site in these
cases.54,55

Clearly, biomaterials have the potential to improve OV retention
in tumors, protect them from elimination by the immune system, and
hence improve their efficacy. Clinical trials of locally delivered OV will
no doubt be awaited with interest as this immunotherapy experiences
a resurgence.

4. Drug delivery biomaterials

Biomaterials for simple local delivery of anti-cancer drugs have
also been investigated, as with numerous other medical domains.56

Drug delivery scaffolds and the principles underlying the design of
hydrogel drug delivery systems, focusing on the physical and chemical
properties of the hydrogel network and the hydrogel–drug interac-
tions, have been reviewed previously and will not be detailed here.57–61

Biomaterial scaffolds allow local and controlled release of drugs and
molecules, therefore allowing lower doses for equivalent efficacy and
limiting dose-related toxicities. Spatial control also has the double ben-
efit of increasing the payload of the drug or molecule at the relevant

FIG. 6. Oncolytic virus mechanisms: Oncolytic viruses such as T-VEC are selectively replicated in cancer cells, eliminating tumor cells via oncolysis and stimulating the
immune system via the antigen release of destroyed tumor cells and expressed transgene products such as GM–CSF.
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site, while ensuring a minimum is lost to non-tumor sites where it
would be ineffective or even potentially cause off-target toxicity.

Whatever drugs and molecules are being delivered, the drug dos-
age, mechanism of release, and ease of administration of the biomate-
rial are of greater importance. Here, the ability to chemically conjugate
molecules of interest to the material, and easier administration, such
as with an injectable material, would be highly desirable.

In terms of immunotherapeutic drugs, immune checkpoint
inhibitors (ICIs) are among the most popular for local drug delivery,
often combined with other drugs. ICI are monoclonal antibodies tar-
geted toward so-called “immune checkpoints”—inhibitory immune
pathways that downregulate T cell activation when their receptors on
immune cells are activated that aim to maintain organism self-
tolerance and avoid autoimmunity. Cancer cells themselves can
develop the ability to activate these receptors and hence escape the
downregulated immune system, for example, programmed death-
ligand 1 (PD-L1) expressed on tumor cells (see Fig. 7). The most com-
monly targeted ICI are CTLA-4, which competes with CD28 to bind
CD80/CD86 and hence downregulates T cells,62 PD-1, which has an
inhibitory effect on T cell activation while stimulating Treg cells, which
suppress the anti-tumoral immune response, and the ligand of PD-1,
PD-L1, which can be found on the surface of tumor cells as well as
endogenous epithelial and immune cells and contributes to the down-
regulating of T cells in the tumor microenvironment. LAG-3, a new
addition to the ICI portfolio, is a cell surface protein expressed on
immune cells that downregulates T cell proliferation and function.63

ICI have become one of the most successful immunotherapies and
dominate among FDA-approved immunotherapies and immunotherapy

clinical trials, with Ipilimumab the first commercially approved ICI,
targeting CTLA-4. Nivolumab, targeting PD-1, followed. Both treat-
ments demonstrated improved survival over chemotherapeutic
agents as treatments for metastatic melanoma patients, especially
PD-1 that has the advantage of reduced toxicity compared to CTLA-
4.64 ICI have had a revolutionary impact in oncology, although dura-
ble responses to ICI remain limited for certain cancers, and their
associated toxicities remain a limitation to be addressed.65

Dosage and localization clearly contribute to the limitations asso-
ciated with ICI, with ICI autoimmunity resulting from the systemic
delivery of the treatment. For this reason, localized delivery of the
drugs could result in more widely usable and safer treatments.
However, the rapid and variable release of drugs in conventional deliv-
ery means that carriers, such as biomaterial scaffolds, are required for
the controlled release and sustained delivery of therapeutics.58 Selected
biomaterials for immunotherapeutic drug delivery are summarized in
Table III and explained further below.

For example, an alginate hydrogel incorporating anti-PD-1 and
the anti-inflammatory drug celecoxib reduced tumor growth by 90%
compared to a blank hydrogel in a mouse B16-F10 melanoma
model.66 The sustained co-delivery of celecoxib and PD-1 enhanced
their effects in a synergistic manner, where PD-1 augmented the inhi-
bition of tumor angiogenesis provoked by celecoxib, whereas the anti-
inflammatory effect of celecoxib downregulates inflammatory genes
which may otherwise interfere with the therapeutic effect of PD-1.
Another interesting example consisted of a poly(vinyl alcohol) hydro-
gel, crosslinked with a compound that can be oxidized and hydrolyzed
in the presence of ROS such as H2O2 in the tumor microenvironment.67

TABLE II. Bulk biomaterials for oncolytic virus delivery.

Materials Therapeutic agents Injectable?
Immunotherapy model and

outcomes References

Alginate Oncolytic adenovirus Yes Mouse xenografts of human
cervical cancer and glioma

52

Increased OV accumulation in
the tumor, reduced tumor

growth, and reduced OV accu-
mulation in off-target tissues

Gelatin-hydroxyphenyl propionic acid
hydrogel

Oncolytic adenovirus Yes Hamster models with pancre-
atic carcinoma

53

Reduced tumor growth,
reduced OV accumulation in
off-target tissues, reduced anti-

OV immune response
Silk elastin-like protein polymer
hydrogel

Oncolytic adenovirus Yes Mouse xenograft of human
head and neck cancer

54

Reduced tumor growth and
greater OV persistence at the

tumor site
Polyurethane-sulfamethazine hydrogel Oncolytic adenovirus Yes Mouse xenograft of human

lung cancer
55

Reduced tumor growth and
greater OV persistence at the

tumor site
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FIG. 7. Mechanism of checkpoint blockade: antibodies inhibit binding of immune checkpoint pathway receptors, such as PD-1, CTLA-4, and LAG-3, preventing T cell inhibition
and hence allowing tumor attack by activated T cells.

TABLE III. Biomaterials for immunotherapeutic drug delivery.

Materials Therapeutic agents Injectable? Immunotherapy model and outcomes References

Alginate Celecoxib, anti-PD-1 Yes Mouse melanoma model 66
Reduced tumor growth and increased
mouse survival, enhanced effect with

dual-drug administration with
hydrogel

ROS-degradable poly(vinyl
alcohol) hydrogel

Gemcitabine, anti-PD-L1 Yes Mouse melanoma model 67
Improved mouse survival, ROS-

scavenging effects
Multidomain peptide hydrogel Anti-PD-1, CDN Yes Mouse oral carcinoma model 69, 70

Fewer tumor lesions in hydrogel-
treated mice, improved mouse survival

Fibrin gel Doxorubicin (DOX)-loaded
platelet-derived extracellular

vesicles, anti-PD-L1

No (sprayable) Mouse melanoma model 71
Increased mouse survival, decreased
tumor growth in local and distal

tumors
Implantable polycarbonate
optical fiber

Anti-CTLA-4, anti-PD-1 No Mouse melanoma and breast cancer
models

72

Reduced tumor growth and increased
mouse survival, treatment guided by

tumor impedance
Polyvinyl alcohol þ chitosan
microneedles

1-methyl-D,L-tryptophan,
anti-PD-L1, indocyanine green

No Mouse melanoma model 73, 74
Greater anti-PD-L1 retention at the
administration site, decreased tumor
growth, and greater survival. Improved

effect with indocyanine green
photosensitizer
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This led to gel degradation at the tumor site where ROS are highly
prevalent, and the subsequent controlled release of the chemotherapy
drug gemcitabine and anti-PD-L1 antibodies. The local release of this
drug combination resulted in over 60-day mouse survival in a B16-F10
melanoma model, where no mice in any untreated or single-treatment
control groups survived after two months. In addition to controlling
the drug release, the hydrogel acts as a ROS scavenger that may limit
the ROS-induced differentiation of macrophages to the tumorigenic
“M” phenotype.

An example of biomaterials gaining popularity for immuno-
therapeutic drug delivery is multidomain peptide (MDP) hydro-
gels. One example developed by Hartgerink’s group consists of an
amphiphilic core of amino acids, which self-assemble into nanofib-
ers, and gels upon interaction with a negatively charged multiva-
lent.68 This hydrogel was used to locally deliver anti-PD-1 in a
sustained and controlled manner, which was significantly more
effective and durable than systemic anti-PD-1 in preventing oral
carcinomas in mice, with 20% of hydrogel-treated mice showing
high-grade lesions 5 weeks after treatment compared to 60% of
control mice.69

The gel was further developed with the addition of CDN as a
STING agonist as well as synthesizing another MDP that included an
inhibitor of the pro-tumorigenic enzyme inducible nitric oxide syn-
thase.70 The cationic gel further slowed and controlled CDN release
for longer drug persistence compared to the previous MDP and
resulted in the greatest tumor size reduction and survival among treat-
ment groups.

Alternative biomaterial formats for immunotherapeutic drug
delivery have also been developed. For example, Zhao et al. designed a
sprayable fibrin gel containing doxorubicin (DOX)-loaded platelet-
derived extracellular vesicles (which preferentially target circulating
tumor cells) and anti-PD-L1,71 which permitted sustained and con-
trolled release of the two therapies at the tumor site in a murine B16-
F10 model. Their synergistic effect greatly decreased tumor growth
and increased survival compared to single treatments. Furthermore,
tumor growth was also limited in a distal tumor, showing the abscopal
effect of the treatment.

In another study, Chin et al. developed an implantable optical
fiber device, which could simultaneously deliver ICI locally and mea-
sure tumor growth in real time by measuring tumor impedance.72 The
device included photodynamic therapy as a combination therapy,
where an administered photosensitizer will create ROS that can both
damage tumor cells and vasculature in response to light and improve
intratumoral drug retention. Its combination with repeated ICI deliv-
ery directed by impedance measurements resulted in a durable anti-
tumor response in a range of mouse melanoma and breast cancer
models, and though the device is relatively invasive its real-time tumor
growth monitoring to direct treatment is advantageous and it could be
seen as analogous to routine medical devices such as insulin-delivery
pumps.75

Another relatively novel biomaterial drug delivery method is the
use of microneedles, micrometer sized needles that are associated with
faster action, increased efficacy, and better patient compliance com-
pared to transdermal injection.76 Microneedle patches, composed of a
polyvinyl alcohol core containing the melanoma drug 1-methyl-D,L-
tryptophan, surrounded by a chitosan needle shell containing anti-
PD-L1 showed improved anti-PD-L1 retention at the administration

site as well as decreased tumor growth and greater survival compared
to untreated mice and mice with intra-tumor drug delivery using con-
ventional needles.73 Later, indocyanine green, a photosensitizer used
in photothermal therapy was added to further stimulate the anti-
tumor immune response.74 These microneedles had an even greater
anti-tumor effect and a further survival increase compared to the pre-
vious microneedles.

These results demonstrate the still unexplored potential of novel
drug delivery systems in immunotherapy, which will only become
more necessary as these treatments improve and are approved for
other malignancies.

5. Nano-scale biomaterials

While their mechanisms differ from localized bulk biomaterials,
nanoparticles have seen interest in both cancer vaccine and tumor
drug delivery, due to their ability to act systemically but in a highly tar-
geted manner.25 With targets and functions similar to certain bulk bio-
materials used for cancer immunotherapy, nanoparticles represent an
alternative material form and perhaps an intermediate treatment clas-
sified somewhere between systemic therapies and localized biomateri-
als for cancer immunotherapy. Below are a few examples of the use of
nanoparticles in immunotherapy, either as drug or OV delivery sys-
tems or means to activate the immune response. Selected nanoparticles
used for immunotherapy are summarized in Table IV and explained
further below.

Liposomic nanoparticles conjugated to stimulatory factors such
as IL15/IL21 allowed complete tumor elimination, compared to lim-
ited survival increase with ACT and systemic stimulatory factors with-
out nanoparticles.77 PEG–PLGA nanoparticle-conjugated PD-1,
combined with antitumor necrosis factor receptor superfamily mem-
ber 4, ensured simultaneous binding to the two molecules and showed
a tumor-free survival rate of 30% after biomaterial treatment, com-
pared to 10% after treatment with a mix of NP-conjugated and free
drugs in a murine B16F10 melanoma tumor model.78 Nanoparticles
also offer interesting possibilities for the treatment of lung cancer:
inhaled cationic chitosan nanoparticles conjugated to anti-PD-L1 were
able to adhere to the lung mucus layer to prolong anti-PD-L1 reten-
tion as well as act as an immune adjuvant due to the inherent immu-
nostimulatory qualities of chitosan.79 Increased mouse survival and
fewer metastases were seen in a mouse model of B16-F10 lung metas-
tases as compared to free drugs or nanoparticles alone.

Nanoparticles have been utilized as synthetic APCs, such as a
study where iron-dextran and quantum dot nanoparticles were conju-
gated to CD28 and major histocompatibility complex (MHC)–peptide
complexes to form synthetic APC, leading to a significant reduction in
tumor growth in mice.80

Some groups have conjugated nanoparticles with OV, to prolong
their circulation time and improve their antitumor efficacy. Brugada-
Vil�a et al. developed an OV conjugated with PEGylated oligopeptide-
modified poly(b-aminoester)s that showed a three-fold increased circu-
lation time, reduced immune neutralization of OV, and significantly
reduced tumor growth in murine xenograft models compared to
unconjugated OV using the human pancreatic cell lines PANC-1 or
MIA PaCa-2.81 Methoxy poly(ethylene glycol)-b-poly{N-[N-(2-amino-
ethyl)-2-aminoethyl]-l-glutamate} and PEG grafted to the OV
increased accumulation in the tumor and reduced OV accumulation in
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off-target tissues.82 Tumor growth was also reduced two- to three-fold
compared to unconjugated OV in murine xenograft models using
HT1080 human fibrosarcoma and A549 lung cancer cell lines.83 OVþ
paclitaxel conjugated with PEG and a polymeric micelle demonstrated
higher viral replication in tumor, 12-fold increased blood retention and
2.5-fold increased anti-tumor efficacy compared to unconjugated OV
in murine xenograft models using the human breast cancer cell line
MCF-7 compared to free OV þ PTX.84 Chitosan PEG folate nanopar-
ticles greatly increased blood circulation time and showed a two-fold

reduced tumor growth compared to unconjugated OV in murine xeno-
graft models using the KB human epithelial carcinoma cell line.85

Nanoparticles have also been used in cancer vaccines, interestingly
including mRNA delivery as the vaccine technology. Lipid nanopar-
ticles for mRNA vaccine delivery showed potent anti-tumor effects in
mice and some success in clinical trials to treat melanoma.86 In this
case, mRNA coding for cancer antigens was encapsulated in negatively
charged lipid nanoparticles, which protect the mRNA from elimination
by the immune system and efficiently transport the mRNA to APC in

TABLE IV. Nanoparticles for immunotherapy.

Nanoparticle Immunotherapeutic agent(s)
Immunotherapy model and

outcomes Reference

Lipid nanoparticle IL-15 superagonist, IL-21,
Pmel-1 T cells

Mouse melanoma model 77
Complete tumor elimination with
cytotoxic T cells þ nanoparticles

PEG–PLGA PD-1, antitumor necrosis
factor receptor superfamily

member 4

Mouse melanoma model 78
Threefold increased survival with
dual-drug nanoparticle delivery

Chitosan Anti-PD-L1 Mouse melanoma model 79
Increased anti-PD-L1 retention,

mouse survival and fewer metastases
Iron-dextran þ quantum dots CD28, major histocompatibil-

ity complex-peptide complexes,
cognate T cells

Mouse melanoma model 80
Significant tumor growth reduction

PEGylated oligopeptide-
modified poly(b-aminoester)

Oncolytic adenovirus Murine xenograft of human pancre-
atic cancer

81

Three-fold increased circulation time,
reduced immune neutralization of
OV and significantly reduced tumor

growth
Methoxy PEG-b-poly{N-[N-
(2-aminoethyl)-2-aminoethyl]-
l-glutamate} þ PEG

Oncolytic adenovirus Murine xenograft of human fibrosar-
coma and lung cancer

83

Increased accumulation in the tumor,
reduced OV accumulation in off-

target tissues, tumor growth reduced
two- to three-fold

Polymeric micelle þ PEG Oncolytic adenovirus,
paclitaxel

Murine xenograft of human breast
cancer

84

Higher viral replication in tumor, 12-
fold increased blood retention and

2.5-fold anti-tumor efficacy.
Synergistic effect of paclitaxel þ OV

Chitosan–PEG folate Oncolytic adenovirus Murine xenograft of human epithelial
cancer

85

Increased blood circulation time,
two-fold reduced tumor growth

Lipid nanoparticle mRNA cancer vaccine Mouse melanoma and colon cancer
models

86

Completely inhibited tumor growth
Clinical trial for malignant mela-
noma: De novo T cell responses

against the cancer
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the spleen. The mRNA expression appears to mimic infection with
RNA viruses where free DNA and RNA are sensed by APC via recep-
tors such as TLR7, which in turn stimulates the production of IFN-a
that activates DC, NK, B, and T cells. Furthermore, the RNA is inter-
nalized and translated by DC resident in the spleen, producing antigens
that are then presented by the DC to activate and stimulate the prolifer-
ation of antigen-specific T cells. This technology was also one of the
precursors to the revolutionary and now ubiquitous mRNA vaccines
developed by Pfizer and Moderna against COVID-19.87

C. Scaffolds for immune cell delivery

1. Principles of ACT

Another therapeutic strategy for which biomaterials could bring
strong benefit is ACT. Conventional ACT consists of the intravenous
administration of immune cells, mostly of T lymphocytes, which are
expanded ex vivo and implanted into the patient to harness their spe-
cific anti-tumor effects. Presently, there are two main types of ACT
treatment, depending on the sources of immune cells: tumor infiltrat-
ing lymphocytes (TILs) and genetically modified T cells with chimeric
antigen receptors (CARs) or with tumor-specific TCRs.

TIL used are obtained from the patient tumor, due to their well-
established, inherent tumor-specific response, considerably more
abundant than peripheral lymphocytes. Since its first adoption in 1988
by the team of Rosenberg et al., TIL-ACT has shown great promise in
the treatment of metastatic melanoma. In this treatment, TIL must be
isolated from the tumor and expanded in vitro to reach 1–20 � 109

cells, before being intravenously reinjected in the patient. IL-2 is an
essential growth factor for T cell proliferation, though other growth
factors, such as 4–1BB and TGF-b1, have been proposed as additional
factors to improve cell growth and the anti-tumor response.88,89

Current ACT with TIL also uses a rapid expansion protocol, where
minimally cultured and non-selected “young” TIL have been shown to
be more effective than TIL cultured over a longer time period and
selected in vitro based on antigenic stimulation,11 though a limited
number of treatment centers are able to both rapidly culture young
TIL and select them for tumor specificity through the identification of
unique tumor mutations via whole exome sequencing.90

Lymphodepletion via a combination of chemotherapy and total body
radiation, prior to T cell injection, is also considered to have a benefi-
cial effect on the anti-tumor activity. High dose IL-2 is also adminis-
tered in order to maintain T cell activation in vivo, which is a source of
the toxicity and negative side effects of current ACT.91 The main steps
of ACT are summarized in Fig. 8.

Another large area of interest is in so-called CAR-T cells, where
T cells are genetically modified to express CARs in addition to the
native T cell receptors. Their advantage lies in the fact that their recog-
nition is not MHC-dependent, and they can recognize a wider variety
of antigens than T cell receptors (which are limited to short peptides).
Several pitfalls, however, keep these promising treatments from
becoming mainstream.

One significant limitation of ACT is the large numbers of T cells
that must be obtained, as many are lost to non-cancerous sites of
inflammation during systemic administration and only a small frac-
tion is reaching the tumor. This expansion can be lengthy, expensive,
and difficult to achieve for some patients, causing many to lose treat-
ment eligibility because of their deteriorating condition. Cells can also

struggle to persist and survive in the immunosuppressive tumor
microenvironment.92–94 Even CAR-T cells, despite their success, show
similar problems to ACT with TIL, including toxicities, such as cyto-
kine release syndrome and neurotoxicity, as well as limited efficacy in
solid tumors.95

These limitations call for reduced dosage and local cell delivery,
in order to reduce the number of cells needed and avoid IL-2 associ-
ated toxicity, resulting in safer treatments. Simple cell injection around
tumors is not sufficient, due to rapid cell loss due to dispersion, inflam-
mation, and anoikis.96 Biomaterial scaffolds could increase the number
of cells at the target tumor site, while decreasing the overall doses and
numbers required.58 Furthermore, the inclusion of drugs or molecules
to improve T cell persistence and anti-tumor activity, as well as the
improved physical retention of T cells at the tumor site when delivered
via a biomaterial, could improve cell persistence and functionality
as well.

2. Design criteria for immune cell scaffolds

Cell-delivery scaffolds refer to biomaterials used as structures
with defined architecture and composition, used for the delivery,
retention, and support of cells, possibly combined with therapeutic
molecules. Only recently have cell-delivery scaffolds been proposed to
enhance the efficacy and overcome the limitations of ACT treatments.
In terms of the requirements for an immune cell delivery scaffold, the
scaffold should satisfy several criteria:18,97

1. Ease of administration—the scaffold must ideally be capable of
minimally invasive implantation, via either a catheter or injec-
tion of the scaffold through a needle, to avoid the complications
of surgical insertion and reach any location within the body.

2. Easy and simple homogenous mixing with cells, with a matrix
capable of cell protection from applied shear stress during injec-
tion through standard needles or catheters.

3. Rapid stability in vivo—after minimally invasive implantation
the scaffold must form a mechanically stable structure, stationary
in the location it has been delivered in the body to ensure cell
retention close to the target site.

4. Cell compatibility—in addition to the general biocompatibility of
the scaffold, it must support cell encapsulation. Once in situ the
scaffold must support the survival, growth, anticancer function,
and escape of immune cells over a timeframe sufficient for can-
cer treatment.

5. Porosity—the scaffold must have a porosity that allows access to
nutrients and waste removal for encapsulated cells and allows
immune cells to escape and perform their anti-cancer functional-
ity, eliminating cancerous cells while other immune cells, such as
DC and B cells, could colonize scaffolds to form protective ter-
tiary lymphoid tissue.

6. Biodegradability—the scaffold should biodegrade into nontoxic,
metabolizable products. In the case of cancer immunotherapy,
degradability such that when the tumor is eliminated the bioma-
terial will also degrade and disappear would be desirable.

7. Formulation—the scaffold should ideally be chemically simple to
formulate and avoid toxic chemical processes and to ease fabrica-
tion and approval by regulatory bodies, such as the FDA in the
USA or the European Medicines Agency in Europe.
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8. Sterilizability—the biomaterial should be capable of sterilization
using standard methods, such as autoclaving, ethylene oxide, or
gamma radiation, prior to cell mixing and injection.

Table V gives a summary of recent or current studies of cell deliv-
ery scaffolds for cancer immunotherapy, which run from simple
in vitro studies to preclinical murine models and use lymphocytes,
DC, and even in one case NK cells. These are detailed further in
Sections C3 and 4 a selection are shown in Fig. 9.

3. T lymphocyte-loaded scaffolds for ACT

Cell-delivery scaffolds offer improvements to systemic cell deliv-
ery using inherent biomaterial advantages, such as localization and the
incorporation of immunostimulatory factors. T cell-delivery scaffolds
have been the most studied approach, with a range of both implant-
able and injectable materials been investigated with varying progress
from in vitrowork to in vivomodels.

a. Implantable scaffolds. Stephan’s group, which is prominent in
this area, developed oxidized (and therefore biodegradable) alginate
gels grafted with a collagen-mimetic peptide to locally deliver CAR-T
cells.106 In vitro studies demonstrated the benefit of this adhesive pep-
tide, which increased lymphocyte migration within the gel and lym-
phocyte escape into a surrounding collagen gel, as well as increasing
cell viability compared to unmodified alginate. Lipid-coated mesopo-
rous silica microspheres (MSM) incorporating an IL-15 agonist as well
as the immunostimulatory antibodies CD3, CD28, and CD137, similar
to those present in the Dynabeads Human T-Activator commonly
used for in vitro T cell expansion, were also included, and the scaffold
was lyophilized to create an implantable porous matrix that was
seeded with T cells immediately before implantation. The scaffold led
to very promising in vitro and in vivo results in mouse models. In
breast cancer resection model, it reduced tumor relapse compared to
conventional intravenous or peritoneal treatments and supported
tumor-targeting T cells throughout resection beds and associated
lymph nodes, while it triggered much stronger regression in a

FIG. 8. Typical phases of in clinical ACT: TIL or CAR are obtained and expanded in vitro, before lymphodepletion and re-administration alongside growth factors, such as high-
or low-dose IL-2. CD4þ CD25þ FoxPEþ cells are immunosuppressive regulatory T cells that downregulated the activity of cytotoxic T lymphocytes in ACT.
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TABLE V. Cell-delivery biomaterial scaffolds for immunotherapies.

Materials Cells Therapeutic agents Injectable?
Immunotherapy model and

outcomes Reference

Chitosan–PEG Human PBMC None Yes In vitro glioblastoma cells 98
Chitosan–PEG Human CAR-T cells Self-expression

of IL-15
Yes Human retinoblastoma 99

Elimination of tumors and 100%
survival with gel-delivered IL-15

CAR
PCL–PEG–PPG
copolymer

Human CD4þ T cells None Yes Human CD4þ T cell survival over
5 days

100

PEG–heparin Human CD4þ T cells CCL21 Yes Increased human CD4þ T cell
proliferation

101

PEG Human CD3þ T cells None Yes Proliferation upon restimulation
of escaped T cells

102

Chitosan Human PBMC and
TIL

None Yes In vitro renal cancer, breast cancer
and melanoma

103

Polyisocyanopeptide
(PIC) þ GRGDS
peptide

Human T cells, DC
and NK, mouse T cells

None Yes Migration in mice in vivo without
tumors

104

Hyaluronic acid Human CAR-T cells None Yes In vitro glioma cell line 105
Alginate þ GFOGER
collagen-like peptide

Human CAR-T cells IL-15 agonist, CD137,
CD28, CD3

No Mouse breast cancer resection
model

106

Regression in 60% of treated mice
vs 0% survival in untreated mice

Alginate þ GFOGER
collagen-like peptide

Human CAR-T cells IL-15 agonist, CD137,
CD28, CD3, STING

agonist

No Mouse pancreatic cancer and mel-
anoma models

107

Complete pancreatic tumor elimi-
nation in 40% of treated mice,
with persistent immunity on

tumor rechallenge.
Fibrin-coated Nitinol Human CAR-T cells IL-15 agonist, CD137,

CD28, CD3
No Mouse ovarian cancer model 108

2.7-fold survival increase with
CAR-T-loaded Nitinol film vs

untreated
Fibrin Murine DC None Yes Mouse lung cancer model 109

Encapsulated DC treatment more
effective than non-encapsulated

RADA16 peptide Murine DC Tumor antigens, anti-
PD-1

No Mouse lymphoma model 110
Survival improvement with gel-
encapsulated DC vs untreated

mice
a-CD/PEG Murine DC DOX, CpG, B16 tumor

cells
Yes Mouse melanoma model 111,112

Significant survival improvement
with gel-encapsulated DC with
CpG þ B16 vs single treatments

Gelatin-hydroxyphenyl
propionic acid

Murine DC OV Yes Mouse lung cancer model 113
Increased survival compared to
single treatments of DC/OV

Hyaluronic acid Human CAR NK cells None No Mouse leukemia and breast cancer
models

114

Significant survival improvement
with gel-encapsulated CAR NK vs

non-encapsulated NK
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TABLE V. (Continued.)

Materials Cells Therapeutic agents Injectable?
Immunotherapy model and

outcomes Reference

Alginate microspheres Human CAR-T cells IL-15, hemoglobin Yes Mouse renal and ovarian cancer
models

115

Greatly improved mouse survival
with alginate-encapsulated CAR-T
cells compared to untreated mice

Fibrin Human CAR-T cells None No Mouse lymphoma and glioma
models

116

Significantly improved mouse sur-
vival with fibrin-encapsulated
CAR-T cells compared to mice
treated with non-encapsulated

CAR-T cells
Methacrylated hyalur-
onic acid

Human CAR-T cells IL-15 nanoparticles,
anti-PD-L1 platelets

No Mouse model of human
melanoma

117

Extensive tumor elimination with
CAR þ IL-15þ anti-PD-L1

Alginate Monocytes Tumor antigens, anti-
PD-1

Yes Mouse breast cancer model
Significant preventative and thera-

peutic anti-tumor effects

118

FIG. 9. Selected biomaterials for immune cell delivery. Implantable or injectable gels, meshes, and microcarriers are loaded with dendritic cells, NK cells, or CAR T cells to
improve cell delivery and persistence in and around the tumor. Cells progressively escape from the scaffolds toward the tumor and immune system, while the biomaterials and
additions, such as stimulatory antibodies or cytokines, augment treatment efficacy.
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multifocal ovarian cancer model resulting in greater mouse survival
than locally delivered cells without the scaffold.

The same group further developed this model in 2017, adding
cyclic di-GMP as a STING agonist, again loaded into the MSM,
to activate DC and further enhance the immune response.107

The combination showed increased efficacy in treating solid pancreatic
cancer and melanoma tumors in mice, with the STING agonist addi-
tion resulting in complete tumor remission in some cases. The authors
conclude that the codelivery of STING agonists can stimulate the
immune responses to eliminate tumor cells that are not recognized by
the adoptively transferred lymphocytes and thus improve the CAR-T
cell therapy and help protect against the emergence of escape variants.
However, the scaffold is not injectable and its numerous complicated
fabrication steps were a strong limitation toward clinical transfer.
More importantly it lacked a well controlled porosity to favor T cell
survival and proliferation.

More recently, Stephan’s group adapted similar modifications to
a fibrin-coated nickel–titanium alloy (nitinol) porous mesh with well
controlled porosity, that can be placed on tumor lesions and release
and functionally support tumor-targeted T cells.108 These micropat-
terned thin films (approximately 10lm), formed via magnetron sput-
tering, were designed to improve oxygen and nutrient transfer to the T
cells which was a limiting factor in their previous alginate gels. Nitinol
is inherently bioinert due to the thin layer of titanium oxide formed
on its surface, though in this work the nitinol was functionalized
through fibrin coating which allowed lymphocyte adhesion and migra-
tion as well as coupling to the CD3, CD28, and CD137 antibodies. The
system elicited robust proliferation of the seeded T cells in vitro and
in vivo, leading to a huge increase in T cell on the site compared to
intravenous and locally injected cells. The authors also showed impres-
sively enhanced tumor elimination compared to locally or intrave-
nously injected CAR-T cells.

The necessity to implant this scaffold is still a potential limitation
compared to injectable cell delivery scaffolds for immunotherapy.
However, the mesh can be incorporated into a variety of implant con-
figurations, such as an endovascular stent for minimally invasive
administration. Applicability to human patients may depend on tumor
location and feasibility of surgical implantation. Moreover, the practi-
cal constraints for producing and manipulating sterile nitinol films,
and their subsequent seeding with T cells followed by implantation or
catheter administration may be limiting for practical clinical use.

Another interesting study is a methacrylated hyaluronic acid
hydrogel developed by Gu’s group for CAR-T cell encapsulation, using
freeze-drying to create implantable porous hydrogels with a similar
method to the previously described cryogel vaccines.117 The gel also
incorporated IL-15 loaded PLGA nanoparticles, and platelets conju-
gated to anti-PD-L1. While the effect of the CAR-T-loaded hydrogel
was quite limited, almost complete tumor elimination was achieved
with the group with co-encapsulated CAR, IL-15, and PD-L1 in a
mouse model using WM115 human melanoma cells [Fig. 10(b)]. They
also demonstrated by bioluminescence the persistence and growth of
T cells in vivo, and the scaffold triggered an abscopal effect inhibiting
distal tumor growth.

b. Injectable scaffolds. Several efforts have also been made to cre-
ate injectable T lymphocyte delivery scaffolds. A thermosensitive
chitosan–PEG hydrogel, prepared by alkylation of chitosan followed

by Schiff base formation, showing loading, survival, escape and anti-
cancer activity of T lymphocytes in vitro against a glioblastoma cell
line.98 However, the scaffold had a gelation time of 8–12min at 37 �C,
which is quite long to avoid cell dispersion at the time of in vivo injec-
tion. The same gel was later applied to CAR-T cells targeted against
GD2, an antigen overexpressed in retinoblastoma.99 The gel prolonged
CAR persistence within the tumor and gel-encapsulated CAR signifi-
cantly reduced tumor growth. Impressively, further modification of the
CAR to induce self-expression of IL-15 resulted in tumor elimination
and a 100% survival rate. Our group also developed a thermosensitive
porous chitosan gel for T cell delivery, demonstrating significantly
faster gelation at 37 �C than the chitosan–PEG gel and human PBMC
viability and growth over 2weeks, as well as specific anti-cancer func-
tionality in transwell models.103 This physical gel requires no chemical
modification or cross-linking of chitosan, a natural biomaterial already
used in FDA-approved medical devices. It is completely biodegradable
and can be prepared by simple mixing of two sterilized solutions fol-
lowing by the addition of the cells prior to injection through small
diameter syringes (up to 23G). These are important advantages for the
potential clinical transfer of such a cell delivery scaffold for immuno-
therapy. In vivo tests inMC38-OVAmurine subcutaneous tumor mod-
els have shown some efficacy to reduce tumor growth in vivo, even
when administering a reduced cell number compared to systemic
treatment.119 However, the effect is limited in time and the absence of
cell proliferation inside the scaffold in vivo calls for further gel
optimization.

Perez del Rio et al. developed a PEG-heparin hydrogel containing
lymphocyts,101 where heparin allowed the conjugation of the cytokine
CCL21 which is present in the lymph nodes and is known to enhance
T cell proliferation and migration.120 The hydrogels increased CD4þ T
cell proliferation, though were demonstrated primarily as T cell culture
scaffolds rather than a delivery platform. A PCL–PEG–poly(propylene
glycol) copolymer has also been demonstrated for T cell encapsulation,
though only showed cell survival over 5 days and no proliferation was
demonstrated in this case.100 Yan et al. demonstrated a PEG hydrogel
formed via Diels–Alder cycloaddition of fulvene and maleimide func-
tionalized PEG precursors, which has tunable stiffness and degrada-
tion.102 However, the gel showed relatively slow gelation (>15min)
and limited cell viability after several days even with RGD functionali-
zation, though cells escaped from the gel showed proliferation after
recovery and re-stimulation.

In the Netherlands, Figdor’s group investigated RGD grafted pol-
yisocyanopeptide (PIC) gels to culture human T cells and observe the
in vivo escape of murine T cells.104 PIC, a relatively new class of hydro-
gel, are synthetic hydrogels formed through nickel(II)-catalyzed poly-
merization of the two monomers—triethylene glycol functionalized
isocyano-(D)-alanyl-(L)-alanine (monomer 1) and monomer 2, an
azide-appended version of monomer 1. This water-soluble polymer
exhibits thermosensitive gelation, remaining liquid below 16 �C and
forming soft hydrogels in a matter of minutes above this tempera-
ture.121 Interestingly, its mechanical properties can be tuned to reach
similar mechanical properties and stress-stiffening behavior to biologi-
cal polymers such as collagen.122 The authors showed that GRGDS
peptide grafting allowed greater T cell migration within the gel com-
pared to unmodified gel and in vitro viability and proliferation up to
72 h.104 Scaffold– encapsulated T cells migrated out of the gels over
3–4weeks in mice, though with many T cells escaping the gel in the
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first week after injection. Furthermore, the study was performed sim-
ply to demonstrate T cell escape from the gel in mice without tumors
and so has not demonstrated efficacy in a mouse tumor model. Atik
et al. developed a proprietary, low-viscosity hyaluronic acid and
gelatin-based gel as a substrate to deliver CAR-T for glioblastoma
using convection enhanced delivery, in which an intracranial catheter
is placed into the tumor that infuses the agent with positive-pressure
over time.105 The encapsulated CAR-T cells migrate from the gel and
carry out their cytotoxic function in vitro. The gel itself showed no tox-
icity when injected in mice, though again this was performed in mice
without tumors and so has not demonstrated anti-tumor efficacy.

Other groups are also beginning to investigate alternative materi-
als and biomaterial formats for ACT delivery. Fibrin gel-mediated
CAR-T cell delivery was, thus, tested for glioblastoma by inoculating
fibrin solution with CAR-T cells in the cavity followed by immediate

addition of thrombin solution. However such a method does not
ensure complete encapsulation due to cell dispersion prior to gel for-
mation and fibrin gel is known to degrade very rapidly.116

The main challenge with injectable scaffolds is to create macro-
porous structures which allow good access to oxygen and nutrients
and the possibility for the cells to escape the scaffold. Several studies
including Stephan’s work with nitinol films have shown that the small
physical size of microscaffolds is beneficial for nutrient supply and cell
migration.108,123 Another alternative is to encapsulate T cells in small
microspheres that allow better diffusion of oxygen and nutrient, and
potential vascularization in between the microspheres.124 Thus, Luo
et al. created an injectable hydrogel-encapsulated porous immune-
microchip system (i-G/MC) with the capabilities of enhancing CAR-T
cell survival and proliferation.115 Interestingly, they incorporated the
HEMOXCell molecule in their alginate microspheres, a marine

FIG. 10. Cryogel for CAR-T cell delivery. (a) Schema of the tumor model and cryogel. (b) Tumor bioluminescence (left) and volume (right) 3 weeks after treatment (mean
6 SD, n¼ 6 mice per group). Statistical analysis was performed using one-way ANOVA followed by Tukey’s HSD post-hoc test. (c) Representative photos of tumors at three
weeks. Groups: (1) saline; 2, P-aPDL1@gel; (3) CAR-T; (4) CAR-Tþ P-aPDL1; (5) CAR-T@gel; (6) CAR-T@gel þ P-aPDL1; and (7) CAR-T-P-aPDL1. Scale bar, 1 cm.
PMP: platelet-derived microparticles, P-aPDL1: PDL1 antibody covalently conjugated to the cell surface of human platelets. Reproduced with permission from Hu et al., Nat.
Biomed. Eng. 5, 1038–1047 (2021). Copyright 2021 Springer Nature.
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hemoglobin with a high oxygen storage capacity, to counteract the
hypoxic effect of the tumor microenvironment. However, the long and
complex preparation steps required (including multiple lyophilisations
and several days immersion in PBS) may prevent the use of such sys-
tems in clinical trials.

Altogether, despite impressive developments and a variety of
approaches, and very promising results in mice models, there is pres-
ently no ideal scaffold for T cell delivery which would combine well
controlled porosity and injectability and clinically feasible manufactur-
ing processes. Moreover, efficacy against distal or metastatic tumors
and long-term tumor elimination will ideally need to be demonstrated
for eventual progression to clinical trials.

In several cases, the authors demonstrate further increase in mice
survival when adding debris from eradicated tumor cells to convert
the implant to not only act as a cell delivery but also a “self” vaccine
site. Thus, to mount a robust anticancer response, an ideal scaffold
should probably not only allow sustained growth and delivery of a suf-
ficient number of stimulated T cells that destroy tumor cells but also
contain significant amounts of tumor antigens which become available
to endogenous APCs and eventually high concentrations of stimulants
that activate these APCs.

4. Scaffolds for other immune cells

Biomaterials have also shown promise to assist DC-based immu-
notherapies, with DC probably the most commonly delivered immune
cell via biomaterial scaffolds after T cells. Such DC loaded scaffolds
can overcome the lack of recruitment of host DCs to create more effi-
cient vaccine-like immune cell niches. DC can be stimulated prior to
their addition in the gel or injected in combination with the tumor
antigen, and eventually other drugs, as detailed below.

Tumor antigen-stimulated DCs in a fibrin gel showed signifi-
cantly reduced tumor growth in mice with the cell scaffold construct
compared to injected DC alone.109 DC were also delivered using an
injectable self-assembled peptide hydrogel,110 based on RADA16, a
synthetic peptide consisting of 16 alternating hydrophobic and hydro-
philic amino acids which self-assembles into a nanofibrous, nanopo-
rous hydrogel in the presence of neutral pH solution.125 DC and
antigens were mixed with the hydrogel on ice before injection. The gel
was biocompatible with DC, did not activate DC by itself (being non-
immunogenic) and when containing DC and antigens it improved
both therapeutic and prophylactic efficacy in reducing tumor growth
in a mouse lymphoma model, compared to intravenous and subcuta-
neous injection, with even greater efficacy observed in conjunction
with an anti-PD-1 checkpoint inhibitor. In addition to anti-PD-1,
Yang et al. showed that the chemotherapeutic DOX in the form of
nanoparticles, also potentially conjugated to the immune adjuvant
CpG, could be incorporated in an injectable a-cyclodextrin/PEG
hydrogel along with DC. The gel significantly reduced tumor growth
in a B16 melanoma mouse model compared to single treatment or
control groups when treated with the full complement of DC, DOX
and CpG-loaded gel.111 Subsequent work from this group also showed
the further beneficial effect of including dying B16 tumor cells into the
DC scaffold vaccine.112 A similar trend was also observed with mono-
cytes encapsulated in alginate droplets using a microfluidic system.118

The combination of IL-12 and GM–CSF-expressing OV with DC
was tested using a gelatin-hydroxyphenyl propionic acid hydrogel,

enzymatically cross-linked via horseradish peroxidase (HRP) and
hydrogen peroxide (H2O2). Gel-encapsulated OV þ DC significantly
increased survival in a murine Lewis lung carcinoma model compared
to single treatments of a DC/OV combination without gel, with
impressive 100% survival in mice treated with Gel OV þ DC. All this
work indicates the range of materials and drugs beneficial for mono-
cyte and DC delivery, as with T cell ACT.

Another interesting recent development is a hyaluronic acid-
based scaffold that was used for the delivery of NK cells as a cancer
immunotherapy. The scaffold was formed from a blend of
methacrylate-modified HA and methacrylate-modified oxidized HA,
where the methacrylate-modified oxidized HA acted as a highly
degradable sacrificial component to create greater porosity and allow
NK cell clustering which improves cell activation and viability.126 The
scaffold upregulated NK cell proliferation and tumor killing activity
in vitro and resulted in fewer metastases and increased mouse survival
in vivo.114 This work may well be the first of many investigations into
NK cell-carrier biomaterials as cancer immunotherapies, though the
scaffold is non-injectable and must be implanted so it would be inter-
esting to examine some of the above injectable scaffolds as NK cell
carriers.

III. CONCLUSIONS AND PERSPECTIVES

In this review, we summarize how biomaterials can enhance can-
cer immunotherapies by addressing some of the challenges of these
approaches, which have been at the forefront of pharmaceutical break-
throughs in recent years and will continue to be so. Through their
localized action and controlled release of cells, cancer antigens, drugs,
immunomodulatory molecules, or combinations thereof, biomaterials
can overcome the problem of rapid cell and antigen dispersion, as well
as toxicity related to systemic delivery, and allow the combination of
several products, with or without exogenous cells to eliminate cancer
more efficiently.

For cancer vaccines, biomaterials can address numerous limita-
tions that have so far hindered their progress toward the clinic.
Multiple studies indicate increased potency using biomaterial vaccines
compared to free vaccine components intravenously or subcutaneously
injected, one factor of which is likely the “immune niche” created in
porous biomaterials. This environment encourages antigen uptake by
DC, often in a space that is protected from the immunosuppressive
tumor microenvironment to concurrently improve DC persistence.
Furthermore, biomaterials allow the inclusion of immunostimulatory
adjuvants or drugs, in addition to the antigens or tumor cell lysates,
and the controlled release of these factors further increases their
potency. Exogenous DC cells can also be added to ensure a greater
number of activated DC cells, although this implies more complicated
preparation steps and regulations. Such products will most probably be
used in the future, at least to prevent cancer recurrence or fight metas-
tasis. The main limitations at this stage are on one hand, the absence of
ideal injectable porous scaffolds, and on the other, limited persistence
and long-term efficacy, with a lack of clinical data.

Biomaterial scaffolds for drug delivery offer similar benefits in
terms of controlled and localized release of therapeutics, which
increases the potency of ICI and allows combination therapies, for
instance with chemotherapies. Localized biomaterial delivery also
allows reduced dosages and hence a reduction in the toxicity associ-
ated with both chemotherapies and immunotherapies. Furthermore,
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innovative carriers, such as the sprayable gel, theranostic optic fibers,
and inhaled nanoparticles, expand the range of possible methods to
administer treatments.

While scaffolds for T lymphocyte growth and delivery remain a
significant and underexplored research area, they are potentially
advantageous compared to systemic lymphocyte delivery to reduce the
numbers of required cells and decrease cell loss. Furthermore, their
flexibility in incorporating a range of stimulatory factors or drugs,
such as ICI, to better prime the cells and help them avoid cancer
immune escape shows great promise for current and future treat-
ments. Certain commonalities between the highest performing scaf-
folds, such as the inclusion of IL-15 superagonist, indicate priority
molecules to include for successful treatment. One can also imagine
the development of artificial tertiary lymphoid structures (TLSs) com-
bining several immune cell types, as commonly seen around tumors
and associated with a favorable prognosis.127 Other scientific develop-
ments, such as 3D printing and bioprinting, also offer hope for further
improvements in therapy efficacy and control within immunotherapy,
by creating complex implantable 3D structures with spatially defined
cell organization. For example, Jin et al. showed improved T cell prolif-
eration and reduced cell exhaustion induced by coaxial 3D printed
alginate fibers.128 This could be beneficial in the creation of spatially
defined artificial TLS with distinct stromal, T and B cell zones, previ-
ously attempted and reviewed elsewhere.129,130

There are, however, still several challenges. One of them is that
delivered cells must access the lymphatic or vascular system for effi-
cacy against metastatic tumors. Some groups have shown the presence
of delivered cells in the blood and draining lymph nodes, though the
mechanism of how exogenous cells reached the vascular system or
lymph nodes is rarely investigated and could be examined in future
work. The immunosuppressive microenvironment that limits intrave-
nous ACT treatments seems to have been counteracted in many of
these examples as well as in some of the discussed cancer vaccines.
However, a challenge of immunotherapy linked to tumor immuno-
suppression is its limited applicability outside certain cancers. It would
be interesting to see these localized treatments applied to xenografts of
immune-resistant cancers as opposed to the cell lines generally used so
far to see if their potency is retained.

Another challenge is the difficulty to satisfy all the requirements
of cell growth, delivery, and persistence as well as optimal cell–cell
contact and simple, easy to transfer technologies which are injectable,
sterilizable and perhaps even with off-the-shelf capabilities. Quick,
simple manipulation by clinicians is also of high importance.131 The
highest performing T cell scaffolds discussed here show impressive cell
encapsulation or seeding, cell growth, and potent anti-tumor effects,
but their design may be too complex for clinical translation. A com-
promise may be necessary between efficacy and feasibility. The
requirements for regulatory approval must also be considered if these
biomaterial-aided treatments are ever to progress to regular clinical
use.132 The vast majority of the immunotherapeutic treatments
described above would follow the FDA approval pathway of a biologic
drug as the primary mode of action of any immunotherapy is inher-
ently biologic in nature. Therapies using cells or tissues would also
have the designation of human cell, tissue, and cellular and tissue-
based products with combinations of drugs and materials further clas-
sified as combination products. Biologic drugs must demonstrate
safety, purity, and potency, while the biomaterial component of

combination products must satisfy further criteria associated with the
medical device approval pathway.133 In particular, the biomaterial
scaffold must pass ISO 10993 biocompatibility requirement, where
material cytotoxicity, sensitization, carcinogenicity, and degradability,
among other parameters, are to be assessed.134 The device’s potential
for sterilization, mass production, and batch-to-batch variability
should all be considered. Further considerations include the need for
aseptic processing, transmissible disease testing, and traceability if cel-
lular products are used as well as Good Laboratory Practice, Good
Manufacturing Practice, and Good Clinical Practice throughout
research and development, manufacturing, and clinical testing.135 All
this requires a large extent of in vitro and in vivo pre-clinical models
and clinical trials all demonstrating safety and efficacy for the approval
of these products, although candidate treatments can benefit from a
range of expedited programs, such as Fast Track, Breakthrough
Therapy, and Accelerated Approval, where clinical or non-clinical
data indicate a safety or efficacy improvement compared to existing
treatments for serious conditions.135

As demonstrated along this review, biomaterials will likely be part of
the future approaches to support and continue the revolutionary effect
that immunotherapy has had on cancer treatment. As cancer immuno-
therapy is still at a relatively young stage in its development and scientific
understanding, further progress in understanding cancer immunity and
each sector of the immune system will guide future developments, such as
the inclusion of ICI, adjuvants, and immunostimulatory factors with or
without immune cells in biomaterial-based delivery systems. Cell delivery
scaffolds represent a growing but still under-investigated area and may
hold the key to more effective and durable future cancer treatments.
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