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ABSTRACT The performance of the envisioned 6G network is fundamentally constrained by the uncon-
trollable and random wireless communication channel. Intelligent reflecting surfaces (IRSs) have emerged
as one of the potential solutions to overcome this challenge by smartly controlling the incident signal
to enhance the energy efficiency and spectrum efficiency of the 6G network. In addition, the future 6G
networkwill incorporate several enabling technologies, including artificial intelligence andmachine learning
(AI/ML), integrated terrestrial and non-terrestrial (TNT) networks, multi-access edge computing (MEC),
non-orthogonal multiple access (NOMA), and terahertz/millimeter wave (THz/mmWave) communication
techniques. Therefore, this paper provides a contemporary and comprehensive overview of the envisioned
IRS-empowered 6G networks from the perspective of its architecture, deployment strategy, integration of
IRS technologywith other 6G-enabling technologies, and physical layer security (PLS). Finally, we highlight
design challenges and future research directions aimed at improving the 6G network performance.

INDEX TERMS Intelligent reflecting surfaces, terahertz communication, terrestrial and non-terrestrial
(TNT) networks, unmanned aerial vehicles, reinforcement learning, ultra-reliable and low-latency
communications.

I. INTRODUCTION
Emerging wireless applications, such as augmented/mixed
/virtual reality (AR/MR/VR) and internet of everything (IoE),
require ultra-high data rates, ubiquitous/massive connectivity,
extremely low latency, and high-reliability [1], [2], [3]. In this
context, sixth-generation (6G) networks are expected to sat-
isfy the stringent quality of service (QoS) requirements of the
three emerging communication classes, i.e., ultra-reliable and
low-latency communications (URLLC), massive machine-
type communications (mMTC), and enhanced mobile broad-
band (eMBB) [4]. The key performance indicators (KPIs) of
6G networks are summarized as follows: [1], [3], [5], [6], [7].
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1) Bandwidth: 6G networks will need to support frequen-
cies of up to 100 GHz in the visible frequency and
terahertz (THz) bands and frequencies up to 10 GHz
in the millimetre-wave (mmWave) frequency bands.

2) Peak data rate: It is expected to have a speed of
≥1 terabit per second (Tbps), which is 100-1000 times
faster than 5G.

3) Mobility management: The 6G is expected to support
unmanned aerial vehicles (UAVs) and high-speed trains
with a maximum speed of 1000 km per hour.

4) Spectral efficiency: The spectral efficiency of 6G is
expected to be five times that of 5G.

5) Energy efficiency: To achieve a green communication
network, the energy efficiency of 6G should be 10 to
100 times greater than 5G.
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FIGURE 1. Organization of the paper.

6) Latency: For applications such as AR, MR, and VR,
the 6G has a more stringent enhanced URLLC require-
ment to support ≤ 100 µs.

In order to satisfy these requirements, several optimization
techniques have been proposed at the network operator and
base station (BS) to improve some crucial factors, such as
spectral efficiency, energy efficiency, coverage, and qual-
ity of wireless networks [8]. However, with the advent of
complex and dynamic wireless networks, such as UAV and
6G, the random wireless channels remain an uncontrollable
factor [9]. Existing optimization techniques formulated for
resource allocation in wireless communication fail to satisfy
the stringent performance requirements for future wireless
networks with such a random and uncontrollable propagation
environment.

For 6G environments, the time-varying and random wire-
less channels are the fundamental challenges that hin-
der high capacity, and ultra-reliable communications [13].
Intelligent reflecting surfaces (IRSs) have emerged as a
promising paradigm to reconfigure the random radio/channel
propagation environment to satisfy the targeted KPIs for 6G
[7], [14], [15]. An IRS consists of a large number of passive
reflecting elements that can dynamically tune the phase or
amplitude of the incident signal to improve the performance
of wireless systems [15], [16], [17]. IRSs can be densely
deployed in the wireless system in order to reconfigure their
reflections intelligently to achieve the desired distributions
and gains. The IRS-assisted network enables the propaga-
tion environment to be controlled dynamically, resulting in
a quantum leap in reliability and capacity. Moreover, the
wireless channel interference and fading can also bemitigated
in IRS-assisted 6G networks [9].

Moreover, future networks are also expected to support
aerial users in highly mobile and dynamic wireless environ-
ments [18]. In this context, the IRSs deployment for aerial
communications has shown promising results by creating

TABLE 1. List of main acronyms.

stronger line-of-sight (LOS) channel conditions that enhance
the coverage and capacity of the 6G network compared to the
terrestrial network.

Recent studies have investigated the impact of IRS deploy-
ment on performance improvement in 6G networks [18],
[19], [20], [21], [22]. In particular, the IRS-assisted com-
munication systems have shown promising results for 6G
applications, including terahertz (THz) [23], non-orthogonal
multiple access (NOMA) [24], physical layer security
(PLS) [25], and aerial networks [13]. However, one of the key
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TABLE 2. Comparison of existing survey in IRS-enabled 6G communication.

challenges is investigating the IRS deployment designs tai-
lored for 6G applications. This paper investigates the design
aspect of IRSs in NOMA, THz, PLS, and aerial networks by
employing optimization and ML techniques.

A. MOTIVATIONS AND CONTRIBUTIONS
Unlike recent works summarized in Table 2, this survey is the
first to provide comprehensive literature on IRS deployment
strategies in 6G applications, as well as the benefits of asso-
ciating IRS technology with other 6G-enabling technologies.
The key contributions of the paper are summarized as follows.

1) The paper presents a comprehensive survey on IRS-
assisted communication, covering the design aspects of
IRSs in perspective applications of 6G networks.

2) We also investigate IRS deployment and integra-
tion with other 6G-enabling technologies, including
AI/ML, NOMA, THz/mmWave, PLS and integrated
terrestrial and non-terrestrial networks, including UAV
and satellite networks.

3) Finally, this paper suggests promising future research
directions and open issues related to the IRS-aided 6G
network design.

The remainder of the paper is organized as follows: The
theory and architecture of IRS are discussed in Section II.
Section III proposes an IRS-assisted framework for the
6G applications scenario. Then, Section IV investigates
different IRS deployment strategies in 6G networks. Sec-
tions V, VI, VII, and VIII explore the deployment optimiza-
tion of IRSs in NOMA, THz, UAVs, and satellite systems,
respectively. Lastly, open research issues and future research
directions of IRS-empowered 6G systems are discussed in
Section IX.

II. IRS ARCHITECTURE AND FUNDAMENTALS
An IRS is a two-dimensional (2D) planar meta-surface
composed of digitally reconfigurable meta-atoms/reflecting
elements with an electrical thickness in the range of sub-
wavelength of the operating frequency of the signal of
interest [26]. By properly designing the geometry shape
(e.g., split ring or square), arrangement, size/dimension, and

so on, the desired response of the signal (phase-shift and
reflection amplitude) of the meta-surface elements can be
controlled accordingly. The IRS architecture mostly used in
the literature is passive, in which the incident signals are
reflected without amplification. However, in 6G networks,
there can be scenarios where the direct LOS between the
sender and receiver is not weak, and high capacity gain
often cannot be achieved. Thus, passive IRSs can lead to the
negative effect ofmultiplicative fading, and the path losses of
the transmitter-IRS and receiver-IRS can be larger than the
unobstructed direct link. A massive number of IRS elements
will be required to compensate for the effect of large path loss
and achieve a higher capacity gain in 6G. To overcome the
performance bottleneck issue due to themultiplicative fading
effect of passive IRSs, active IRSs have been proposed to
reflect the incident signals and further amplify the reflected
signals [27]. Moreover, active IRSs have shown substantial
capacity gain and overcome the limitation of ‘‘multiplicative
fading’’. The typical architecture of the IRS consists of three
layers connected to an intelligent controller. The first layer
consists of many reconfigurable metallic patches printed on a
substrate to control the incident signal intelligently [21]. The
second layer is based on a copper plate to minimize energy
leakages during the reflection phase. In the third layer, a con-
trol board tunes and excites the phase shifts and reflection
amplitude in real-time. The field-programmable gate array
(FPGA)-based intelligent controller is attached to the third
layer and is used to regulate the configuration and reflection.
The intelligent controller acts as a gateway to communicate
with the user terminals and BSs using a wireless or wired
network.

III. IRS-ASSISTED ARCHITECTURE FOR APPLICATION
SCENARIOS IN ENVISIONED 6G NETWORKS
A fundamental design challenge for 6G-enabled terrestrial
and non-terrestrial networks lies in the dynamic and uncon-
trollable signal propagation environment in achieving ultra-
reliable and high-capacity requirements. It is envisioned that
IRSs will be massively deployed in future wireless sys-
tems and will lead to novel paradigm shifts in network
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FIGURE 2. Deployment scenarios of IRSs in future 6G networks.

architectures, as illustrated in Fig. 2. Future IRS-aided wire-
less networks are expected to support applications such
as mMTC, uRLLC, and eMBB. For instance, IRSs can
be deployed to bypass obstacles and establish a LOS link
between the AP and users located in a dead service zone.
Moreover, IRSs can be deployed at the edge of the cell to
suppress the co-channel interference from adjacent cells and
improve the desired signal strength at the users in the dead
service zone. This application of IRSs enhances the coverage
in THz and mmWave communications, which are highly
vulnerable to blockage. Moreover, in an indoor environment,
IRSs can be deployed on the walls, ceiling, and furniture to
enhance the capacity and coverage, which are essential for
satisfying stringent application requirements. On the other
hand, IRSs can also be placed on high-speed vehicles, UAVs,
satellites, and buildings in an outdoor environment to achieve
high spectral efficiency. Another deployment strategy for
IRSs involves installing them at the BS end. This strategy
helps minimize the product-distance path-loss and is iden-
tical to conventional reflect-array [28]. Deploying IRSs at
the user-side or BS side can also be made based on key
factors, including channel conditions, network coverage, pas-
sive beamforming, and signalling overhead. However, some
design challenges may be considered before the deployment,
such as the IRS-user association and transmission mode
selection. Consequently, deploying IRSs at optimal locations

canmakewireless environments intelligent to support various
applications in the future 6G networks. In addition, IRS-
assisted aerial networks have also emerged as a promising
solution to boost the performance of future 6G networks by
providing proactive control of the wireless communication
channel through IRSs and manoeuvre control via UAVs.
Leveraging the controllable mobility of UAVs in the 3D
space, the trajectory of UAVs can be adjusted to create a
LOS channel to bypass the ground obstacles, such as high-rise
buildings to communicate with ground terminals [29], [30].

However, both IRSs and UAVs suffer from limitations
that need to be considered in future works to implement
IRS-assisted UAV communications practically. For example,
UAVs have stringent weight, power, and size constraints,
which impose limitations on their flight time and endurance,
further affecting the communication performance [28], [31].

Furthermore, althoughUAVs create LOS links with ground
nodes due to their high altitudes, the terrestrial communica-
tion channels can be blocked by obstacles, such as buildings
and trees, which can degrade the communication perfor-
mance. Terrestrial IRS deployments on high-rise buildings
can help solve this problem by establishing LOS links with
the UAVs. Although integrating IRSs with UAVs has been
considered in recent works, a comprehensive investigation of
their deployment strategies and corresponding advantages for
6G applications is still lacking.
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FIGURE 3. IRS deployment strategies: Centralized vs Distributed vs Hybrid.

IV. DEPLOYMENT STRATEGIES OF IRSs IN
6G NETWORKS
Practically, there are three IRS deployment strategies: single
IRS or centralized deployment, where all the reflecting ele-
ments are mounted on a single reflecting surface; multi-IRS
decentralized design, also known as cooperative networks,
where multiple IRSs are deployed in the wireless system to
enhance the system capacity; and a hybrid configuration [12],
[32], [33], as shown in Fig. 3.

1) Centralized IRS Design: The centralized IRS
approach deploys a passive IRS centrally to achieve a
high beamforming gain. This centralized IRS design is
a promising approach for 6G, specifically for cluster-
based networks. This deployment strategy is useful for
the scenarios in which there is a NLOS communication
between the BS and users (e.g., in THz, multiple-
input multiple-output (MIMO), NOMA and mmWave

communications). The centralized IRS design has out-
performed the distributed IRS setup under practical
channel setup [34]. However, one of the disadvantages
of the centralized deployment configuration is that a
massive number of IRS elements will be required to
achieve a high gain. Moreover, obtaining an accurate
channel state information (CSI) of the network is chal-
lenging when the number of IRS elements and users is
high. One potential solution is to employ artificial intel-
ligence (AI) techniques such as reinforcement learning
(RL) in the BS to learn the optimal IRS beamforming,
phase shift, and BS-IRS user link for an imperfect CSI
based on the feedback of the IRS-assisted 6G network.

2) Decentralized IRS Design: This deployment strategy
for the 6G network deploys IRSs in a distributed con-
figuration close to different clusters. More specifically,
each IRS in the cluster can improve the performance
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FIGURE 4. Deployment scenarios of IRSs in MIMO-NOMA.

of a specific user based on its QoS requirements. The
research in [35] proposed a distributed IRS strategy
and established the fact the distributed IRS deployment
can learn the available CSI intelligently to achieve a
higher data rate even if the user rate is asymmetric.
Moreover, the optimal placement of IRSs and UAVs in
the distributed approach can create strong LoS com-
munication paths and achieve better channel condi-
tions between the BS and users as compared to the
centralized IRS deployment. However, the distributed
deployment design can exchange a massive amount of
data between the IRSs and BS, which creates new chal-
lenges in learning the optimal IRS configuration. One
potential solution is to utilize the concept of federated
learning (FL), where the model parameters are shared
with the BS instead of the complete information.

3) Hybrid IRS Design: The centralized and distributed
IRS design cannot satisfy the stringent performance
requirements of the heterogeneous 6G network. Alter-
natively, a hybrid IRS deployment design can improve
the capacity and signal strength in the 6G [36]. In such
design, a centralized IRS is deployed near the BS to
achieve a high passive beamforming gain, while dis-
tributed strategy where multiple aerial IRSs and static
IRSs are deployed near the users to create a stronger
LOS communication channel. The UAVs can also opti-
mize their 3D trajectory by incorporatingAI techniques
to enhance the coverage by utilizing efficient dynamic
3D beamforming, which is essential to enable massive
access in ultra-dense 6G networks. Moreover, another
critical consideration in the hybrid deployment strat-
egy is to allocate the number of reflecting elements to
the user-side, BS-side and UAV-side to achieve higher
capacity in a target area. The number of reflecting

elements of IRSs in the deployment can be determined
by several constraints, such as QoS requirements, loca-
tions and user channel conditions. To achieve better
performance for 6G applications, a hybrid IRS strategy
implementing AI techniques such as FL and RL is
preferable.

V. DEPLOYMENT OPTIMIZATION OF IRSs
IN NOMA SYSTEMS
NOMA andMIMO are key enabling technologies for achiev-
ing massive connectivity in 6G networks [24]. A massive
MIMO-NOMA can achieve remarkable performance
improvement in terms of spectral efficiency in URLLC appli-
cations. However, the uncontrollable and stochastic charac-
teristics of the wireless propagation environment can degrade
its performance. One of the critical challenges in traditional
MIMO-NOMA systems is their poor performance in crowded
environments with many users with diverse performance
requirements and different channel gains. It is also chal-
lenging in conventional MIMO-NOMA networks to provide
uniform signal coverage to users far away from the BS or
users who suffer from poor signal reception due to heavy
blockage. This issue becomes more challenging in 6G net-
works due to the short wavelengths of the THz and mmWave
communication, resulting in strong signal attenuation.

On the other hand, the widescale deployment of multiple
cooperative IRSs can provide multiple independent beams to
each user and achieve pervasive coverage. Fig. 4 shows that
by deploying IRSs in the MIMO-NOMA network, channel
gains can be tuned considering the phase-shift, amplitude
and location of IRSs to meet the capacity requirements of
both near and far users [37]. This approach can cluster
small NOMA groups in a crowded wireless environment to
achieve ubiquitous signal coverage in the out-of-coverage

VOLUME 10, 2022 118681



F. Naeem et al.: IRS-Empowered 6G Networks

area, massive access, and ultra-high data rates. The deploy-
ment of multiple UAVs as aerial BSs is also a promising
approach to improve the signal coverage in MIMO-NOMA
networks, as depicted in Fig. 4. The communication architec-
ture based on multiple UAVs combined with IRSs deployed
on high-altitude locations can improve the coverage region
and serve multiple users by optimizing a single 3D beam-
forming. From a design perspective of IRSs in MIMO-
NOMA for future wireless networks, the hybrid design can
be implemented where some UAVs are considered active,
and others function as smart reflective devices. This UAV-
enabled IRS framework combines active and passive 3D
beamforming for MIMO-NOMA networks and can provide
more extended signal coverage even to MIMO-NOMA users
far from the active UAVs.

In the next sections, we provide a review of optimiza-
tion techniques and AI-empowered techniques developed to
enable the deployment of IRS-empowered NOMA systems in
future 6G applications, such as telepresence and augmented
holographic reality.

A. TRADITIONAL OPTIMIZATION TECHNIQUES FOR IRS
DEPLOYMENT IN NOMA
The envisioned IRS-NOMA 6G network will have
formidable performance requirements such as high through-
put, power efficiency and energy efficiency.

1) SUM RATE MAXIMIZATION IN IRS-NOMA SYSTEMS
To address the sum rate, the authors in [51] considered the
joint optimization of reflection coefficients and deployment
of IRSs for three multiple access schemes: NOMA, Fre-
quency Division Multiple Access (FDMA), and Time Divi-
sionMultiple Access (TDMA). The optimization problem for
TDMA is solved by leveraging the time-selective nature of
IRSs. However, monotonic optimization and semi-relaxation
are used to tackle non-convex optimization issues for NOMA
and FDMA in order to discover a performance upper bound.
The authors revealed significant performance gains by opti-
mizing the asymmetric and symmetric deployment strategies
for NOMA and FDMA/TDMA. Similarly, the researchers
in [43] proposed an alternating optimization technique for
optimizing the active and passive beamforming in a multiple-
input-single-output (MISO) IRS-NOMA. Analytical results
show an improved sum rate assuming both perfect and imper-
fect scenarios. Moreover, researchers in [39] proposed two-
phase shift adjustment techniques (namely, one-time phase
adjustment and dynamic phase adjustment) to maximize the
sum rate in an IRS-assisted multi-user downlink system.
Simulation results show that the average sum rate of NOMA
empowered by IRSs outperforms the conventional OMA net-
works. Similarly, the researchers in [40] proposed a semi-
definite relaxation technique in an IRS-based NOMA system
for uplink communication to increase the performance of
wireless networks. Numerical results show that NOMA sys-
tems employing IRS’s achieve a higher sum rate than OMA
schemes.

2) THROUGHPUT MAXIMIZATION IN IRS-NOMA SYSTEMS
A novel optimization for the NOMA-IRS in a multi-user
uplink communication system was proposed in [41] to
address the imperfect successive interference cancellation
(SIC) issue. The proposed framework exploits the polar-
ization capability of the IRSs in a dual MIMO-NOMA
environment to achieve a higher throughput. Moreover,
[38] proposed an optimization technique for the multi-
channel downlink communications IRS-NOMA framework
to optimize the decoding order and channel assignment to
maximize the throughput. On the other hand, the work in [52]
focuses on enhancing the spatial throughput of a single-cell
multi-user system with multiple IRSs. The authors concluded
that the spatial throughput could be increased by deploying
fewer IRSs with more reflecting elements; however, this
comes at the cost of more spatially varying user rates.

Recent studies have also used stochastic geometry-based
solutions to optimize the IRS deployment [53], [54]. Specif-
ically, [53] studied the effect of large-scale IRS deployments
on a terrestrial network by exploiting and modelling block-
ages in a cell using a Boolean line model. On the other
hand, [54] used a stochastic geometry-based approach to
randomly distribute IRSs and BSs in a hybrid wireless net-
work with both active BSs and passive IRSs to characterize
the spatial throughput in the network. Simulation results
showed gains in signal strength and sub-optimal through-
put at the cost of marginally increased interference in the
network.

3) ENERGY EFFICIENCY OPTIMIZATION IN
IRS-NOMA SYSTEMS
The authors in [42] studied the energy efficiency (EE) prob-
lem for a multi-user IRS-NOMA environment and proposed
a beamforming and semi-definite relaxation (SDR) based
phase shift optimization techniques that maximized the EE
compared to OMA. Similarly, the researchers in [44] investi-
gated the performance of traditional OMA and IRS-assisted
NOMA. Simulation results show that deploying IRSs in
NOMAminimizes power transmission. The paper proposed a
novel difference-of-convex (DC) optimization technique for
the design of phase shifts and beamforming to minimize the
transmission power in a single cell IRS-NOMA wireless sys-
tem. In another work, [45], the authors investigated the IRS-
NOMA in amulti-clusterMISO environment. The problem of
minimizing the transmission power is formulated as an alter-
nating direction method of multipliers (ADMM) and second-
order cone programming (SOCP) optimization problem [46].
Finally, the authors jointly optimized the power efficiency
of NOMA users, phase shifts of IRSs and beamforming of
the BS to minimize the transmission power. In addition, the
researchers in [55] proposed two efficient channel estimation
schemes to optimize passive beamforming gains of a single
IRS element deployed in a broadband communication sys-
tem with multiple users employing Orthogonal Frequency
Division Multiple Access (OFMDA). The proposed scheme
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TABLE 3. Summary of Traditional Optimization techniques for IRS deployment in NOMA Systems.

TABLE 4. Summary of AI-empowered techniques for IRS deployment in NOMA Systems.

showed significant performance improvement compared to
benchmark schemes.

A summary of classical optimization techniques for IRS
deployment in NOMA systems is presented in Table 3.

B. AI-BASED OPTIMIZATION TECHNIQUES FOR IRS
DEPLOYMENT IN NOMA NETWORKS
The 6G networks will be highly complex, and traditional
techniques such as successive convex approximation (SCA)
and SDR do not perform well for resource allocation prob-
lems in IRS-NOMA. To address this issue, researchers have
proposed AI-based techniques such as supervised learn-
ing, unsupervised learning, and RL to smartly address the
resource allocation issue in uncertain and dynamic IRS-
NOMA environments. The researchers in [56] explored the
performance improvement of IRS in a multi-robot network.
Particularly, they proposed a novel AI framework where the
IRS and NOMA are deployed at the AP to serve multiple
robots. The sum-rate maximization problem is formulated by
jointly optimizing the power allocation at the AP, reflection
coefficients of the IRS, trajectories, and NOMA decoding
orders of robots subject to the QoS constraint of robots.

The dueling double deep Q-network (D3DN) was proposed
to learn the optimal robot locations and IRS-element phase
shifts. Simulation results showed that the proposed D3DN
technique achieves significant gains compared to the IRS
with OMA and without-IRS-assisted schemes. The problem
of jointly optimizing the phase shift, power allocation, and
deployment of IRSwas formulated as a decaying double deep
Q-network (D3QN) to maximize energy efficiency while
satisfying the QoS constraints. Numerical analysis showed
that the proposed D3QN algorithm for the NOMA-enabled
IRS environment outperforms the benchmarks and achieves
higher energy efficiency compared to the OMA-enabled IRS
system. In [22], a hybrid RL-based framework is proposed for
NOMA networks in a multi-IRS multi-user uplink network.
Similarily, simulation results show an improved sum rate
compared to the OMA scheme.

However, IRSs are deployed on fixed locations in most
existing research contributions. Therefore due to the fixed
deployment, IRSs may not be able to obtain LoS paths and
optimal channel enhancement, especially in an environment
with obstructions. To address this issue, the authors in [47]
proposed a mobile IRS model where IRSs are mounted on
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intelligent robots to achieve flexible deployment. The deep
deterministic policy gradient (DDPG) framework is used
in the IRS-assisted NOMA network to optimize the power
allocation. To further increase the agent’s exploration capa-
bility and training efficiency, federated learning is used in
the DDPG framework. Simulation results showed that the
network with mobile IRSs achieved three times higher data
rates than the static IRS environment. Moreover, NOMA
can achieve a sum-rate gain of 42% compared to the OMA
scheme. Lastly, the simulations were performed assuming
a multi-cell environment, which showed that the proposed
FL enhanced DDPG (FL-DDPG) algorithm has a superior
convergence rate and optimization performance compared
to the independent training framework. In [49], the authors
proposed an exploration attenuated deep deterministic policy
gradient (EA-DDPG) technique for a multi-user IRS envi-
ronment to increase the throughput in NOMA networks.
The results showed an improved capacity compared to the
OMA network. Similarly, the authors in [50] proposed a
DDPG algorithm for a downlink IRS-assisted environment
and achieved a higher sum rate than the conventional OMA
networks.

A summary of AI-empowered optimization techniques for
IRS deployment in NOMA systems is presented in Table 4.

VI. DEPLOYMENT OPTIMIZATION OF IRSs IN THz
AND mmWave SYSTEMS
As mentioned earlier, one of the shortcomings in THz and
mmWave communication is that communication signals suf-
fer a strong molecular absorption effect and extremely high
propagation attenuation due to their ultra-high frequency.
Furthermore, due to THz’s high band frequency character-
istics, it experiences poor diffraction, which is sensitive to
the blockages [65]. In particular, when THz and mmWave
communication is implemented in indoor scenarios, the com-
munication LOS signal can easily experience blockage from
human bodies, complex interior structures, and furniture,
leading to severe communication interruption. Thus, ubiqui-
tous coverage and coverage holes are issues that need to be
addressed in 6G-assisted THz communication.

In order to tackle this challenge, IRSs has been envisioned
as a promising paradigm to improve the coverage in 6G,
as depicted in Fig. 5. In particular, IRSs can smartly reconfig-
ure the direction of propagation waves in THz and mmWaves
to create a strong LOS signal and mitigate the blockage
vulnerability. Hence, IRSs can be deployed in places such as
hospitals, offices, and classes where obstacles block the LOS
link between the transmitter and receiver.

A. CLASSICAL OPTIMIZATION TECHNIQUES FOR IRS
DEPLOYMENT IN THz AND mmWave SYSTEMS
Massive deployment of IRSs is required to guarantee seam-
less communications of dense networks in the higher fre-
quency spectrum domain. In this regard, the deployment
strategies of IRSs at different locations (either transmit-
ter side, receivers side, and/or different locations between

a transceiver pair) play a crucial role in determining the
performance of a network. However, a densely arranged net-
work with multiple IRSs requires the optimization of factors
that are not considered in single IRS systems. These factors
include the number of IRSs per cell, the practical wireless
constraints, and channel estimation due to radio turnaround
time.

In this regard, the authors in [57] analyzed the effect of the
number of IRS elements on the system ergodic capacity in an
IRS-assisted THz communications architecture by optimiz-
ing the phase shift of the IRS elements using a swarm-based
algorithm. Based on their findings, the system ergodic capac-
ity increases as the number of IRS elements increases. Simi-
larly, the ergodic capacity, outage probability, and the average
bit error rate were also studied in [58]. Here, the authors
showed that increasing the number of IRS elements will result
in a system diversity gain. The authors implemented multiple
reflectors to create a higher probability of LOS to reduce the
mmWave channel attenuation significantly. Considering this,
several studies [59], [60], [66] have proposed deploying IRSs
in mmWave communications; however, these works rely on
placing the passive reflectors at a random and fixed loca-
tion, which results in suboptimal solutions given the random
changes in the mmWave channels.

In a different approach, to extend the short-range nature of
the higher frequencies, the authors in [67] leveraged IRS in
a THz system to reflect the significant impact on the system
performance due to the deployment of IRS in the network.
Moreover, the authors in [61] investigated the distributed and
centralized strategies of IRS deployment. Based on these
scenarios, the overall system capacity is derived. In addition,
the authors in [53] investigated the massive deployment of
IRSs on randomly located blockages to determine if dense
locations can be used to create many virtual LOSs. The
authors utilized stochastic geometry to derive the radio of
blind spots and then identified the required IRSs density to
increase the network’s coverage.

B. AI-BASED OPTIMIZATION TECHNIQUES FOR IRS
DEPLOYMENT IN THz AND mmWave SYSTEMS
Most existing works consider single IRS-enabled wireless
systems, where only one IRS is deployed between the AP
and the users. In practice, multiple IRSs can increase the
probability of creating a LOS between the BS and users to
achieve better service coverage. However, multi-hop IRS-
assisted systems have not been studied much in the existing
literature [62]. In this context, the works [62], [63] studied
the problem of maximizing the total achievable rate of multi-
hop multi-user IRS-aided wireless THz communication sys-
tems in the infinite blocklength regime. They proposed a
hybrid beamforming architecture to improve the network’s
capacity. Afterwards, a deep reinforcement learning (DRL)
algorithm is proposed to learn the optimal beamforming. The
proposed scheme increased the coverage range of THz com-
munications by 50%. In [64], a novel DRL framework is pro-
posed for a multi-hop IRS network for THz communication.
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FIGURE 5. Deployment scenarios of IRS-enabled THz and mmWave networks.

TABLE 5. Summary of Classical Optimization and AI-empowered Techniques for IRS Deployment in THz and mmWave Systems.

Simulation results showed that the DRL framework achieved
an improved performance coverage in addressing theNP-hard
beamforming problems in a multi-hop scenario. Further-
more, to analyze the optimal deployment strategy for IRSs
in dense networks, the authors in [68] detailed a two-step
machine learning approach, where an LSTM and double deep
Q-network are utilized to solve the joint problem of IRSs
deployment and design. By doing so, a systematic frame-
work is developed to maximize the energy efficiency of the
network by deriving optimal deployment designs for IRS-
assisted networks. Nevertheless, the deployment strategies of
the IRSs in THz and mmWave communication are still not
well explored for 6G networks and are considered a paucity

of studies. Some essential factors need to be considered for
the deployment of IRSs in 6G THz communication, such as
wireless conditions, number of IRSs, deployment costs, and
building distribution.

A summary of classical and AI-empowered optimization
techniques for IRS deployment in THz and mmWave systems
is presented in Table 5.

VII. DEPLOYMENT OPTIMIZATION OF IRSs
IN UAV SYSTEMS
IRSs can significantly improve the network’s capacity and
provide coverage extension when deployed over UAVs as
shown in Fig. 6.
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FIGURE 6. Deployment scenarios of IRSs in Aerial Networks.

Typical use cases for IRS-integrated UAV wireless net-
works involve (a) IRS for UAV-enabled data communication,
where UAVs collect the data from distributed ground nodes,
(b) IRS for UAV-assisted ubiquitous coverage, (c) IRS for
energy and information transfer for UAV-enabled simultane-
ous wireless information and power transfer (SWIPT) net-
works, (d) IRS for UAV-assisted relaying, for the scenarios
where the UAVs cannot be deployed near to users due to
limited wireless backhaul capacity, IRSs can be deployed
near the users as a ground gateway to improve the backhaul
capacity (e) IRS for UAV-enabled secrecy communication,
where the IRS can be deployed to enhance the PLS in UAV
networks by weakening the communication channel of a
ground eavesdropper, and (f) IRS for cellular-connected UAV
communication, where the IRS passive beamforming can be
optimized to improve the uplink and downlink communica-
tion via UAVs [13].

However, UAV communications may suffer from block-
age and eavesdropping due to the large obstacles and high
mobility of nodes in a wireless environment. In this context,
given their ability to construct a favourable and controllable
wireless environment by controlling the trajectory of UAVs,
IRS deployments can enhance the performance of future non-
terrestrial communication systems. IRS deployed on build-
ings can assist the UAV-based integrated air-ground network.

Nevertheless, it it still challenging to jointly optimize the
UAV’a trajectory with passive beamforming to maximize the
secrecy rate. Moreover, the placement of the IRS elements is
a critical factor in improving the reflection efficiency and thus
needs to be carefully chosen [69].

A. CLASSICAL OPTIMIZATION TECHNIQUES FOR IRS
DEPLOYMENT IN UAV SYSTEMS
The recent study [70] proposed an IRS-aided communica-
tion system with multiple UAVs to maximize the average
achievable rate. The authors in [71] considered a downlink
NOMA network to optimize the location of the UAV-IRSs in
order to maximize the rate of the users while maintaining the
target rate for the weak user. The authors proposed a penalty-
based Block Coordinate Descent (BCD) algorithm to design
the active and passive beamforming to maximize the instan-
taneous minimum rate. This is formulated by jointly opti-
mizing the UAV’s active beamforming, passive beamforming
at the IRSs, and UAVs trajectory over a given flying time
to maximize the received power at the ground. The authors
also designed a semi-definite relaxation iterative algorithm
to optimize the IRSs beamforming and phase shifts.

One of the most important design aspects for IRS deploy-
ment is to jointly optimize the UAV’s trajectory with IRS pas-
sive beamforming to improve the capacity. However, themain
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challenges in optimizing the UAV trajectory include reliable
user connectivity and low power consumption. To address this
issue, the authors in [72], [73], [74], and [75] considered IRSs
to enhance the communication signal quality between a UAV
and ground users. Furthermore, the authors in [18] demon-
strated that deployment of IRSs is essential for attaining high
gain from the UAV-IRS setup for ground user communica-
tions. The authors also proved that an IRS-aided cellular sys-
tem could remarkably improve the SINR over the entire area
when the UAV’s trajectory is optimized [76], [77]. In their
system model, the authors deployed the IRS on buildings
and remotely configured them to transmit the reflected signal
toward the UAV. The authors concluded that IRS deployment
placed at optimal locations could significantly improve the
signal strength at the UAVs. The work in [77] studies the
effect of phase compensation error on the ergodic capacity
for IRS’s assisted by UAV communications. The authors in
[78] and [79] proposed a synergetic UAV-IRS communication
system where a UAV is equipped with a highly directional
antenna aimed at the IRS. The authors provided a link budget
analysis as well as a closed-form expression of the outage
probability and the average outage duration. Furthermore,
the authors showed that their proposed system improved the
system performance compared to systems where the UAV is
equippedwith an omnidirectional antenna or the highly direc-
tional antenna is steered towards the ground node. Moreover,
the authors in [80] and [81] proposed a throughput maximiza-
tion algorithm for IRS-assisted UAV-enabled communication
systems where the IRS and ground users (GUs) can harvest
energy from the UAV. The authors jointly optimized the phase
shift of IRS, the transmit power and time allocation of GUs,
and the path planning of the UAV. Afterwards, the non-
convex optimization problem is decomposed into three sub-
problems using the BCD resource optimization method. The
proposed system achieved superior performance compared to
benchmark algorithms.

Due to the energy limitations of the UAVs, energy
optimization is vital in IRS-assisted UAV systems, and sev-
eral solutions have been proposed in the literature, includ-
ing optimizing the transmission power, implementing energy
harvesting systems, and deploying simultaneous wireless
information and power transfer (SWIPT) networks [82], [83],
[84], [85], [86], [87], [88], [89], [90]. In particular, the authors
in [82] proposed a dual power transfer and information trans-
fer system between UAVs and ground IoT devices. In the
first phase, the UAVs transfer their harvested power to the
IoTs and afterwards, the IoTs transfer their collected infor-
mation to the UAVs. To maximize the total network sum
rate, the authors jointly optimized the UAV’s trajectory and
power allocation, the energy harvesting scheduling of IoT
devices, and the phase-shift matrix of the IRS. Similarly,
a SWIPT system was proposed in [83] to maximize the
harvested energy while constrained by the QoS requirements.
Moreover, an IRS-Assisted UAV IoT data collection plat-
form was studied in [88]. The authors jointly optimize the
UAV’s deployment and trajectory and the IRS’s phase shift

to minimize the energy consumption of the UAV and all
IoT devices. Afterwards, the authors implemented a compet-
itive learning algorithm to solve the optimization problem.
Similarly, The authors in [89] jointly optimized the UAV’s
trajectory, hovering time and the IRS’s phase shift to mini-
mize the total energy consumption of a UAV in a wireless
power transfer system. On the other hand, the authors in [90]
minimized the total transmit power in a multi-UAV multi-
IRS communication system by jointly optimizing the UAV’s
trajectory, each IRS’s phase shift, the subcarrier allocations,
and the active beamforming at each base station. Similarly,
the authors in [91] optimized the received power at the ground
users by optimizing the active beamforming at the UAV,
passive beamforming at the IRSs, and UAV’s trajectory for
a single UAV communicating with multiple IRSs deployed
outside building walls.

A summary of classical optimization techniques for IRS
deployment in UAV Systems is presented in Table 6.

From the IRS deployment perspective, improving net-
work performance in UAV networks is still challenging.
For example, the above-discussed optimization techniques
cannot accurately formulate the dynamic and complex char-
acteristics of IRS-assisted terrestrial and non-terrestrial net-
works to achieve higher capacity. As a result, the following
section investigates the recent AI-empowered techniques in
the literature for learning the IRS deployment strategies in
complex and dynamic future wireless networks.

B. AI-BASED OPTIMIZATION TECHNIQUES FOR IRS
DEPLOYMENT IN UAV SYSTEMS
The authors of [93] formulated the problem of minimiz-
ing the energy consumption of UAV as a decaying deep
Q-network (D-DQN) algorithm. Their framework incorpo-
rated the NOMA for an IRS-enabled UAV framework to
enhance the users’ QoS. The energy consumption minimiza-
tion problem was formulated as a joint IRS phase shift, UAV
trajectory, and power allocation policy from the UAV to
mobile users (MUs). Numerical results demonstrated that the
energy dissipation of the UAV could be significantly reduced
by deploying IRSs in the UAV environment by incorporating
NOMA and consumes 11.7% less energy than the IRS-OMA
case.

Similarly, the authors of [85], [86] jointly optimized the
phase shift of IRS and the power allocation of the UAVs
to maximize the energy efficiency. Afterwards, a centralized
DRL algorithm was proposed to solve the optimization prob-
lem with time-varying channels. On the other hand, the study
in [87] employed deep reinforcement learning and utilized the
Double Deep Q-Network (DDQN) and Deep Deterministic
Policy Gradient (DDPG) algorithms tomaximize the data rate
and minimize the UAV’s propulsion energy by optimizing the
3D location of the UAV and the phase shift of the IRS.

The work in [84] claims to be the first paper that proposes
a reinforcement learning-based deployment of UAV-IRs
for mmWave communications with RF energy harvesting.
However, it considers a single user in downlink transmission
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TABLE 6. Summary of Classical Optimization Techniques for IRS Deployment in UAV Systems.

and does not look into the more challenging consideration of
multi-user communications. The same authors simulated an
IRS-equipped UAV environment for multiple users in [92],
and a distributional RL technique was proposed to optimize
the reflection coefficients, UAV’s location, and precoding
matrix at the base station. Simulation results showed that the
proposed DRL could learn the optimal location of the UAV-
IR and achieves higher downlink capacity and achievable rate
compared to the non-learning UAV-IR, static IR, and direct
transmission schemes.

Furthermore, a DRL framework based on proximal policy
optimization (PPO) was used to learn the randomness of the
internet of things devices (IoTDs) activation patterns and
control the altitude of the UAV, the phase-shift, and commu-
nication scheduling of IRS to minimize the average age of
the information (AoI). The authors in [94] studied the uplink
transmission of IoT traffic in a UAV-IR system. Numerical
results demonstrated that the proposed algorithm can signif-
icantly minimize the AoI compared to other baselines, such
as random walk and heuristic greedy algorithms. In [94], the
authors determined the scheduling and altitude of the UAV.
However, this work considered only one UAV, and trajec-
tory optimization is not considered. Moreover, the authors
considered an OMA technique with no LOS communication
channel between the BS and users.

To address the above-mentioned issues, Hariz et al., [95]
considered the sub-carrier allocation and trajectory of mul-
tiple UAVs to improve the users’ coverage and minimize
the average age of information (AAoI) while satisfying a
maximum transmit power and UAV’s movement constraints.
Moreover, besides the non-line-of-sight (NLOS) communica-
tion between the user and AP, they considered NOMA with

a direct link between users and the receiver. The authors
used the DDQN method to solve the proposed problem.
They investigated applications of the UAV-IRS system on the
IoT networks via optimizing sub-carrier allocation, power,
phase shift, and trajectory. Numerical results showed that
the proposed approach achieves 15% and 10% performance
improvement compared to the random-trajectory and match-
ing algorithm. Regarding IRS deployment in state-of-the-art
networks, the authors in [96] considered high-speed trains
(HSTs) and proposed a UAV environment with IRS deploy-
ment to provide stable and reliable communication services
for HSTs. The authors investigated the joint design of phase-
shift and UAV trajectory and formulated a soft actor-critic
(SAC) algorithm to maximize the minimum achievable data
rates of HSTs. The proposed algorithm learns the optimal
trajectory of the UAV and phase shift of the IRS and achieves
4% and 19.9% higher data rates compared to the fixed IRS
and random phase shift of the IRS, respectively.

In recent works, Wang et al., [97] considered a dynamic
multi-IRS configuration to improve the LOS channel model
between a UAV and a set of ground users. They aimed to
maximize all UEs geographical fairness and data rates by
jointly optimizing the IRSs phase shifts and UAVs trajectory.
However, since the IRS-assisted UAV environment is highly
mobile and dynamic, and traditional optimization methods
fail to perform well, the authors proposed a deep Q-network
by discretizing the phase shift and trajectory, which is suit-
able for practical systems with discrete phase-shift control.
Furthermore, they proposed a DDPG-based solution to
tackle the case with continuous trajectory and phase shift
design. Experimental results proved that the proposed solu-
tion achieved better performance than benchmarks.
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TABLE 7. Summary of AI-empowered optimization techniques for IRS deployment in UAV Systems.

The study in [99] employed an RL framework to optimize
the beamforming and learn the optimal placement of the UAV
to maximize the user’s received signal power in UAV-IRS.
The proposed RL technique was able to accurately learn the
optimal position of the UAV that can provide stronger LOS
to the mobile user.

It is expected that the beamforming service can be
improved using a combination of IRS and UAV, thus pro-
viding a potential way to complement the limitations of the
current 5G systems. However, accurate channel estimation is
critical in highly mobile IRS-assisted non-terrestrial commu-
nication [98], [100]. Hence, the study in [98] considered an
IRS attached outside a building to assist the communication
between multiple UAV-user pairs. The authors developed
a transmission protocol based on the channel estimation,
transmission strategy, and data transmission. Afterwards,
a deep neural network (DNN)-based model was developed
to solve the transmission strategy problem. Similarly, the
authors in [100] proposed a DL-based channel tracking algo-
rithm in IRS-assisted UAV-enabled communication systems.
Firstly, the authors developed a 3D geometry-based dynamic

time-variant channel model depending on the block-
age parameter, Doppler effects, mobile nodes’ velocities,
propagation delays, and time delays. Afterwards, the authors
developed a channel pre-estimation and channel-tracking
DNN to track the time-variant channel model. The pro-
posed system achieved superior performance to benchmark
algorithms.

A summary of AI-empowered optimization techniques for
IRS deployment in UAV Systems is presented in Table 7.

C. OPTIMIZATION OF IRS-ASSISTED UAV SYSTEMS
FOR URLLC APPLICATIONS
IRS-assisted UAV systems have shown performance
improvement with the eMBB and URLCC applications
in [101] and [102]. The authors jointly optimized the eMBB
sum rate and the accepted number of URLLC packets while
adhering to the QoS requirements of the eMBB and URLLC
using an alternating algorithm. On the other hand, the authors
in [103] proposed a UAV-assisted URLLC system to mini-
mize the decoding error probability under block-length and
power allocation constraints. In their proposed system, IRS
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panels are mounted on UAVs to reflect the signals from
macro base stations to end users. The authors formulated the
optimization problem with respect to the UAVs’ deployment,
power allocation at the base stations, the phase shift of IRS,
and the block length of URLLC. Afterwards, DNNs are
proposed to solve the optimal UAVs’ deployment. Then,
an optimal resource allocation algorithm is proposed to pro-
vide the maximal reliability of the considered system with
respect to the users’ fairness. Their proposed scheme is shown
to be superior to other benchmarks.

D. OPTIMIZATION OF IRS-ASSISTED UAV SYSTEMS
FOR MEC APPLICATIONS
IRSs can improve the performance of UAVs deployed as
aerial mobile edge computing (MEC) servers [104], [105],
[106], [107], [108], [109]. For instance, the authors in [104]
proposed a dual-IRS MEC-enabled UAV-assisted network
architecture to minimize the energy consumption of an Inter-
net of Vehicles (IoV) network. Furthermore, the authors in
[105] and [106] utilized the successive convex approximation
method to maximize the energy efficiency of the IRS-assisted
UAV system by jointly optimizing the UAV’s trajectory,
resource allocation, and the IRS’s phase shift. Similarly, the
UAV’s trajectory and the IRS’s phase shift were jointly opti-
mized in a multi-IRS and multi-UAV system to minimize
the UAV’s energy consumption, completion time, and main-
tenance cost in [107] and [108]. Finally, IRSs is proven to
improve the UAV’s computation capacity of an IRS-enabled
UAV-assisted MEC system as presented in [109].

E. SECURITY OPTIMIZATION OF IRS-ASSISTED
UAV SYSTEMS
The PLS of the UAV-assisted communication systems can be
enhanced by deploying intelligent reflecting surfaces [110],
[111], [112], [113], [114], [115], [116], [117], [118], [119],
[120], [121], [122], [123], [124], [125]. In particular, the
authors in [110] and [111] jointly optimized the UAV’s trajec-
tory, the IRS’s phase shift, and transmit power to maximize
the secure energy efficiency for a communication system
where a UAV acts as a relay between the base station and
a group of users. Afterwards, the SCAmethod was applied to
solve the optimization problem. The secrecy rate between a
UAV base station and a legitimate receiver in the presence
of an eavesdropper was maximized by jointly optimizing
the UAV’s trajectory, transmit power and the IRS’s phase
shift using an iterative algorithm based on the SCA method.
in [112], [113], [114], [115], [116], [117], [118], [119],
[120], [121], [122], and [123]. The authors in [124] and
[125] extended the previous works bymaximizing the secrecy
capacity of an IRS-assisted UAV system in the presence of
multiple eavesdroppers.

VIII. DEPLOYMENT OPTIMIZATION OF IRSs IN
SATELLITE SYSTEMS
The deployment of IRSs in satellite systems has sparked
interest from researchers recently [126], [127], [128], [129],

[130], [131], [132], [133], and [134]. For instance, the authors
in [126] jointly optimized the power allocation and the IRS’s
phase shift using a Mesh Adaptive Direct Search method to
maximize the channel capacity of an IRS-assisted GEO Sat-
Com network. Similarly, an IRS-aided LEO SatCom archi-
tecture was proposed in [127], where the IRS elements are
deployed on the LEO satellites and the ground nodes. After-
wards, the authors jointly optimized the active and passive
beamforming on the LEO satellite and the ground nodes to
maximize the channel capacity. On the other hand, the authors
in [128] aimed to improve the coverage of an IRS-assisted
LEO SatCom network by changing the tilt of the IRS and
by increasing the number of IRSs. Furthermore, direct-to-
satellite (DtS) channel estimation for different IRS config-
urations was studied in [129]. A joint beamforming design
and optimization algorithm for IRS-aided hybrid satellite-
terrestrial relay network was proposed in [130] aiming to
minimize the total transmit power of both the satellite and BS
while guaranteeing the rate requirements of users. Similarly,
the authors in [131] proposed a transmission model for
an IRS-assisted LEO IoT network aiming to minimize the
transmission power. The authors implemented an alternating
optimization scheme by utilizing singular value decompo-
sition and uplink-downlink duality. The outage probability
of IRS-assisted satellite-UAV-terrestrial networks was stud-
ied in [132]. A rate-adaptive link-switching system design
of RIS-UAV-assisted high altitude platform (HAP)-based
Satellite-aerial-ground integrated network (SAGIN) using
hybrid free-space optics (FSO)/radio frequency (RF) links
was proposed in [133]. Lastly, the authors in [134] analyzed
an IRS-assisted THz inter-satellite communication and pre-
sented the error rate performance.

IX. CHALLENGES AND FUTURE RESEARCH DIRECTIONS
In the following, we list some of the challenges and future
directions that arise for deployment strategies of IRSs in 6G
networks. Table 8 shows the summary of the challenges in the
deployment of IRSs with their possible research direction.

A. CSI ACQUISITION
Accurate channel estimation is critical for optimizing the
beamforming gain and phase-shifts in IRS-assisted wire-
less communication, specifically for the UAV-IRS networks
where the UAVs will have high mobility and random channel
conditions. Furthermore, deploying more IRSs will result
in additional IRS-user links, UAV-IRS channels, additional
phase shifts, and more channel coefficients are required to
be estimated. The challenges mentioned above can signif-
icantly reduce the system performance due to the frequent
pilot transmissions for accurate CSI estimation. Therefore,
accurate channel estimation becomes a critical issue for
viable communication because of the IRSs inherent passive
nature of lacking RF chains. One potential solution to address
the above challenges is to employ advanced ML techniques
such as federated learning, transfer learning, and deep neural
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TABLE 8. Challenges of IRS deployment in future 6G terrestrial and non-terrestrial networks.

networks to obtain an accurate CSI with a lower overhead in
6G networks.

B. INTERFERENCE MANAGEMENT
Future wireless networks will be composed of small cells
in ultra-dense environments. As a result, due to random
and noisy conditions at the cell edges, power misalign-
ment can enhance the effects of multi-cell interference in
wireless networks. Additionally, interference due to multi
IRSs can severely degrade the overall system performance
in a heterogeneous setting. In some cases, multiple small
cells may share the same IRS to serve the cell edge users;
however, coordinating the IRS elements for every user in
these small cells is a challenging issue. In this regard, the
deployment strategy for IRS plays a vital role in reducing
the interference in dense networks. Additionally, in a multi-
IRSs scenario, the coordination among the dense networks for
interference mitigation increases linearly with the number of
reflecting elements. Therefore, novel multi-agent RL frame-
works such as distributed RL with the generative adverserial

networks (GANs) are required to coordinate the IRSs deploy-
ment among small cell APs to overcome interference in
the wireless network due to the uncontrollable phase angles
induced by multiple IRSs in a heterogeneous environment.

C. PRIVACY AND SECURITY
PLS is an effective technique that allows confidential mes-
sages to be exchanged wirelessly in the presence of an
unauthorized attacker without relying on encryption in the
higher layers. By utilizing the inherent randomness of fading
noise in communication channels, the amount of information
being extracted by an eavesdropper can be limited [135].
However, IRSs optimize their phase angles and amplitudes
before initiating communication; the eavesdropper at the
other end of the IRS remains at a disadvantage due to the
non-reciprocal channel created by the IRS. However, the PLS
in IRS-assisted wireless networks poses some new research
challenges. Depending on the IRS placement in the cell, noise
and channel fading in the signal will mis-classify legitimate
users from illegitimate users at the AP side. Hence, it is
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imperative to develop a strategy to determine the IRS place-
ment that allows legitimate users to access the AP. Despite the
fact that strategically locating the IRS provides extra level of
authentication, it also increases the likelihood that malicious
agents will provide false information for spoofing attacks
that hinder the performance of the system. Therefore, this
requires us to develop AI techniques such as federated learn-
ing for security and privacy protocols under some practical
IRS deployment constraints [32].

D. THz AND mmWave COMMUNICATIONS
THz and mmWave communications promise to support high
data rates by utilizing the bandwidth efficiently in the higher
frequencies. The THz and mmWave communication systems
will require a larger number of RF chains, which will result
in a higher energy cost and hardware cost than sub-6 GHz
wireless transceivers. Additionally, higher frequency chan-
nels, such as the THz and mmWave channels, are more prone
to blockage and higher propagation loss. IRS can be deployed
at optimal locations to create a strong LOS link in blockages
to tackle these challenging issues efficiently. Since THz and
mmWave channels have random channel characteristics, it is
then vital to design novel AI techniques assisted with dig-
ital twin approach (that can create a virtual representation
of IRS network) which can accurately estimate the CSI in
order to optimize phase shift and beamforming design at
the IRS and AP to establish a strong LOS link to improve
the SNR.

E. UAV COMMUNICATION
The deployment strategy of IRSs can improve the flexibility
while designing UAVs trajectories in UAV-assisted wireless
systems. A challenge to the multi-antenna setting’s precoding
design is that it is directly dependent on the UAV’s tra-
jectory, since the practical channel gains between the UAV
and terrestrial users depend on the trajectory and precoding
strategy. In practice, deploying IRSs into a UAV environment
brings many challenges in designing its joint trajectory and
precoding design. Due to multiple reflected propagations
introduced by IRSs, the composite channel gains from the
UAV to terrestrial users becomes both spatial and frequency-
selective, which complicates the trajectory design of the UAV.
As a result, the deployment strategy of IRSs in dynamic,
complex wireless networks with acceptable fairness while
also meeting the sum-rate objective remains an open research
issue. Further, accurate channel tracking in mmWave and
THz communication makes compensation for delay and
Doppler spread more challenging and will require further
investigation.

F. MEDIUM ACCESS CONTROL LAYER
The deployment of IRSs in a multi-user environment will
play a vital role in improving the performance of future
wireless networks. Designing AI-assisted medium access
control (MAC) solutions for THz and mmWave communica-
tions while taking into account the function of PHY layer is

a crucial difficulty that needs to be taken into account. In addi-
tion, the deployment strategy of IRSs in a multi-user environ-
ment needs new AI-enabled techniques such as multi-agent
RL and transfer learning frameworks for the joint optimiza-
tion of the MAC and PHY layer.

X. CONCLUSION
In this paper, we presented a comprehensive survey of the
architecture and deployment strategies of IRSs in the future
6G networks. Firstly, we provided an architectural frame-
work of IRSs from the perspective of deployment strate-
gies in 6G. Then, we investigated the deployment aspect of
IRSs in perspective 6G applications incorporating NOMA,
THz/mmWave communication techniques, MEC, UAVs, and
satellite communication to improve the system performance.
We concluded by outlining significant challenges, potential
research initiatives, and directions of the envisioned IRS-
empowered 6G networks.
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