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ABSTRACT The 6LoWPAN (IPv6 over low-power wireless personal area networks) standard enables
resource-constrained devices to connect to the IPv6 network, blending an IPv6 header compression protocol.
For this network technology, a new routing protocol called Routing Protocol for Low Power Lossy network
(RPL) has been designed. The latter is a lightweight protocol that determines the route across the nodes
based on rank values. This protocol is known to be non-resilient against Rank attacks, which aim at
creating non-optimized routes for packet forwarding, hence overwhelming the constrained 6LoWPAN.With
5G, Software-Defined Networks (SDNs) have been developed to facilitate simple programmable control
plane, Quality of Service (QoS) provisioning, and route configuration services for 6LoWPAN. However,
there is still a lack of optimization mechanisms to protect 6LoWPAN against Rank attacks in SDN-based
deployment. To this end, in this paper, a Reinforcement-Learning (RL) agent is leveraged to assist and
complement an SDN controller in achieving cost-efficient route optimization, and QoS provisioning packet
forwarding to prevent rank attacks. Experimental results confirm that our approach effectively prevents
Rank attacks while providing an adequate delay and radio duty cycle. Meanwhile, it maximizes the packet
delivery ratio, facilitating practical implementations in software-defined Low Power Internet of Things (IoT)
networks.

INDEX TERMS Reinforcement learning, SDN networks, 6LoWPAN networks, RPL protocol, rank attacks.

I. INTRODUCTION
Wireless sensor networks (WSNs) are considered one of
the most important applications of the Internet of Things
(IoT) [1]. In general, WSNs can be considered as Low Power
and Lossy Networks (LLNs), presenting some constraints
on their deployment, especially in critical and large-scale
scenarios (e.g., massively distributed, and heterogeneous
networks). The resource-constrained limitations prevent the
deployment of WSNs in scenarios where the operation is
subject to strict reliability and performance requirements.
At the same time, the lack of flexibility stems from the rigidity
of WSNs towards policy changes, making these networks
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difficult to adapt. Internet Protocol (IP) considerably brings
direct and bidirectional access to devices reducing the
mentioned difficulties, but some issues emerge concerning
interconnections’ complexity.

In WSNs, IP networks aim to provide end-to-end com-
munication, which allows devices to be accessed without
the necessity for gateways to use adaptation techniques to
boost the efficiency and quality of wireless transmissions [2].
In this context, the 6LoWPAN standard uses IPv6 addresses
eliminating adaptation techniques [3]. Moreover, 6LoWPAN
is a network standard that defines header compression
mechanisms and encapsulation rather than being an IoT
application protocol technology (e.g., Bluetooth, ZigBee [4]).
Nevertheless, due to common factors, such as node failure,
limited bandwidth, etc., the wireless links in multihop
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6LoWPAN are unstable, and therefore not reliable. These
difficulties can severely impact the performance of the
entire network [5], [6]. IP-based networks adopt distributed
protocols (eg., Open Shortest Path First (OSPF), Border
Gateway Protocol (BGP), Routing Information Protocol
(RIP) for routing decisions and preserving topology while
decreasing the overhead in the entire network [7]. Since
low-power devices reduce the radio range compared to
when all nodes communicate with a single base station,
a multihop grid allows systems to extend over a larger
area. Consequently, from the introduction of multiple hops,
the link uncertainty is aggravated along the hop distance
and may increase the possibility of dropped packets on the
way. Specifically, RPL is a protocol based on rank values
that rely on an Objective Function (OF) to determine the
route across the nodes [8]. An OF defines how an RPL
node selects and optimizes routes to build a Destination
Oriented Directed Acyclic Graph (DODAG) rooted at the
network’s border router. Further, the OF defines how the
nodes should consider the metrics and constraints in the rank
value, which is roughly the node’s distance to the DODAG
root. Even though the rank values in RPL help for multiple
objectives, including route discovery and distribution, loops
prevention, and control overhead management, this protocol
is exposed to a wide variety of routing attacks (i.e., Sinkhole
attacks, Wormhole attacks, Rank attacks [9]). These attacks
can significantly impact resource utilization and the network
performance [9]. Precisely, in rank attacks, malicious nodes
broadcast messages to advertise lower ranks than their
original ones to corrupt routing cost values, which forces
neighboring nodes to choose them as a preferred parent and
change their rank accordingly. Thus, Rank attacks create
non-optimal routes and introduce loops that overwhelm the
network resources and increase resource consumption [10].

With the arrival of 5G, Software-Defined Networks
(SDNs) have been developed to introduce scalability and
programmability to accomplish QoS provisioning and fast
routing configuration services over the 6LoWPAN. It has
shown promising advances in network configurability, virtual
network functions plugin, and reduction in capital expen-
diture [5]. In this context, a Software-Defined 6LoWPAN
wireless sensor network (SD6WSN) is proposed. This archi-
tecture aims to manage data plane forwarding in 6LoWPAN
according to the SDN approach [11]. SD6LoWPAN has
several positive aspects, including a centralized SDN archi-
tecture that allows flexibility and scalability, presenting
further opportunities to move beyond the traditional notions
of low-power IoT, driving from small to various networks
connected across a network backbone and protocols such
as 6LoWPAN, to dynamically serve multiple applications,
such as data collection, actuation, and monitoring with
varying QoS requirements. However, SD6LoWPAN faces
considerable challenges such as the non-negligible overhead
introduced by SDN devices caused by the continuous
exchange of messages and the vast distances between the
data plane and the controller and is likely to suffer from
Single Point of Failure (SPoF). It is valid to note that the

problem of SPoF is out of the scope of this paper; however,
we will deploy our solution in a distributed architecture in
future work, which helps mitigate the harmful effects of
SPoF in SD6LoWPAN. Hence, a lightweight SDN controller
is leveraged in the border router to promote northbound
and southbound communication with the data plane and
applications correspondingly and reduce the non-negligible
overhead introduced by SD6LoWPAN [12]. Furthermore,
the incorporation of RPL in the routing layer for network
discovery and the lack of routing optimization procedures to
optimize the routes defined by the RPL make SD6LoWPAN
susceptible to Rank attacks. Hence, to tackle this concern,
in this paper, we propose an RL approach for routing
optimization to prevent Rank attacks in SD6LoWPAN.

A. MOTIVATION
The motivation behind this work is the computational
complexity of managing security solutions and the sample
complexity of finding the right approach for routing opti-
mization to prevent Rank attacks in SD6LoWPAN. In this
vein, the centralization of security controls in SD6LoWPAN
facilitates the network (re)-configurability and network
slicing which allow resource sharing and the adoption of
complex solutions in a multitenant environment where a
single instance of an application and its supporting resources
serve multiple providers [5]. However, the programmable
nature of SDNs increases the network’s vulnerability to
attacks [6], as applications can be easily installed.

Accordingly, in SD6LoWPAN, authentication and intru-
sion detection mechanisms are mainly implemented on the
IoT nodes [13], [14], while RPL can be performed at the
controller or application-level [15]. Moreover, the massive
deployment of RPL-based low-powered IoT devices makes
SD6LoWPAN more vulnerable to rank attacks. Hence, the
RPL is vulnerable to internal Rank attacks taking advantage
of the vulnerable rank property defined by non-optimal routes
established by the OF. Consequently, these attacks jeopardize
the network performance, topology, and traffic [16]. Illus-
tratively, an attacker can accomplish this attack by misusing
the rank property and infringing the routing protocol. Based
on the vulnerability analysis related to the rank property,
Rank attacks create non-optimal paths for all packets, which
pass through malicious nodes and overwhelm the restricted
SD6LoWPAN [17].

Meta-heuristic algorithms, such as Ant Colony Optimiza-
tion (ACO), Swarm optimization, and artificial bee colony,
are practical and widely used approaches to find solutions
to combinatorial optimization problems [18], [19]. However,
they are limited by the high sample complexity required
to reach a reasonable solution. The sample complexity
represents the number of training samples that an algorithm
needs to learn a target function successfully [20]. Also,
much work has been done in the field of machine learning
for routing optimization, but these methods can require an
unreasonably large number of samples before a good policy is
obtained. Precisely, the lack of exploration in these methods
leads to an unreasonably large sample complexity, which is
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unrealistic for dynamic environments [21]. In this context,
RL seems to be a more promising and realistic solution
compared to traditional machine learning approaches as
it relies on an RL agent that explores and interacts with
its environment to generate its own training data. To this
end, in this paper, we incorporate an RL approach in
the lightweight SDN controller design to achieve routing
optimization and QoS provisioning packet forwarding to
address the vulnerable rank value and the RPL objective
functions’ weaknesses while minimizing the overhead and
management complexity introduced by SD6LoWPAN.

B. RELATED WORK
A comparison between some current research works and
the proposed Software-Defined Reinforcement Learning
(SDRL) scheme is presented in TABLE 1. Hence, some
research works have looked into management complex-
ity, overhead reduction, and security solutions to address
Rank attacks in resource-constrained 6LoWPANs. Precisely,
in [22], a software-defined networking framework for IoT
based on 6LoWPAN is presented to reduce the management
complexity in IoT networks. Further, in [12], a lightweight
SDN framework for Contiki OS is introduced to reduce
the control overhead to practical levels. Moreover, in [23],
a QoS-aware Adaptive Routing (QAR) based on RL with
a QoS-aware reward function is introduced for multi-layer
hierarchical SDNs achieving time-efficient, adaptive, and
QoS-provisioning packet forwarding. These approaches
reduced the management complexity in 6LoWPAN but
at the cost of increasing the overhead introduced by the
software-defined approach. In [24], the authors present a
combination of the IoTwith a heuristic framework to enhance
logistics while reducing the overhead in the agri-food supply
chain. In [25], the authors propose an improved objective
function that relies on an RL-based link quality estimation
strategy for RPL to minimize the overhead caused by
active probing operations. These approaches reduced the
overhead in 6LoWPAN but at the cost of increasing the
management complexity by incorporating heuristic and RL
approaches in the resource-constrained 6LoWPAN. In [26],
the authors propose a hash chaining using a random
number chosen by the root node to avoid the RPL from
publishing an illegitimate reduced rank. Moreover, in [27],
a challenge-response scheme is proposed to validate the
nodes’ authenticity within a DODAG, in [8], a cost-efficient
protocol for route optimization is introduced, where the
authors include steps for reliable route optimization and
mutual authentication. Further, an enhanced RPL protocol is
proposed in [28], where a rank threshold approach and the
hash chain authentication technique are proposed to deal with
RPL-based attacks. Although these approaches address the
prevention of Rank attacks, they also introduce management
complexity and a considerable increase in the overhead of
6LoWPAN.

Moreover, some research works have looked into reduc-
ing the overhead and management complexity of the
RPL objective function in resource-constrained 6LowPANs.

TABLE 1. Related works comparison.

In particular, [29], emphasizes the quality of service
differentiation by exploiting multi-topology routing feature
of the RPL standard. A novel Policy Gradient-based Actor-
Critic Learning (PGACL) algorithm to optimize the policy
gradient for optimal rate allocation, minimize power, and
guarantee a solution for Ultra-reliable and Low-latency
Communications (URLLC) scheduling is proposed in [30].
Furthermore, in [31], the authors propose a Generative
Adversarial Network and Deep Distribution Q Network
(GAN-DDQN) to enhances smart packets by reducing the
distance between the estimated and target action-value
particles.

In addition, some works propose run-time verification
mechanisms to detect unexpected behavior in IoT system
nodes. These mechanisms monitor the real-time events
coming from the IoT system elements and trigger self-healing
actions if unexpected behavior is detected at an IoT device.
For instance, in [32], the use of complex event processing
techniques for detecting failures in the system is proposed
by monitoring the run-time event occurrences with regard
to the system constraints denoted by event calculus. In [33],
a run-time monitoring approach for IoT systems is presented
where the event relations expressed in terms of the sequential
interactionmessagingmodel of Constrained Application Pro-
tocol (CoAP) are explored. Nevertheless, while this technique
helps in detecting IoT nodes’ misbehavior; it also introduces
an overhead due to the recurrent monitoring system installed
at each DODAG node. Furthermore, this technique does
not prevent 6LoWPAN from being compromised by a Rank
Attack as our solution does. This is because a rank attack
alters the assigned rank value but does not change the
node’s behavior, hence overloading the resource-constrained
network. Indeed, the attacker’s main objective is to overload
the network using the behavioral patterns of the nodes
in an RPL network. Although essential works have been
proposed in the literature to target management complexity,
overhead reduction, and Rank attacks in 6LoWPAN, all
these deployments are not satisfactory to simultaneously
guaranteeing an efficient Intrusion Prevention System (IPS),
Low Management Complexity (LMC), and considerable
Overhead Reduction (OR) in 6LoWPAN [34].

C. CONTRIBUTION
In this paper, a security scheme for preventing Rank
attacks in SD6LoWPAN is designed as shown in Fig. 1.
The novelty of the proposed work lies in devising and
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FIGURE 1. DODAG instance before and after Rank attack.

evaluating an intrusion prevention scheme that amalgamates
SDN applications in the control plane, achieving efficient
topology discovery, flow control management, and route
optimization in SD6LoWPAN. The RPL-based topology
discovery service is deployed to segment the SD6LoWPAN
and create the route tables used for the topology opti-
mization service. Subsequently, a coordinator flow control
application is developed to coordinate the communication
between the application, control, and data planes. Further,
an RL-enabled topology optimization, achieving route
optimization in SD6LoWPAN, is designed. It is worth
mentioning that nodes’ authentication and integrity are out
of the proposed work scope. Thus, the main contributions of
this work are summarized as follows:

1) A lightweight SDN controller is leveraged in the
border router to reduce the non-negligible overhead
introduced by SD6LoWPAN.

2) A coordinator flow control application is integrated
into the SDN controller to handle the interaction
between the layers of SD6LoWPAN.

3) In the SDN controller, northbound and southbound
interfaces are enhanced to facilitate the communication
between the SDN controller and the data plane and
applications.

4) An RPL-based topology discovery application is
employed for network discovery from the IoT nodes
towards the SDN controller.

5) An RL approach is developed in the SDN controller
to optimize the RPL routing paths to prevent Ranking
attacks’ harmful effects in SD6LoWPAN.

6) Moreover, analysis of the duty cycle and computational
complexity are provided, while emulations showing the
effectiveness of the proposed scheme are executed by
leveraging the Contiki Cooja tool.

The remainder of this paper is organized as follows:
Section II introduces the background and network model.
In section III, we describe the RL-based intrusion prevention
scheme, which falls into: the stack scheme, intrusion preven-
tion algorithm and RL agent modeling and inner workings.
In section IV, the emulation setup and the experimental results

are conducted. Finally, the paper is concluded in section V,
where future endeavors are also put forward.

II. BACKGROUND AND NETWORK MODEL
In this section, we provide a brief background on RPL,
Rank attacks, and RL. Further, we present the impact of
Rank attacks on SD6LoWPAN and the considered network
model. The basic concepts underlying the proposed scheme
are detailed in what follows.

A. RPL OPERATION
RPL is an IPv6 routing protocol designed and standardized
by the Internet Engineering Task Force (IETF) [27]. To build
the network topology, RPL employs Directed Acyclic Graphs
(DAGs), which can be segregated by one or more DODAGs,
where each DODAG has a root node. Multiple root nodes
are integrated within a backbone network that consists of
border routers that connect them to the internet. RPL is
a routing protocol for wireless systems with low power
consumption that starts to find routes based on the OF
established in a setup stage. The OF is utilized to deliver
traffic to different routes according to traffic requirements.
The OF encoded these traffic requirements to be used
by the RPL during routing operations. RPL applies three
types of control messages, i.e., DODAG Information Object
(DIO), DODAG Information Solicitation (DIS), and DODAG
Advertisement Object (DAO), as shown in Fig. 1. The root
node multicasts DIOmessages at regular periods defined by a
trickle algorithm [35]. The DIO message gives the IoT nodes
information to explore the DODAGs, acquire the setting
parameters, and select the favored parent set. To choose the
parent set, RPL applies the OF, which contains some routing
metrics [36]. A DODAG uses DIS message to request the
DIO from its neighboring node to join the DODAG. DAO
messages are disseminated by the IoT nodes to the root
node to update the DODAG. Thus the composition of the
DODAG topology is supported by the root node. The RPL
operations include topology discovery, DAG construction,
route generation, data path validation, and loop detection
based on rank values [37].
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A rank value defines the relative position of a node within
the DODAG. The 6LoWPAN has unique characteristics
that require the specification of new routing metrics and
constraints [38], which can be used by the RPL in the path
computation. These metrics/constraints can be categorized
into two basic types:

• Node metrics and related constraints (e.g., hop counts,
energy state.),

• Link metrics and related constraints (e.g., throughput,
latency, packet loss).

B. RANK ATTACKS
The OF is an essential factor in the parent’s selection, along
with the rank. Once a node receives a valid rank, the OF’s
setting based on the routing metrics must be determined
before modifying the selected parent node. For instance,
if the routing metric relies on the Expected Transmission
Count (ETX), the OF is determined to hold the routing
path with the lowest ETX value, and a node will receive
both the rank and ETX for the chosen parent node. Mainly,
to successfully originate a Rank attack, the attacking node
must alter the routing metric advertised by the parent node
so that the of the neighboring nodes is exposed to be
attacked.

In this regard, Rank attacks have raised serious concerns
about the weakness of the objective function of the RPL.
This protocol usually implements two objective functions:
the Minimum Rank with Hysteresis Objective Function
(MRHOF) and the Objective Function Zero (OF0). The OF0
constructs a DAG with the lowest number of hops [39], while
MRHOF creates a DAG considering the lowest ETX to select
the best path [40]. Since the existing OFs take into account
only one [38] or two metrics [41], the DODAGs cannot
fully satisfy some recent applications which require several
QoS constraints such as packet loss, duty cycle, and end-
to-end delay [40]. For example, OF0 chooses the shortest
path; however, it does not necessarily ensure the end-to-
end delay requirement, which is an essential constraint for
interactive applications [39]. Furthermore, in the MRHOF,
the objective function aims to minimize the expected total
number of packet transmissions required to deliver a packet
to the ultimate destination successfully [40].

It is worth mentioning that a DODAG only uses one OF
for its formation and maintenance. For instance, to illustrate
a Rank attack, in this paper, we consider the ETX as the
principal routing metric for a network topology creation.
We account for an attacker node with a legitimate rank Rl .
In addition, we consider Rn to be the minimum rank
between the neighbors. In this example, the attacker node
will promote a rank value of less than Rn to launch the
attack. Consequently, the attacker alters his rank to become
less than Rn, where Ra < Rn is the rank announced
by the attacker Ra. Thus, the attacker’s neighbors will
drop the rank value if the announced rank Ra is too low
because the RPL recommends that the rank setting is within
a threshold. Otherwise, the unexpected rank can induce
unstable network topology. Accordingly, in Rank attacks, the

attacker advertises a rank with the ratio Rp <Ra< Rn, where
Rp is the attacker’s preferred parent node rank.

In this vein, the updated rank advertised by the attacker
is smaller than most neighboring nodes [42]. Also, to boost
the severity of the attack, the ETX advertised in the DIO
message is diminished compared to the minimum observed
between neighbors. In real 6LoWPAN, routing metrics are
subject to more variations than the rank; therefore, RPL
does not propose any measures to control the routing metric
values. As depicted in Fig. 1, the neighboring nodes of the
attacker (compromised) node six select the latter as their new
preferred parent because it changes its rank fromR=3 to R=2
and the ETX announced in the DIO message is lower than
the minimum perceived between neighbors. As a result of
such ranking misuse, new non-optimal links are considered
(depicted through red lines in Fig. 1), which impacts the
network performance implicitly.

C. REINFORCEMENT LEARNING
RL is an area of machine learning that allows an agent to
learn in an interactive environment by trial and error using
feedback from its actions and experiences [23]. Specifically,
it addresses how an agent/decision-maker tries to learn the
dynamic system’s behavior through interactions with the
environment. The agent receives the current state and the
reward from the dynamic system at each iteration and takes
an action that increases the long-term revenue. The agent
obtains the state and the system’s reward values, whereas the
system captures the action as an input from the agent [43].
RL can increase automation or optimize sophisticated
systems’ operational efficiency, e.g., networking, robotics,
manufacturing, and supply chain logistics [44]. However,
in RL’s practical implementations generally, we do not have
information on the subjacent model. In such a scenario,
model-free learning algorithms are more suitable. The most
widely used approaches in this area are Monte Carlo (MC)
and Temporal Difference (TD) learning. While MC learns
directly from episodes of experience without any previous
knowledge ofMarkovian decision Process (MDP) transitions,
TD learns by bootstrapping from the current estimate of the
value function [44].

D. RANK ATTACK IMPACT
SD6LoWPAN defines a controller that communicates with
the data plane through a Software Defined 6LoWPAN Wire-
less Sensor Network Protocol (SD6WSNP), that employs
IPv6 and RPL at the routing layer, UDP at the communication
layer, and CoAP at the application layer [5]. SD6WSNP
uses CoAP messages to send rules dictated by SDN
applications, such as wireless link quality, geolocation, and
power transmission level, to the nodes. Consequently, RPL
creates DODAGs of different sizes (hops) stored in flow
tables for forwarding data plane packets. Therefore, when
a Rank attack is performed, the DODAGs communicated
by RPL with the SDN controller contains a non-optimal
set of paths. As a consequence, these non-optimized paths
impact the routing messages between the nodes and the SDN
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controller. They also affect the routing rules of the messages
exchanged between the nodes in the data plane; thus, they
overwhelm the SD6LoWPAN. It is worth mentioning that
this work focuses on the messages between the nodes and the
SDN controller in the experimental results.

E. NETWORK MODEL
As depicted in Fig. 2, the network model in the proposed
scheme is a typical SDN-based network architecture where,
in the data plane, multi-hop low-power IoT nodes, connected
by IPv6 to the Internet through a gateway (or border router),
are deployed. These nodes are characterized by low power,
low data rate, short radio range, and low cost. The control
plane then consists of a lightweight SDN controller at the
border router that makes decisions about where traffic is
sent from the underlying data plane to selected destinations
with a coordinator flow control. Precisely, a lightweight
SDN controller is used to minimize the signaling delay in
traditional SDNs. Finally, at the top of the architecture, the
application plane is designed to discover the network and
optimize the topology in Low Power IoT Networks. The
proposed stack scheme is presented in the following section.

FIGURE 2. Network Model.

III. PROPOSED SCHEME
We propose a scheme that creates an enhanced version of the
architecture concepts proposed in [12] while incorporating
architectural, protocol, memory, and controller optimiza-
tion to mitigate control overload and improve scalability.
Precisely, it takes advantage of a northbound Application
Programming Interface (API) to facilitate the control plane’s
communication with the SDN core applications and a
southbound API to facilitate the control’s communication
with the data plane. The interaction between the north-
bound and southbound APIs is handled by the coordinator
flow control, located in the control plane, as shown in
Fig. 3.

It is worth mentioning that the proposed approach does not
detect or eliminate the attacker node nor be an RPL replace-
ment. Instead, this work devises an RL-based intrusion
prevention system against RPL Rank attacks’ harmful effects
through route optimization for low-power IoT networks.
In summary, the proposed stack scheme incorporates three
layers as follows. At the bottom of the stack, typical IoT nodes

FIGURE 3. Network’s stack scheme.

in the data plane combine the following communication
functions: data plane forwarding, border routing, and sensing
applications. In the middle, the control layer, the coordinator
flow control is executed. At the top of the application layer,
the SDN core applications (topology discovery and topology
optimization) are integrated. This architecture is presented in
Fig. 3 and is fully integrated with the IEEE 802.15.4-2012
protocol stack.

A. SDN DATA PLANE
In the data plane, the low-power IoT network is executed.
Due to the small packet size and low bandwidth, the SDN
data plane requires resource-saving to maximize the lifetime
of IoT nodes. The low-power IoT node has at least three
components: the data plane forwarding, routing agent, and
sensing components, which use large arrays of sensors to
collect data from a particular environment. The IoT network
interacts with the control layer through control messages. The
main functions of the SDN IoT nodes are:
• Send information to the control plane;
• Examine data plane packet headers;
• Send or deny data plane packets according to matching
entries in the flow table;

• Send packet-in notifications to the control plane when
there is no matching entry.

Moreover, the SDN data plane modifies packet forwarding
at the operating system as follows. The routing agent inspects
packet headers and checks if the incoming packet is a
control message. If the control message requests an RPL
discovery, it is routed through the control plane following
the 6LoWPAN-RPL routing standard. If the control message
contains a flow table instruction, it is routed through the
data plane. Otherwise, the packet is delivered to the local
sensing application to perform the data plane forwarding
function [45].

B. SDN CONTROL PLANE
To provide a platform for SDN experimentation in low-power
IoT networks, we have implemented a lightweight SDN
control plane introduced in [12]. The lightweight SDN
controller provides a coordinator flow control and enhanced
southbound and northbound APIs, detailed as follows.
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1) COORDINATOR FLOW CONTROL
In the control plane, a coordinator flow control is developed to
facilitate the communication in the proposed SD6LoWPAN
architecture. In this context, the coordinator flow control
integrates three SDN functions that rely on [12] to handle
specific requirements of the SDN implementation. A brief
explanation of the SDN functions is detailed below.

a: SDN CONTROLLER ADAPTER
The controller adapter exposes a controller interface to the
SD6LoWPAN architecture, allowing the control plane to
implement third party interfaces.

b: SDN DRIVER
The SDN driver determines how to manage the flow table.
It provides high-level functions to accomplish particular tasks
by setting up flow table entries, such as aggregating or
removing flows, setting routing paths through the network,
and creating security policy entries. It also handles flow table
actions and determines how and when nodes communicate to
the controller with specific rules.

c: SDN ENGINE
The SDN engine defines the northbound and southbound
communication (application plane with the controller and
the control plane with the data plane, respectively) for both
incoming and outgoing messages to the controller.

2) SOUTHBOUND API
The coordinator flow control utilizes a southbound API to
ensure that packets are transported through the User Data-
gram Protocol (UDP) to enable a secure DTLS (Datagram
Transport Layer Security) and provide better communication
between the data plane and the controller. Also, this API
ensures that each node’s information is continuously sent to
the controller. To this end, the API employs control messages.

3) NORTHBOUND API
The coordinator flow control uses a northbound API to
allow the communication of the SDN controller with the
application plane. To this end, the northbound API employs
control messages that are encapsulated in TCP packets. This
API continuously updates the routing table’s contents with
the routes built by RPL and registers the optimized routes
in the SDN flow table with the RL agent’s decisions. The
control messages implementation, which dictates how the
data and application planes handle controller communication,
is explained as follows.

4) CONTROL MESSAGES IMPLEMENTATION
In the control plane, the coordinator flow control deter-
mines four control messages, i.e., node-mod, info-get, flow-
mod, and packet-in. Accordingly, the control messages are
categorized depending on the process with which they are
associated. Node-mod and info-get are utilized for topology
discovery and optimization applications, while flow-mod and
packet-in are employed for flow control. These messages

operate depending on the SDN core applications’ demands.
Initially, as shown in Fig. 4, the northbound API initiates a
node-mod message from the RPL-based topology discovery
application to the control plane to determine the network
topology, requesting a notification every time a new node is
identified. Once the notification is received, the control plane
transmits info-get through the southbound API to obtain
the discovered node’s neighbors and the respective wireless
links’ quality.

Subsequently, the northbound API records the RPL routes
in a routing table. After that, the RL-enabled topology
optimization is executed, optimizing the routes based on
the data collected from the topology discovery-based RPL
application. Consequently, the northbound API registers the
optimized routes in the SDN flow table. Afterward, the
coordinator flow control sends an Info-getmessage to the data
plane to instruct the nodes to send back a notification when
they receive packets that do not match any entry in the flow
table.

FIGURE 4. Control message sequence diagram.

It is worth mentioning that the Flow-mod message is used
to insert and remove entries from flow tables, to establish
flows according to the SDN application’s purpose. The
SDN core applications can also request the controller to
send an info-get whenever the applications need information
from the IoT nodes. The control message structure is
summarized in TABLE 2. Accordingly, our approach’s
flow tables are composed of two fields, i.e., match and
action. The match field records the incoming packet header’s
features distinguishing the corresponding flow, whereas the
action field records the operation for a matching packet,
as illustrated in Table 3 [5]. Moreover, a set of attributes
related to the standard SDN flow table entries is included in
the match field.

C. SDN APPLICATION LAYER
In the SDN application layer, the core applications are
performed. The SDN engine performs the integration with the
SDN controller.

1) RPL-BASED TOPOLOGY DISCOVERY
Since, the SDN controller needs to have a unified view of
the SD6LoWPAN and the neighbors that each node sees,
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TABLE 2. Control messages.

including the quality of the wireless links connecting them,
a network discovery protocol is mandatory. In this context,
this scheme employs the RPL protocol in non-storing mode.
In this mode, the routing table entries are maintained only on
the controller to ensure that the IoT nodes always attempt to
find a path to the controller.

2) RL-ENABLED TOPOLOGY OPTIMIZATION
In this work, we consider a route optimization approach that
aims to find an adaptive QoS-aware forwarding policy by
applying an RL technique to allow each node to learn the
proper forwarding rate to cooperate in the routes optimization
process. This application’s main objective is to minimize
energy consumption, packet delivery ratio, and end-to-end
delay caused by the Rank attack, thus preventing the latter
from overwhelming the SD6LoWPAN.

TABLE 3. Flow table entry match fields.

D. RL MODEL
The RL model consists of two main entities: the agent and
the environment, as shown in Fig. 5. The agent is a quick
learner who can make decisions according to its learning
experiences and the environment is an anonymous entity
that affects the performance of the agents. In the proposed
solution, the agent lacks knowledge of the environment.
Therefore, a model-free like State Action Reward State
Action (SARSA), a well-known temporal difference (TD)
algorithm, is adopted [23]. SARSA is an iterative dynamic
programming algorithm to find the optimal solution based on
a limited environment. It is worth mentioning that SARSA
has a faster convergence rate than Q-learning and is less
computationally complex than other RL algorithms [46].
Also, since our environment is resource-constrained and
limited by the number of nodes per DODAG (30), differ-
ent deep reinforcement learning algorithms such as Deep
Q-Learning (DQL) and Deep Deterministic Policy Gradient
(DDPG) are not considered in this paper, where we leave their
integration in our scheme and test in a real IoT testbed for
future work.

In particular, in the proposed scheme, the state is the
current node, and the action is the link to follow to reach a
neighboring node. Specifically, at each node, following the
link to each neighbor, the agent has to exploit past actions
with great rewards and simultaneously explore the system
for better unknown actions. In this context, there are three
components for the RL agent’s design: the action policy, the
quality function, and the reward function. These components
are detailed as follows:

1) ACTION SELECTION POLICY
The action selection policy defines an agent’s action selec-
tion, which correlates an action to a state. This function
evaluates the trade-off between action exploitation and
exploration to maximize the reward value. Accordingly, the
agent explores the state space in an unknown environment.
To this end, in our proposed routing model, we consider
the Boltzmann softmax policy [47], where the probability
πt (st , sa) of choosing an action at given the current state st
is given by

πt (st , sa) =
exp(Qt (st , at )/τn∑n
b=1 exp(Qt (st , bt )/τn)

, (1)

where n is the number of possible actions, Qt (st , at ) is
the corresponding quality function, and τn is a temperature
control. The temperature control measures the trade-off
between exploration and exploitation. As a result, if this
parameter obtains high values, all actions are reasonably
probable (i.e., exploration). In contrast, low values sustain the
action with the maximum quality (i.e., exploitation), which
causes the policy to tend to a greedy one. Therefore, in highly
dynamic environments τn should be set to a high value while
it should decrease to a low value in static environments. In this
context, to guarantee a learning convergence in a limited time,
temperature control is set to a linear function of the time and
is expressed by

τn = −
(τ0 − τT )n

T
+ τ0 n ≤ T , (2)

where T denotes the time to reach the convergence, and τ0 and
τT are the initial and last value at time T of the temperature
control, respectively.

2) QUALITY FUNCTION
The quality function estimates the quality that can be
achieved by the possible next system state, which can be
determined by the agent based on the state and action.
Significantly, in this paper, the quality function Qt+1(st , at )
relies on SARSA, as mentioned above, where the agent at
time t+1 applies the action and the state to update the quality
value. Indeed, SARSA uses the expected quality value, taking
into account how likely each action is under the current
policy, which indicates that the agent can utilize the future
reward earned, rather than considering the optimal actionwith
the highest reward [48] as follows:

Qt+1(st , at )

= Qt (st , at )+α[Rt+γQt (st+1, at+1)−Qt (st , at )], (3)
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FIGURE 5. RL model.

where γ ∈ [0, 1] is the discount factor that defines the
purpose of future rewards, α ∈ [0, 1] is the learning rate
that represents the override measure of the recently acquired
information to the past one, and Rt is the reward at time t .
As a consequence, in Eq. (3), the agent updates the quality
value based on the maximum potential quality value among
the actions. Concretely, the agent selects and takes action
for the current state st through the action selection policy.
Accordingly, the agent observes Rt and the state st+1 and
updates the Q function.

3) REWARD FUNCTION
In this section, we recommend a reward function based on
the network QoS requirements that are linked with the design
of our route optimization approach. Specifically, the RL agent
discovers the routing path with the highest QoS-aware reward
based on the types of traffic and user applications.

Precisely, TABLE 4 summarizes the QoS requirements and
traffic type of several applications [49]. For example, classic
and real-time traffic adapts the packet transmission rate and
has significant QoS awareness. For this purpose, the reward
function is evaluated as

Rt = −g(at )+ β1( delayi,j + queuei,j)+ β2PLR (4)

This indicates that the system at state st , using an action
at , forwards packets from node i to node j. In Eq. (4), g(at )
indicates the cost to take action at time t , and β1, β2 ∈ [0, 1]
are the weights values determined by the QoS requirements
of the packet flow. Unfortunately, one of the significant
concerns with RL algorithms is that, as the agent iterative
estimates the action values, the initial stages’ learning process
is extensively random exploration, which might affect the
network performance.

Therefore, since this work’s primary purpose is to pre-
vent Rank attacks from overwhelming the performance of
SD6LoWPANs, we introduce an exploration strategy that
incorporates QoS aware functions in the action selection
process to guide the learner agent, especially in the initial
stages of the learning process [50], avoiding excessive
consumption of resources.

Since the impact of doing an action mainly relies on the
QoS aware functions, the cost g is equal to a constant value

TABLE 4. Traffic types and applications for QoS requirements [49].

over all the actions. The QoS provisioning functions are
defined as

delayi,j =
2
π
arctan

[
d li,j −

∑A(i)
k=1 d

l
i,k

A(i)

]
(5a)

queuei,j =
2
π
arctan

[
dqi,j −

∑A(i)
k=1 d

q
i,k

A(i)

]
(5b)

PLR = (100− PDR) (5c)

where d li,j and dqi,j are the link transmission and packet
queueing delays from node i to node j, respectively. A(i)
is node i’s number of neighbors in the DODAG, and PLR
characterizes the packet loss from node i to the controller.
Eq. (5a) estimates the link delay of link i − j compared to
other possible next hops, Eq. (5b) includes the queueing delay
while accounting for the average delay over the DODAG, and
Eq. (5c) represents the Packet Loss Ratio (PLR), which shows
the performance of the protocol in terms of percentage of
Packets Delivery Ratio [PDR], i.e., the packets successfully
delivered to the controller [51].

E. INTRUSION PREVENTION ALGORITHM
As shown in Fig. 6.a, we consider a DODAG which consists
of several IoT nodes connected to a border router that plays
the role of a lightweight SDN controller. In this reference
frame, the SDN controller gathers the routing paths and the
global state of the networkwith the aid of RPL. Consequently,
we assume that a Rank attack is performed over an existing
node in the network, affecting node 6, which alters its
rank from R=3 to R=2, and the ETX announced in the
DIO message that is lower than the minimum perceived
between neighbors. Hence, node 9 selects node 6 as its
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FIGURE 6. DODAG instance before and after the proposed RL approach.

parent instead of node 3, affecting the entire network’s
performance. Subsequently, the SDN controller is in charge
of path computation based on the network state received
for each incoming route path. After that, a new DODAG is
created with an optimized path based on the continuously
received control messages, where node 3 is selected instead
of node 6 as the parent node to node 9. Hence, through
our RL approach, the controller dynamically optimizes the
best data flow routes according to the QoS requirements and
dynamic traffic patterns, and sets up the routing tables of the
border router along the optimal path via the SDN controller,
thus enabling high security while providing efficient data
transmissions and superior link utilization [52], [53], [54].

It is worth mentioning that the resulting optimized paths
could be different from those of DODAG without the
Rank attack before applying our RL approach. In Fig. 6.b,
we assume a representation of the possible optimized
paths recovered by our RL approach. However, in the
experimental results section, we validated the optimization of
DODAG paths based on some performance metrics analysis.
The intrusion prevention algorithm is summarized in the
following steps.

1) Flow f arrives to the controller Cf ;
2) Set of paths and NS are in introduced in Cf ;
3) QoS requirements are configured in Cf ;
4) The QoS functions are calculated in Cf ;
5) Cf executes the RL agent procedure;
6) Optimized paths are stored in the flow table;
7) The flow is forwarded following the flow table in Cf ;

First, when a flow (f ) appears at controller Cf , it demands
the forwarding path, and the controller refreshes the current
Network State (NS). Accordingly, the QoS requirements are
configured in Cf and the QoS provisioning functions are
computed. Subsequently, Cf exploits the RL agent procedure
to select a possible path with regard to the QoS requirements
of the flow. Consequently, Cf stores the forwarding tables
of the IoT nodes along with the optimized path in the
flow tables. The RL agent procedure is summarized as
follows:

1) Initialize Q0(S0, a0) = 0 and R0 from Eq. 3;
2) At time t:
3) Choose next-hop using softmax in Eq. 1;
4) Observe Rt and st+1;

5) Update Qt+1 function using Eq. 4;
6) update t = t+1;
7) Continue from step 3 to choose next-hop;
8) Exit;

IV. EMULATION SETUP AND EXPERIMENTAL RESULTS
In this section, we start by presenting the scenarios, network
parameters, assumptions, and metrics used in the evaluation.
Afterward, we go through the experimental results and the
corresponding analysis.

A. EMULATION SETUP
We assume the composition of one DODAG with multiple
sets of paths, one SDN controller, one control channel,
and a real-time network state. To measure the impacts of
rank attackers on the Operating System (OS), we choose
an open-source OS, namely Contiki OS, designed for
resource-constrained devices [55]. The benign nodes were
placed at different locations and circled around a malicious
node as shown in Fig. 6. Here node 1 is the SDN
controller/border router in SD6LoWPAN. For the creation of
DODAGs, we use RPL using the objective function MRH0F.
Although MRH0F does not consider the number of hops for
DODAG’s design, since 6LoWPAN is a multi-hop network,
we use the number of hops as a performance metric in our
set of results. The network parameters used in the emulations
are listed in TABLE 5, and node characteristics are mirrored
according to the EXP5438 platform with TI MSP430F5438
CPU and CC2420 radio.

We measure the results of the experiment that are aligned
with the data analytics of the Cooja emulation tool. The
performance metrics are as follows.

• Average Packet Delivery Ratio (PDR): This is the ratio
between the number of packets sent to the destination
and the number of packets received by the destination.

• Average end-to-end Delay (Delay): This refers to the
time to transmit a packet over the network from the
source to the destination.

• Radio Duty Cycle (RDC): This is the energy consumed
by an IoT node considering the time it spends in the
listen, receive (Rx), and transmit (Tx) states. In other
words, it is the ratio between the time spent by a node in
those states and in wake-up state.
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TABLE 5. Network Parameters.

B. EXPERIMENTAL RESULTS
As part of this section, we analyze the results obtained
from the experiments conducted using the Cooja emulator
for Contiki OS which mimics the behavior of real IoT
devices [56]. To this end, we consider a low-power wireless
network composed of 30 IoT nodes where 29 are benign and
1 is deemed to be malicious. The network is deployed in
an emulated outdoor area. Since our centralized approach’s
primary goal is to prevent rank attacks from overwhelming
the network, given the fact that the network size consists
of 30 nodes, one attacker is enough to demonstrate such
a premise. It is worth mentioning that the results are
obtained considering a static scenario in which there are no
mobile nodes. However, we emphasize that our emulated
scenario is deployed in a dynamic wireless environment.
Thus, our testbed’s radio channel conditions are susceptible
to changes due to interference (e.g., from other 802.15.4 and
802.11 radios), where this interference is time-varying.
Further, the underlying MAC protocol is ContikiMAC [57].

Moreover, it is essential to mention that the idea behind
using an SDN controller in 6LoWPAN is to introduce
intelligence and programmability to the root nodes, which
eventually will be integrated into other DODAGs in the
network. In other words, under a global IoT network scheme,
there will be multiple DODAGs with multiple controllers
communicating with each other. For experimental purposes,
in this scenario, we use a single DODAG. In future work,
we plan to analyze multiple DODAGs in a hierarchical
SD6LoWPAN environment. To better illustrate the proposed
solution’s performance better, we first demonstrate the
performance evaluation of our RL approach; afterward,
a comparative scenario analysis is presented.

1) PERFORMANCE ANALYSIS OF OUR RL APPROACH
Initially, we analyze our RL approach’s performance to
determine the best configuration settings to minimize the
Delay and RDC while maximizing the PDR. To this end,
we present the training phase as follows.

FIGURE 7. Learning process with respect to the number of episodes vs.
the average reward in the proposed approach.

a: TRAINING PHASE
It is essential to mention that the RL model’s training is made
offline to record the first flow table; after that, the model
delivers the optimized routes online. Since this work aims to
prevent Rank attacks’ harmful effects based on network QoS
metrics continuously received by the control plane, to train
the model, we select the step size parameters (α,γ ). These
parameters govern the RL agent’s performance, as defined in
Eq. (3). Precisely, α adjusts the error in the Q value update;
γ ε [0, 1) takes a value of zero if the routing estimates
the current reward and acts like a greedy algorithm, and a
value close to one if the routing takes the long-term revenue.
As we consider the long-term revenue to be significant, for
this experiment, we set the value of γ to 1. Moreover, we set
the number of episodes to 1000, and each episode contains
100 steps.

The results shown in Fig. 7 demonstrate that our RL
approach learns to reach a reward of 99% when the step
size converges between 0.5 and 1 with a number of episodes
of 1000. Hence, to analyze the Delay, RDC, and PDR,
we vary the learning rate α from 0.5 to 1 with 1000 episodes.
Additionally, g(at ) is set to 0.5 and the QoS provisioning
values β1 = 1 and β2 = 0.5. The QoS provisioning values
indicate that a longer convergence time is required when
considering the end-to-end link and queue delay in the
experiments. Fig. 8 shows the number of hops of a suitable
path through our RL agent for a given (α, γ ). It shows
that there exists a trade-off between algorithm convergence
and end-to-end delay. Therefore, the Delay increases with
the increase of the value of α. Additionally, the results
demonstrate that when 0.5 ≤ α ≤ 0.7, with a number of
paths between one and three hops, the Delay is higher than for
other values of α. On the contrary, when 0.7 ≤ α ≤ 1 with
paths with a maximum of 2 hops, the Delay is lower than for
other values of α. This means that the smaller the network’s
size, the lower the latency when the value of α is greater
than 0.7.

Moreover, in Fig 9, the results reveal that the PDR expo-
nentially increases when α increases, reflecting a significant
decrement when α takes a value of 0.6 or 0.5. In Fig 10,
the results illustrate that high values of α are associated
with higher RX and lower TX in the network. Consequently,
the energy consumption exponentially increases with the
increase of α. Since IoT nodes often have a small battery,
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FIGURE 8. Delay-An illustrative comparison of our approach by using
α ∈ (0,5-1).

FIGURE 9. PDR-An illustrative comparison of our approach by using
α ∈ (0,5-1).

measured in millivolts, extra power consumption can reduce
the device’s battery life by forcing the node to change its
state to off. Although, the condition 0.7 < α ≤ 1 introduces
the lowest Delay in small DODAGs, it is not suitable for our
scenario because we consider a network with a maximum of
5 hops. Moreover, for 0.5 ≤ α < 7 with paths created with
more than 2 hops, the Delay is lower than for other values
of α. However, there is a meaningful decrement in the PDR.
Accordingly, to ensure a suitable analysis in terms of Delay,
PDR, and RDC, we set the value of α to 0.7 in subsequent
performance comparisons.

FIGURE 10. RDC-An illustrative comparison of our approach by using α ε

(0,5-1).

2) PERFORMANCE COMPARISON
In what follows, we compare the Delay, PDR, and RDC with
the following four scenarios.

FIGURE 11. Delay-An illustrative comparison between S1, S2, S3, and S4.

1) S1: An RPL scenario with no SDN implementation
under Rank attack.

2) S2: An RPL scenario with SDN implementation
without Rank attack.

3) S3: An RPL scenario with SDN implementation under
Rank attack.

4) S4: AnRPL scenario with our RL-based SDN approach
under Rank attack (our approach).

a: DELAY
In what follows, we analyze the delay of the four scenarios
considering the path with the maximum number of hops. As a
result, Fig. 11 demonstrates that in S1, the delay reaches 1600
milliseconds. Further, in S2, the latency in SD6LoWPAN
reaches 2950 milliseconds. As a consequence, the latency
is 45.72% higher than in S1. This is because an additional
overhead is introduced due to the messages exchanged from
the controller to the data plane. In S3, the latency reaches
4400 millisecond, which is 63.63% and 32.95% higher than
S1 and S2, respectively. This is due the Rank attack, requiring
the data plane to navigate downwards along the RPL topology
across multiple non-optimized paths. Furthermore, in S4,
the results show that the latency reaches 2500 milliseconds,
which is 56.81% lower than S3 and 15.25% lower than S2.

Although S4 is 36% higher than the scenario where
the SDN implementation is not used (S1), the proposed
solution restores and even optimizes the typical behavior in
SD6LoWPAN. This is because the number of SDNmessages
is decreased since the optimized paths are only delivered once
the RL approach’s exploration process is finished, rather than
not every time the RPL collects data from the data plane. It is
worth mentioning that our solution obtains the best results
with DODAGs created with more than 3 hops.

b: PDR
In what follows, we analyze the four scenarios’ PDR. To this
end, we consider the path with the maximum number of hops
and an average of 360 control packets delivered from the data
plane to the controller. Consequently, the results illustrated
in Fig 12, demonstrate that 151 packets were successfully
delivered to the border router in S1. This means that this
scenario reaches a PDR of 48%. Further, in S2, the average
delivery variation reaches 270 packets per second, reaching
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FIGURE 12. PDR-An illustrative comparison between S1, S2, S3, and S4.

a PDR of 75%. This is 27% more than S1 because the SDN
approach helps speed up the packets delivery. Subsequently,
a SD6LoWPAN under Rank attack introduces a packet loss
ratio of 38%. Thus, this scenario reaches a PDR of 62%which
is 13% lower than S2 and 14% higher than S1. Finally, in our
method, the results demonstrate that the PDR reaches 85%,
which is 23%, 10%, and 37% more efficient than S3, S2,
and S1, respectively. This is because the RL optimization
algorithm optimizes the network routes in SD6LoWPAN.

FIGURE 13. RDC-An illustrative comparison between S1, S2, S3, and S4.

c: RDC
In S1, as illustrated in Fig. 13, the Rx reaches 99.972% and Tx
0.028%. Meanwhile, in S2, the Rx reaches 99.902% and Tx
0.098%. As a result, this scenario consumes less energy than
S1 because the centralized SDN architecture optimizes the
power consumption by not overloading the data plane with
continuous execution of the RPL. Subsequently, in S3, the Rx
reaches 98.676%, and Tx is 1.324%. Therefore, this scenario
introduces a higher duty cycle than S2 due to the Rank
attack execution. Conclusively, in S4, the Rx is 99.432%,
and Tx is 0.568%. Consequently, this scenario consumes less
energy than the third scenario restoring the excessive energy
consumption introduced by the Rank attack. Although our
approach introduces more latency than the other scenarios
where the route consists of a maximum of 3 hops, the latency
is decreased in the fourth and fifth hop due to the exploration
of the RL agent’s environment. Moreover, the proposed
scheme provides better performance in packet delivery than
S1 and S2 and restores the Rank attack’s energy consumption
in S3. It is worth mentioning that since the results obtained
demonstrate that our approach provides network performance
efficiency, thus preventing rank attacks from overwhelming

the constrained SD6LoWPAN, we did not create more test
scenarios, including more malicious nodes. To the best of
our knowledge, the concept of a unified SDN-based intrusion
prevention stack scheme, integrating RPL for fast network
discovery and RL for route optimization to avoid ranking
attacks, has never been attempted in any previous research
works.

V. CONCLUSION
The core of our solution is the elaboration of a security pre-
ventive control that takes advantage of the programmability
of SDN in 6LoWPAN to build a self-learning agent that
captures states through flow tables andmetrics collected from
the control plane. The learning consists of optimizing RPL
routing based on QoS metrics like delays and packet loss
rate. The control plane and the application plane stack can
be used in a wireless border router supporting 6LoWPAN,
introducing therefore a QoS awareness intelligence and
avoiding RPL rank attacks sensitivity. Such a solution can
support 5G agnosticism with respect to different wireless
networks like 6LoWPAN networks. To analyze the per-
formance of the proposed scheme, we leverage Contiki
Cooja. The results demonstrate that the proposed scheme
satisfies the requirements of SD6LoWPAN by providing
low management complexity, delay reduction, and consider-
ably preventing ranking attacks, thanks to the introduction
of the learning agent reinforcing the route optimization
approach.

Future work will include implementing the proposed
security scheme on an IoT testbed. Moreover, our research
will explore the use of network slicing to tailor our approach
for heterogeneous networkswith the help of hierarchical SDN
drivers distributed between the cloud and the edge. Such a
deployment will promote decentralized decision-making and
introduces our solution in large-scale scenarios.
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