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Abstract—When dealing with clinical text classification on a small dataset recent studies have confirmed that a well-tuned multilayer
perceptron outperforms other generative classifiers, including deep learning ones. To increase the performance of the neural network
classifier, feature selection for the learning representation can effectively be used. However, most feature selection methods only
estimate the degree of linear dependency between variables and select the best features based on univariate statistical tests.
Furthermore, the sparsity of the feature space involved in the learning representation is ignored. Goal: Our aim is therefore
to access an alternative approach to tackle the sparsity by compressing the clinical representation feature space, where limited
French clinical notes can also be dealt with effectively. Methods: This study proposed an autoencoder learning algorithm to take
advantage of sparsity reduction in clinical note representation. The motivation was to determine how to compress sparse, high-
dimensional data by reducing the dimension of the clinical note representation feature space. The classification performance of
the classifiers was then evaluated in the trained and compressed feature space. Results: The proposed approach provided overall
performance gains of up to 3% for each evaluation. Finally, the classifier achieved a 92% accuracy, 91% recall, 91% precision, and
91% f1-score in detecting the patient’s condition. Furthermore, the compression working mechanism and the autoencoder prediction
process were demonstrated by applying the theoretic information bottleneck framework.

Impact Statement— An autoencoder learning algorithm effectively tackles the problem of sparsity in the representation feature space
from a small clinical narrative dataset. Significantly, it can learn the best representation of the training data because of its lossless
compression capacity as compared to other approaches. Consequently, its downstream classification ability can also be significantly
improved, which cannot be done using deep learning models.

Index Terms—Clinical natural language processing, cardiac failure, autoencoder, sparsity.

I. INTRODUCTION

CLINICAL decision support systems (CDSS) are con-
tinuously being developed and play a crucial role in

promoting a personalized healthcare system, as more and
more data are collected and stored continuously [1]. These
data represent decisive points in advancing and enhancing the
efficiency and effectiveness of CDSS operations. Predictive
models have been developed based on the latter for preventive
treatment and patient diagnosis, culminating in intelligent,
precise, and timely healthcare improvement [2]. In one notable
example, a recent study [3] analyzed the effect of CDSS on
cardiovascular risk in 18,578 patients in 70 community health
centers. In that case, CDSS significantly reduced the risk of
cardiovascular disease among vulnerable high-risk patients.

Following the above successes, a CDSS was developed at
CHU Sainte-Justine Research Center (CHUSJ). The system
monitors the management of pediatric intensive care for all
patients ranging in age from 0 to 18. Fig. 1 illustrates two
fundamental processes in the CDSS workflow at CHUSJ,
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which involve collecting and processing critical care data.
First, clinical data are collected and stored in a clinical data
warehouse. The data processing unit is then systematically
aggregated and processed to convert raw data to a machine-
readable form in the data processing unit. This process helps
analyzing the unknown data interpretation and presentation.
The CDSS can thus integrate the advanced analytic result of
the data processing unit and learning algorithms; then clini-
cians can adequately use the CDSS to guide early intervention
and prevention for healthcare management.

One of the goals of the CDSS system in CHUSJ is auto-
matically screening the data from electronic medical records,
chest X-rays and other data sources, which has the potential to
increase the diagnosis rate and then improve the management
of acute respiratory distress syndromes (ARDS) in real time.
Usually, the diagnosis of ARDS was delayed or missed in two-
thirds of patients, and the diagnosis was missed completely
in 40% of patients [4]. To make the diagnosis of ARDS,
three main conditions need to be detected: hypoxemia (low
blood oxygenation), presence of infiltrates on chest X Ray
and absence of cardiac failure [5]. Our research team has
developed algorithms for hypoxemia [6], chest X-ray analysis
[7], and identification of the absence of cardiac failure [8], [9].
Technically, we successfully performed extensive analyzes of
machine learning algorithms (ML) aimed at detecting cardiac
failure from clinical narratives using natural language pro-
cessing based on such algorithms [8]. The study included the
clinical notes of 1386 patients classified by two independent
physicians using a standardized approach. It confirmed that
the framework proposed herein yields an overall classifica-
tion performance with 89% accuracy, 88% recall, and 89%
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precision by applying a multilayer perceptron neural network
(MLP-NN) classifier in combination with a term frequency x
inverse document frequency (TF-IDF) learning representation.

These results were made possible by the contributions of
the feature selection process, also known as SelectKBest. The
advantage of the process was proven for supervised models
as the classifier performance brought overall improvements
of up to 3-4% over the case without the feature selection. It
is obvious to understand because there are fewer misleading
features; after selecting the best K features, the classifier
accuracy effectively improves. Unfortunately, the SelectKBest
feature selection continues to have certain limitations in the
proposed framework. One reason is that the feature selection
method is based on a statistical test that estimates the degree
of linear dependency between random variables. Then, it
removes irrelevant features and ignores the correlation between
data elements. As a result, more samples are required for
an accurate estimation and avoidance of overfitting, which is
not possible in our case [10]. Furthermore, SelectKBest does
not deal mainly with the sparsity of the feature space in the
note representation matrix [11]. Consequently, the sparsity that
characterizes the learning representation space is ignored.

In the health care field, the autoencoder algorithm (AE)
has lived up to its promises and has shown its effectiveness
when it comes to improving outcomes for efficient clinical
decision making. First, AE can find informative transformed
feature vectors through the compressed latent representation.
For example, a study [12] demonstrates an efficient frame-
work for automatically learning compact representations from
heterogeneous raw data sources from patient health data. In
addition, AE can improve the predictability of the six differ-
ent learning models to detect Parkinson’s classification [13].
Another study [14] shows that AE improved the performance
of a novel outlier detection mechanism by retrofitting word
vectors for the biomedical ontology matching task. Second,
having rich and accurate clinical data is very challenging [15]
because the acquisition and sharing of medical data faces
a significant obstacle in the form of privacy issues and the
sensitive nature of the data. Fortunately, AE can be applied
for sparsity reduction in clinical representation feature space
to allow to tackle problems related to limited data availability.
It could effectively discover the low dimensional embeddings,
and reveal the underlying effective manifold structure from a
sparse high dimensional document-term matrix [16].

Therefore, the present study examines alternatives to feature
selection and focuses mainly on compressing data without
loss of information by employing an AE algorithm. First, we
aim to achieve a better feature space without any sparsity.
We are interested in compressing the sparse TF-IDF matrix
and reducing its dimensions to improve the efficiency of
the feature space representation. Notably, we incorporate a
neural network to learn efficient codings of unlabeled data to
address the issues caused by sparse vectors generated from the
TF-IDF representation feature space for clinical notes. Then,
the compressed vector space from the TF-IDF matrix is fed
into the classifiers as a refined input. Finally, ML classifiers
conduct the learning process to draw comparative results,
which are then used to evaluate the classification performance.

Our study confirms that AE effectively compresses the
vector space of the TF-IDF representation for clinical nar-
ratives into a lower dimension. The proposed approach can
retain the critical feature by capturing the correlation between
attributes during the training process, hence; the downstream
classification task can generally be increased to 2-3% for each
evaluation criterion. Furthermore, we also highlight the value
of AE behaviors in a limited data set. We analyze the working
mechanism of the AE, which explains how the AE works to
compress data through the encoder and decoder. Based on the
information-theoretic framework, the working mechanism of
the AE is to optimize the information bottleneck during the
compression and prediction process, respectively. As a result,
the behavior of AE in limited data is exactly in harmony with
such cases where there are much larger data availability.

Section II will discuss the materials and methods. The
experimental results and discussion then will be discussed in
section III, IV. Finally, section V provides concluding remarks.

II. MATERIALS AND METHODS

A. Data Sparsity Challenges

In numerical analysis, a sparse matrix or sparse array is a
matrix in which most elements are zero [17]. The number of
zero-valued elements divided by the total number of elements
(e.g., m× n for a m× n matrix) is called the matrix sparsity
(equal to 1 minus the density of the matrix). Using these
definitions, a matrix will be sparse when its sparsity is more
significant than 0.5. In our case, after the research protocol
was approved by the research ethics board from Research
Center of the Sainte-Justine University Hospital, we have
more than 580000 (unigrams) word count from 5444 single
lines of notes with 1941 positive cases (36% of total) and
3503 negative cases. We applied the SelectKBest to select
top best ‘k=20000’ of the vectorized features for the TF-IDF
preresentation learning feature space. Finally, we have a matrix
of features of (5444 × 20000). It is calculated by the Eq. 1,
and the sparsity of the TF-IDF matrix is greater than 0.9.

It confirms that the representation matrix from the TF-IDF
is sparse because every word is treated separately. Hence, the
semantic relationship between separated entities is ignored,
which would cause information loss. Although the combi-
nation of TF-IDF and MLP-NN consistently outperformed
other combinations with overall performance and was the
most stable under all circumstances [8], the sparsity remains.
Therefore, the motivation is how we can compress the sparse,
high-dimensional data by reducing the dimension from the
TF-IDF feature space of clinical notes representation.

sparsity = 1− count nonzero(TF-IDF)
total elements of (TF-IDF)

(1)

B. Autoencoder Learning Algorithm

An AE was originated by [18] to solve a nonlinear dimen-
sional reduction; later AE was famously promoted by training
a MLP-NN with a small central layer to reconstruct high-
dimensional input vectors [19], [20]. Technically, AE takes
an input X ∈ RN×D and, maps it to a latent representation
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Fig. 1. Workflow demonstration of a clinical decision-support system at CHU Sainte-Justine hospital.

Z ∈ RN×M via a nonlinear mapping. Let us call x ∈ X , and
z ∈ Z, we will have:

z = g(Wx+ b) (2)

W is a weight matrix during training, b is a bias vector, and
g(·) stands for a nonlinear function, such as the logistic sig-
moid function or a hyperbolic tangent function. The encoded
feature representation x is then used to reconstruct the input
x by reverse mapping, leading to the reconstructed input x′:

x′ = f(W ′z + b′) (3)

where W ′ is usually limited to the form of W ′ = WT , i.e.
the same weight is used to encode the input and decode the
latent representation. f(·) is also a non-linear function. The AE
tries to learn a function fW ′,b′(x) ≈ x′. In other words, it is
trying to learn an approximation of the identity function for the
output x′ that is similar to x. Still, by placing constraints on the
network, such as limiting the number of hidden units, we can
discover interesting data structures. Then, the reconstruction
error is defined as the Euclidean distance between x and x′

that is constrained to approximate the input data x (that is,
minimizing ||x− x′||2).

L (x, x′) = ‖x− x′‖2

= ‖x− f(W ′ (g(Wx+ b)) + b′)‖2 (4)

For the reconstruction evaluation between the original data
x, and the reconstructed output x′, we will apply the statistical
measure R2

i for the ith variable of xi. It can be computed as:

R2
i = 1−

∑m
j=1(xj,i − x′j,i)2∑m

j=1 x
2
j,i

(5)

Since R2 = 1 will be a perfect reconstruction; we will evaluate
the reconstruction by how much the value of R2 is close to 1.

Ideally, an effective AE can be designed and trained based
on the minimization of reconstruction error from Eq. 4 and
maximization of the reconstructed effectiveness from Eq. 5;
however, it is substantially based on its width (number of
neuron units or latent representation dimension M ) and its
depth (number of hidden layers). First, conventional AE relies
on the dimension of the latent representation z being smaller
than that of the input x (M < D), which means that it tends to
learn a low-dimensional compressed representation. The study
[21] presents methods to learn the decoder function f(·) as a
learnable function through the reconstruction error in Eq. 4
in several representation learning approaches. It is concluded
that the compression depends on dimension M but less on
dimension D. Second, it has been shown that training a neural
network-based by increasing the number of hidden layers (in
combination with an increase in the number of neuron units
per layer) achieves less consistent results [22]. Therefore, in
our case, we use a small and simple AE. We employ an AE
with three layers (one input layer, one hidden layer, and one
output layer). Mainly, to reduce the parameters from the latent
space of the AE, we apply the regularization technique from
study [23] to remove redundant parameters.

After training, we use the weight matrix from the hidden
layer as a pre-trained tool. A classifier subsequently use this
pre-train latent space representation to perform the binary
classification, as shown in Fig. 2. For the classifiers, it
is essential to have consistency in evaluating the proposed
approach’s performance. Then, we employ six different ML
classifiers, including Random Forest (RF), Multinomial Naive
Bayes (MultinomialNB), Logistic Regression (LR), Support
Vector Machine (SVC), Gaussian Naive Bayes (GaussianNB)
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Fig. 2. Schematic structure of an AE-based for compression and prediction.

and Multilayer Perceptron Neural Network (MLP-NN).
Furthermore, to understand the dynamics of learning and

the behavior of AE; especially, in our case with limited
data, we also analyze the behavior of AE during the train-
ing process from the encoder and decoder. Technically, we
capture to understand how the AE can retain the information
during the compression process. To do that, we apply the
information-theoretic quantities and their estimators based on
information-theoretic learning, which compute and optimize
information-theoretic descriptors named mutual information.
The information-theoretic framework [24], [25], [26] has been
utilized for a detailed theoretical explanation of an AE. These
studies rely on the “information bottleneck” [27], [28] to
understand and estimate how the AE works by quantifying its
information plane coordinates. The information bottleneck can
be used as an optimal bound that maximally compresses the
input x, for a given mutual information on the desired output
x′. There are comprehensive overviews of recent studies [29],
[30], [31]. Technically, we first bin the output activation as
stated in [28], and we treat each hidden layer i (1 ≤ i ≤ K)
as a single variable Ti. Then we will be able to estimate
the mutual information between all the hidden layers and
the input/output layers by estimating the joint distribution
P (X,Ti) and P (Ti, X ′), and use them to calculate the mutual
information of the encoder (between the input X and the
hidden layer Ti), and the mutual information of the decoder
(between the hidden layer Ti and the desired output X ′) using
the following equations Eq. 6, 7. Finally, we can learn the good
representation T (X), which is characterized by its encoder and
decoder distribution P (T |X), and P (X ′|T ), respectively, to
effectively map the input patterns X to a good prediction of
the desired output X ′.

I(X;Ti) =
∑

x∈X,t∈Ti

P (x, t) log
( P (x, t)

P (x)P (t)

)
(6)

I(Ti;X
′) =

∑
t∈Ti,x′∈X′

P (t, x′) log
( P (t, x′)

P (t)P (x′)

)
. (7)

TABLE I
HYPERPARAMETERS SUMMARY FOR AE TRAINNING

Hyperparameter Ranges
Hidden layers 1-3
Neurons 100-500
Activation Sigmoid
Kernel initializer GlorotNormal
Optimizers SGD, ADAM
Learning rate 0.001 - 0.01
β1 0.9
β2 0.999
ε e−8 - e−7

III. RESULTS

To assess the performance of our method, metrics including
accuracy, precision, recall (or sensitivity), and F1 score were
used [32]. These metrics are defined as follows.

Accuracy (acc) =
TP+ TN

TP+ TN+ FP + FN

Precision (pre) =
TP

TP + FP

Recall/Sensitivity (rec) =
TP

TP + FN

F1-Score (f1) =
2?Precision?Recall
Precision + Recall

where TN and TP stand for true negative and true positive,
respectively, and are the number of negative and positive pa-
tients correctly classified. FP and FN represent false positives
and false negatives, respectively, and represent the number of
positive and negative patients incorrectly predicted.

For implementation, we used the same hyperparameters
from our previous study [8] for all classifiers so that we can
have a consistent evaluation for the performance. The data
was also divided into 60% training, 20% validation, and 20%
testing. The implementation was done using Python Scikit
learn [33] and Keras [34]. We performed a grid search for
up to three hidden layers and 500 neurons per layer, and other
hyperparameters are summarized in Table I for AE training.
For the optimizers, we used the Stochastic Gradient Descent
(SGD) and Adaptive Moment Estimation (ADAM) with small
scalar ε, and the forgetting factors for gradients and second
moments of gradients, β1 and β2. Then, a combination with
the highest estimations was considered the best performance.

IV. DISCUSSION

To deal with the sparsity, many researchers simply focus on
dimension reduction. There are two most popular techniques,
namely Linear Discriminant Analysis (LDA) and Principal
Component Analysis (PCA), for their simplicity among other
dimension reduction techniques [35], even with a large dataset
[36]. Especially when the training data set is small, the PCA-
supervised discriminative approach can outperform; it is also
less sensitive to the variability of the training sets [37]. The
study [38] shows that PCA can increase the performance of
different ML classifiers for the prediction of cardiac failure.

It can be said that the classifiers performed better after
applying LDA to the linear data set. So, in the case of
linear data, LDA can reduce the dimensionality and be used
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in different classification tasks [39]. However, the TF-IDF
enhanced with the LDA approach did not allow the classifier
to score high accuracy compared to the other two methods
when smaller datasets were fed [40]. One of the reasons was
explained in [36]; the results showed that ML algorithms
with PCA produce better results when the dimensionality of
the data sets is high. When the dimensionality of datasets is
low, the ML algorithms without dimensionality reduction yield
better results. Another possible way is using an unsupervised
generative Latent Dirichlet allocation to estimate the topic dis-
tribution (topics) by using observed variables (words). Latent
Dirichlet allocation shows the effectiveness of overcoming the
sparsity from the feature space matrix of TF-IDF [41]. It can
also help to make texts more semantically focused and reduce
sparseness [42]. However, its selection of characteristics does
not improve performance with small data [43].

We explored the possibility of PCA for sparsity reduction
because of their advantages mentioned above. The training was
tuned and performed, and the best performance was achieved
with a decrease to 2 principal dimensions. The completed
test has an accuracy of 88%; this is less than the perfor-
mance of SelectKBest with 89%. Furthermore, following the
recommendation of [44], we also tested a statistical method,
Neighborhood Component Analysis (NCA) [45], to reduce the
dimensions of the data set. NCA has shown that it works well
on a small dataset for the medical domain. However, the result
is slightly better than PCA; NCA only achieves an accuracy
of 89% (the same as SelecKBest). Consequently, neither PCA
nor NCA can improve the classification accuracy. It confirms
the limitation of these approaches by linearly approximating
a feature subspace to maximize class separability.

Furthermore, non-linear activation function AE (AE) shows
its best performance on compression the sparse TF-IDF rep-
resentation space. We compare the effectiveness of recon-
struction based on the reconstruction evaluation from Eq. 5
between PCA, linear activation function AE (LAE), AE, and
stacked AE (SAE) [46]. The results confirm that the PCA and
LAE have the same performance, achieving about 80% of the
reconstruction. When the activation of AE is linear, then PCA
and LAE are identical. There is no improvement if the SAE is
used to extract the features in cases of limited data. Besides,
the effectiveness of non-linear activation in AE is proved,
when it can maximally reconstruct up to 86% compared to
the original spare data. It is one of the advantages of nonlinear
transformation from AE, which is trained by a neural network,
superior to linear transformation from other approaches.

Overall, the downstream classification performances are
effectively improved by feeding the compressed feature space
output from the AE to ML classifiers. Fig. 3 shows the loss
during the training and validation process by optimizing the
loss function from Eq. 4 for training the AE; the loss converges
perfectly. After successfully training the AE, we have a pre-
trained compressed, low-dimension feature space. We continue
to the machine learning classifiers to perform the classification
and evaluate the performance. Instead of performing on MLP-
NN, LR, and GaussianNB, we also tested with other classifiers
such as Random Forest (RF), Multinomial Naive Bayes, and
Support Vector Machine. Fig. 5 shows the comparison, using a

Fig. 3. Loss for training and validation for the AE algorithm.

Fig. 4. Confusion matrix of the MLP-NN classifier, showing the classification
of positive (1) and negative (0) between predicted and actual labels.

box plot, of the 5-fold cross-validation. Again, MLP-NN gives
the best performances; LR follows right after; GaussianNB is
comparatively similar to LR. And all other classifiers are less
effective. The best performance from MLP-NN is achieved
at 92%, 91%, 91% and 91%, respectively, for accuracy,
precision, recall, anf f1 score. And, the detailed confusion
matrix showing the classification of positive cases (1) and
negative cases (0) between predicted and actual labels is shown
in Fig. 4. The experimental results are improved to 2-3 %
for each evaluation criterion from [8], which had a general
classification performance in a sparse TF-IDF feature space
at 89% accuracy, 88% recall, and 89% precision. It confirms
that the AE method can deal with the sparsity by compressing
the TF-IDF feature space. Consequently, it finally improves
the downstream task performance of the MLP-NN classifier,
and is also more robust than other methods. Recent work [47]
also confirmed a similar effect, but it was applied to a different
dataset type and larger data availability. These results confirm
the effectiveness of compressing the feature representation
learning space into a low-dimensional representation using the
AE algorithm. Notably, the robust transformation can outplay
the deep learning models with limited data resources.

Furthermore, an important aspect of performance analysis
is that the proposed approach still shows its advantageous
capacity to increase data availability. We investigated the effec-
tiveness of AE for compressing feature space, and studied how
algorithm performance varies with the increasing of training
examples from the compressed feature space. We assessed
the performance of two classifiers GaussianNB and MLP-
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Fig. 5. A comparison evaluation of the box plot 5-fold cross-validation results for classifiers performance.

Fig. 6. Performance of classifiers in case of increasing the training size: GaussianNB (left) and MLP-NN (right).

NN to evaluate the effectiveness. When it possibly increases
data availability in the future, whether the classifier improves
performance or not. In this case, study [48] confirms that when
the number of training examples increases, the generative
model based on Naive Bayes would expect to perform better.
However, our results are in contrast to that confirmation. Fig.
6 shows the GaussianNB training and validation score when
increasing the number of training examples. Technically, the
GaussianNB reaches a plateau of performance after around
2000 training examples with the same dataset size, and the
cross-validation score could not improve. We should expect
that this is one of the limitations of GaussianNB, namely the
linear discrimination characteristic for a real-world dataset,
discussed in [49]. In contrast, the MLP-NN shows improve-
ment with the increasing size of the dataset. Its cross-validation
score gradually increases and shows no signs of reaching a
maximum point. In short, we can confirm that when data
is possibly increased, our approach still perfectly works and
continually improves its performance for the classification.

Moreover, the behavior of AE in limited data is in harmony
with more significant data cases based on the information-
theoretic framework. We analyzed the behavior of AE based
on an information-theoretic framework, as mentioned in Eq.

6, and 7. We want to understand how the AE behaves during
the compression process by analyzing the mutual information
of each hidden layer from the encoder and decoder. Generally,
this type of analysis has been performed for a larger data
set and has mainly focused on other data sources compared
to our case; such as computer vision [50], medical imaging
[51], and genetics [52]. We performed the analysis for two
AE models with respecting to varying number of hidden layers
(three hidden layers, and five hidden layers). As shown in Fig.
7, there are two phases of the information plane in each hidden
layer of the three-layer and five-layer cases. It is noted that
from left to right it illustrates the behavior for each hidden
layer. And in each hidden layer, from top to bottom, it captures
the mutual information for each training epoch. Finally, all
trajectories seem to follow a similar path during the learning
process, then eventually converge and get closer to the optimal
points in the theoretic information bottleneck bound.

Specifically, it can be divided into two phases for the
working mechanism of AE in Fig. 7. The first phase is called
the drift phase, where the AE attempts to learn the latent
representation T (X) with a smaller dimension compared to
the original data X . During the compression, there will be
information lost, that is why we can see the trend of decreasing
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the mutual information of encoder I(X;T ). At the end of
this step, we will have a compressed latent representation
T (X), and an optimal mutual information I(X;T ). Then,
the second phase is named the diffusion phase. Within this
step, the AE tries to find the reconstructed data X ′, which
are optimally close to the original data X . The AE maps the
latent representation T (X) to the reconstructed data X ′ by
maximizing the mutual information of the decoder I(T ;X ′).
By doing that, we can see the increasing trend of I(T ;X ′);
until I(T ;X ′) reaches its optimal bound for each layer. One
more interesting point is that the optimal mutual information
will get smaller, when AE has more hidden layers. In case
of three hidden layers, the optimal mutual information of the
encoder I(X,T ) is larger by 6.0, but is maximum at 5.5
for five hidden layers. It is the same for the optimal mutual
information of the decoder I(T,X ′) at nearly 7.0 and 6.5
for three hidden layers and five hidden layers, respectively.
These results illustrate the mechanism of an AE is to optimize
the information bottleneck trade-off T (X) during compression
and prediction, respectively, for each layer. Remarkably, it
is trained on a small and sparse dataset; still, it proves
its effectiveness by compressing and maximizing the mutual
information from the TF-IDF feature space.

V. CONCLUSION

First, this study has shown that the participation of an AE in
training can effectively compress the feature space of TF-IDF.
The AE with a nonlinear activation function can achieve the
reconstruction capacity at 86% compared to the original data.
It outperforms other approaches such as PCA, NCA, LAE (AE
with linear activation function), and stacked AE. It concludes
that AE can learn the best representation of the training data
due to its lossless compression capacity.

Additionally, the AE also works well with a small clinical
dataset; especially, in harmony with the information-theoretic
mechanism of an AE for a larger dataset, and from different
data sources. It has two phases of learning: the drift phase
of the encoder by trying to compress the data. The second
phase is related to the diffusion phase by maximizing the
mutual information process in the decoder. Consequently, it
shows the effectiveness of losses information in compressing
the data. By doing so, we also capture the interpretability,
comprehensibility, and transparency of the proposed model for
decision making in our CDSS system recommended by [53].

The second step involves the use of an MLP-NN to predict
the health status based on the compressed feature space. It has
been shown that the sparsity reduction for the feature space
strongly affects the classifier performance in downstream
task. AE learning algorithm effectively leverages the sparsity
reduction. As a result, it helps the MLP-NN classifier achieve
92% accuracy, 91% recall, 91% precision, and 91% f1-score.
This efficient ensemble model can outperform all alternative
approaches: GaussianNB, LR, RF, MultimonialNB, and SVC.

The proposed approach is still proving successful in cases
where data availability is increased. The MLP-NN is effective
in achieve a better performance after the GaussianNB reaches
its maximum capacity. In future work, we will choose the

Fig. 7. The evolution of the layers with epochs in the information plane for
three hidden layers (top) and five hidden layers (bottom).

optimal parameters and validate our method on more datasets.
We will explore the weak supervision approach that recently
proved its effectiveness in 4,000 cardiac magnetic resonance
sequences with imperfect labels [54]; because it can maximize
the use of unlabeled data at scale, which is costly to annotate.
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