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a b s t r a c t 

Background: Magnetoencephalography (MEG) is a widely used non-invasive tool to estimate brain activity with 
high temporal resolution. However, due to the ill-posed nature of the MEG source imaging (MSI) problem, the 
ability of MSI to identify accurately underlying brain sources along the cortical surface is still uncertain and 
requires validation. 
Method: We validated the ability of MSI to estimate the background resting state activity of 45 healthy participants 
by comparing it to the intracranial EEG (iEEG) atlas ( https://mni-open-ieegatlas.research.mcgill.ca/ ). First, we 
applied wavelet-based Maximum Entropy on the Mean (wMEM) as an MSI technique. Next, we converted MEG 

source maps into intracranial space by applying a forward model to the MEG-reconstructed source maps, and 
estimated virtual iEEG (ViEEG) potentials on each iEEG channel location; we finally quantitatively compared 
those with actual iEEG signals from the atlas for 38 regions of interest in the canonical frequency bands. 
Results: The MEG spectra were more accurately estimated in the lateral regions compared to the medial regions. 
The regions with higher amplitude in the ViEEG than in the iEEG were more accurately recovered. In the deep 
regions, MEG-estimated amplitudes were largely underestimated and the spectra were poorly recovered. Over- 
all, our wMEM results were similar to those obtained with minimum norm or beamformer source localization. 
Moreover, the MEG largely overestimated oscillatory peaks in the alpha band, especially in the anterior and deep 
regions. This is possibly due to higher phase synchronization of alpha oscillations over extended regions, exceed- 
ing the spatial sensitivity of iEEG but detected by MEG. Importantly, we found that MEG-estimated spectra were 
more comparable to spectra from the iEEG atlas after the aperiodic components were removed. 
Conclusion: This study identifies brain regions and frequencies for which MEG source analysis is likely to be 
reliable, a promising step towards resolving the uncertainty in recovering intracerebral activity from non-invasive 
MEG studies. 
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. Introduction 

Neuronal oscillations are fundamental properties of brain ac-
ivity and are considered to play an important role in pro-
Abbreviations: iEEG, Intracranial EEG; MEG, Magnetoencephalography; MSI, MEG
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013 ; Hirano and Uhlhaas, 2021 ; Schnitzler and Gross, 2005 ).
lectro/magneto-encephalography (EEG/MEG) are widely used non-
nvasive electrophysiological methods to measure neuronal activity.
hey provide excellent temporal resolution in the order of milliseconds,
hich enables us to study spontaneous brain activity and oscillations in
ifferent frequency bands. Due to their non-invasive nature, EEG/MEG
ave been used in many studies of brain dynamics and networks, not
nly during well controlled tasks but also during the resting state, a
tate when the brain activity is spontaneous (thinking of nothing/not
erforming any task) ( Brookes et al., 2011 ; Hipp et al., 2012 ; Keitel and
ross, 2016 ; Mellem et al., 2017 ). EEG/MEG have also been widely
sed as a presurgical tool for drug-resistant epilepsy and basic epilepsy
esearch ( Dalal et al., 2013 ; Hamandi et al., 2016 ; Pellegrino et al.,
018 ; von Ellenrieder et al., 2016 ). Compared to other invasive and
on-invasive modalities, EEG/MEG have limited spatial resolution, since
hey consist in scalp recordings and source localization requires solving
n ill-posed inverse problem ( Darvas et al., 2004 ). The source leakage
ssociated with source imaging is defined as the influence of a source
n the estimation of the generators in its neighborhood ( Brookes et al.,
012 ; Hedrich et al., 2017 ). The source leakage and the challenges of
ocalizing signals from deep brain structures are of great concern, espe-
ially when considering clinical applications such as pre-surgical plan-
ing for epilepsy ( Aydin et al., 2020 ; Hedrich et al., 2017 ) and particu-
arly while interpreting results from resting state activity due to its low
ignal-to-noise ratio, which is even lower for deep sources. Validation
s thus necessary for non-invasive EEG/MEG techniques, to accurately
nterpret the results. In this study, we aimed to validate the ability of
EG source imaging to estimate resting state oscillations in healthy sub-

ects. Due to the frequent lack of a ground truth, validation of source
maging techniques using realistic simulations are common and often
seful, such as in the context of epileptic spikes ( Becker et al., 2015 ;
howdhury et al., 2016 ; Grova et al., 2006 ) and connectivity studies
 Wang et al., 2014 ). However, generating realistic simulations of brain
ctivity is challenging and even more so for resting state activity. 

The gold standard to validate non-invasive methods is intracere-
ral EEG (iEEG), an invasive technique employed in some patients
ith epilepsy during pre-surgical evaluation. In iEEG, electrodes are
laced on or into brain tissue ( Jayakar et al., 2016 ). They are subdu-
al grid/strip or depth electrodes (freehand or using stereoencephalog-
aphy, SEEG introduced by Bancaud and Talairach in the 1950s
 Enatsu and Mikuni, 2016 ). iEEG thus can measure brain activity di-
ectly from the regions of interest, however, at a cost of requiring a
urgical procedure to implant the electrodes and of having a limited
patial coverage. iEEG can record brain activity with excellent spatial
ccuracy, however validation can only be partial because of the limited
patial sampling, due to the invasiveness of the procedure. 

Simultaneous recordings of EEG/MEG and iEEG provide an excel-
ent opportunity to validate non-invasive results ( De Stefano et al.,
022 ; Koessler et al., 2010 ; Pizzo et al., 2019 ). However, acquiring
imultaneous MEG and iEEG is technically challenging ( Badier et al.,
017 ; Dubarry et al., 2014 ; Kakisaka et al., 2012 ; Rampp et al., 2010 ;
antiuste et al., 2008 ) and not many groups have the access and techni-
al resources to conduct such acquisitions. Also, only the patients who
re candidates for epilepsy surgery undergo such invasive iEEG proce-
ures. The implantation of intracranial electrodes is usually limited to
ffected regions, with a few electrodes placed in healthy regions, thus
roviding very limited coverage of the brain. Our group developed an at-
as of healthy iEEG ( Frauscher et al., 2018 ) at the Montreal Neurological
nstitute (MNI) ( https://mni-open-ieegatlas.research.mcgill.ca/ ). This
NI iEEG atlas was generated by pooling iEEG data from 110 patients
ith refractory epilepsy who underwent iEEG implantation for clini-

al evaluation for epilepsy, only keeping the data from the electrodes
mplanted in healthy brain regions. With a dense coverage of all re-
ions, this atlas provides us with the unique opportunity to study the
pectral characteristics of normal brain oscillations at a group level. We
ook this opportunity to validate the non-invasive modality, MEG, to
2 
ocalize the spectral properties of the normal brain in wakefulness, in
 group of healthy participants and compare those with the MNI iEEG
tlas as ground truth, assuming both modalities represent the activity of
he healthy brain at a group level. 

We assessed MEG source imaging of resting state oscillatory patterns
f healthy subjects at a group level and validated with the MNI iEEG
tlas. We expect that MEG source imaging can recover the spectral pat-
erns observed in the MNI iEEG atlas more accurately in some regions
han in others. To investigate this question, we applied wavelet-based
aximum Entropy on the Mean (wMEM) ( Aydin et al., 2020 ; Lina et al.,

012 ; Pellegrino et al., 2016 ; von Ellenrieder et al., 2016 ). wMEM is an
EG/MEG source imaging technique we developed and adapted to local-
ze resting state oscillatory patterns, which proved its unique ability to
ecover the location and the spatial extent of the underlying oscillatory
enerators ( Avigdor et al., 2021 ; Aydin et al., 2020 ; Pellegrino et al.,
016 ; von Ellenrieder et al., 2016 ). An original method proposed by
ur group ( Abdallah et al., 2022 ; Grova et al., 2016 ) to estimate iEEG
ignals from MEG sources was then applied to support a quantitative
omparison between the MNI iEEG atlas (electrical potentials) and MEG
ources (cortical current densities), at the location of each iEEG elec-
rode contact of the atlas. This is the first study to provide a group level
alidation with iEEG spectral characteristics across the human cortex,
f non-invasive resting state MEG recordings from the healthy brain. 

. Material and methods 

.1. Experimental design 

Our analysis pipeline is summarized in Fig. 1 . We used the MNI iEEG
tlas as ground truth to validate MEG source imaging of resting state
scillatory patterns for healthy subjects. The MEG data were collected
rom 45 healthy subjects. To solve the inverse MEG problem, we ap-
lied the wMEM, developed by our group ( Lina et al., 2012 ). The recon-
tructed MEG data along subject specific cortical surface were projected
o the positions of iEEG electrodes used in the atlas, to generate virtual
EEG (ViEEG) data using a method proposed by Grova et al. (2016) . To
o this, the positions of the intracranial electrodes were projected from
he template ICBM152 ( Fonov et al., 2009 ) anatomy to the anatomy
f each healthy subject. By applying an iEEG forward model from the
ources localized along the cortical surface to all iEEG channel posi-
ions, this method allowed a quantitative comparison between the spec-
ral properties of MEG-estimated ViEEG with actual iEEG atlas for each
egion of interest (ROI) for each frequency band of interest. 

.2. Ground truth: MNI iEEG atlas 

The data in the MNI iEEG atlas ( Frauscher et al., 2018 ) were collected
rom 110 patients with refractory epilepsy who underwent iEEG implan-
ation for clinical evaluation for epilepsy surgery. The key features of the
ata are: (i) some electrodes were implanted in brain regions that turned
ut to be healthy and only those were retained to construct the atlas,
ii) recordings were controlled with subjects having their eyes closed,
nd (iii) electrodes were projected on the standard ICBM152 template.
n the intracranial atlas, a total of 2300 channels from 110 patients (age:
1 ± 10 Y, range: 13-62 Y, M:54) were selected. iEEG data in each pa-
ient were re-referenced to a common average reference, calculated by
aking the average of 5% of the total channels exhibiting the lowest
ower and subtracting that value from each channel. Sixty seconds of
esting state data during wakefulness were available for each of the 2300
hannels. The iEEG channels in the atlas were classified into 38 regions
f interest (ROIs) based on the Medical Image Computing and Computer-
ssisted Intervention (MICCAI) ( Landman and Warfield, 2019 ) atlas.
he channels from the left and the right hemispheres were considered
ogether. The number of channels in each ROI was variable but ensured
ufficient coverage of all regions: mean ± standard deviation: 60 ± 47

https://mni-open-ieegatlas.research.mcgill.ca/
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Fig. 1. Analysis pipeline to compare the spectral properties estimated by MEG with the MNI iEEG atlas, as ground truth. Ground truth MNI iEEG atlas 

( Frauscher et al., 2018 ) consists of 2300 channels collected from 110 subjects with epilepsy, retaining only the healthy brain regions. For each iEEG channel, 
60 s of resting state data during wakefulness were used. MEG pipeline: MEG data were collected from 45 healthy participants, each having 60 s of resting state 
data during wakefulness (only 10 s of data are shown in this figure). We applied wavelet-MEM (wMEM) to solve the MEG inverse problem. For each source map, 
we estimated virtual iEEG (ViEEG) data at each position of 2300 channels (positions obtained from the MNI iEEG atlas). We compared the spectral characteristics 
(spectra and oscillatory peaks) between iEEG and ViEEG for 38 ROIs (MICCAI atlas). To consider only the oscillatory components, the aperiodic components were 
removed from the spectra using the FOOOF toolbox ( Donoghue et al., 2020 ). 
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hannels in each ROI. More details on the data, centers, patient infor-
ation, and inclusion criteria can be found in Frauscher et al. (2018) . 

.3. Subject selection criteria for MEG 

57 healthy participants who underwent MEG acquisition were in-
luded in this study ( Pellegrino et al., 2022 ). MEG data were collected
t the MEGLab of the IRCCS San Camillo Hospital in Venice, Italy. Eight
inutes of resting state were acquired with eyes closed. The partici-
ants did not have any history of neurological or psychiatric disorders
r any irregularity in the cycle of sleep-wakefulness. After preprocess-
ng and sleep scoring of data, we finally included 45 participants (age:
8.67 ± 4.13 Y, range: 20-38 Y, M: 10). Of the participants, one was
xcluded for sleeping during the acquisition and 11 for coregistration
ssues such as issues with segmentation, or very noisy data. 

.4. MEG data acquisition 

MEG data were acquired using a CTF-MEG system (VSM MedTech
ystems Inc., Coquitlam, BC, Canada) with 275 axial gradiometers with
 sampling rate of 1200 Hz. Bipolar electrodes were added to record
lectrocardiogram (ECG) and electrooculogram (EOG). The coils were
ositioned on three anatomical landmarks (left and right preauricu-
ar points and nasion). These positions, along with the shape of the
ead of each participant were recorded with a 3D Polhemus localizer
 Pellegrino et al., 2022 ), which were used for coregistration of MEG
ensors with individual anatomical MRI of the participants. 

.5. Anatomical MRI, MEG-MRI co-registration and forward model 
stimation 

For each participant, a T1-weighted-3D-TFE anatomical MRI was
erformed with a 3T Ingenia CX Philips scanner (Philips Medical Sys-
ems, Best, The Netherlands). The following parameters were used for
RI acquisition: [TR] = 8.3 ms, [TE] = 4.1 ms, flip angle = 8°, acquired ma-

rix resolution = 288 × 288, slice thickness = 0.87 mm) (Pellegrino, 2022).
reesurfer ( Dale et al., 1999 ) was used for subsequent brain segmenta-
ion and reconstruction of the white/gray matter interface. The coreg-
stration of MEG sensors with anatomical MRI was performed in Brain-
torm ( Tadel et al., 2011 ), applying a surface fitting between the head
hape from MRI and the positions of coils and head shape recorded using
3 
D Polhemus during MEG acquisition. We considered the cortical mesh
f the mid layer which is equidistant from the white and grey matter in-
erface as source space, consisting of around 8000 vertices. The forward
odel was computed using OpenMEEG software ( Gramfort et al., 2010 ;
ybic et al., 2005 ) implemented in Brainstorm ( Tadel et al., 2011 ). We
sed a 3-layer Boundary Element model (BEM) consisting of brain, skull,
nd scalp surfaces with conductivity values of 0.33, 0.0165, and 0.33 S
 

− 1 , respectively ( Zhang et al., 2006 ). 

.6. MEG data preprocessing 

MEG preprocessing was performed with Brainstorm software
 Tadel et al., 2011 ). Preprocessing of MEG data included (i) filtering
ithin the 0.5-80 Hz band, (ii) applying a notch filter at 50 Hz, (iii)
ownsampling to 200 Hz, (iv) applying third-order spatial gradient noise
orrection and (v) removal of cardiac and eye movement artifacts using
ignal Space Projection (SSP) ( Uusitalo and Ilmoniemi, 1997 ) routine
vailable in Brainstorm. A sixty-second segment was extracted for each
ubject, continuous or concatenated (minimum length of the continuous
egment: 10 s), where no artifact was visibly present, ensuring with an
EG expert that the subject was awake during this segment. To assess
he data for sleep score, some scalp EEG channels were provided (F4,
4, O2, Ref left mastoid, Ground left shoulder). 

.7. MEG Source imaging using wavelet Maximum Entropy on the Mean 
wMEM) 

The MEG inverse problem was solved using the Maximum Entropy
n the Mean (MEM) ( Amblard et al., 2004 ), which we carefully vali-
ated in the context of EEG/MEG source imaging ( Chowdhury et al.,
013 ). The key feature of this framework is a spatial prior model, as-
uming that brain activity is organized within cortical parcels. MEM is
 Bayesian framework, where the activity of every parcel is tuned by
he probability of activation of a hidden state variable. When the par-
el is active, a Gaussian prior is assumed to model a priori the activity
ithin the parcel. Starting from such a prior “reference ” distribution,

nference to ensure data fit is then obtained using entropic techniques.
s a result, MEM is able to either switch off or switch on the corre-
ponding parcels during the localization process, while allowing local
ontrast along the cortical surface within the active parcels. Parcella-
ion of the whole cortical surface (K ∼228 parcels) and initialization of
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he probability of being active were obtained using a data driven ap-
roach, based on a Multivariate Source Pre-localization (MSP) method
 Mattout et al., 2005 ), a projection technique allowing to define the
robability of every source to contribute to the data. The MEM specific
rior model, using the entropic technique to fit the data, allows accu-
ate localization of the underlying generators together with their spatial
xtent, as previously demonstrated by our studies for the standard ver-
ion of MEM (cMEM) ( Abdallah et al., 2022 ; Chowdhury et al., 2016 ,
013 ; Grova et al., 2016 ; Heers et al., 2016 ; Pellegrino et al., 2020 ), as
ell as the wavelet-based extension of MEM (wMEM) ( Lina et al., 2012 ).
MEM was specifically designed to localize brain oscillatory patterns.
MEM applies a discrete wavelet transformation (Daubechies wavelets)

o characterize the oscillatory patterns in the data before applying the
EM solver ( Lina et al., 2012 ). We validated wMEM for localizing os-

illatory patterns at seizure onset ( Pellegrino et al., 2016 ), interictal
ursts of high frequency oscillations ( Avigdor et al., 2021 ; von Ellen-
ieder et al., 2016 ) and MEG resting state fluctuations ( Aydin et al.,
020 ). Both wMEM and cMEM implementations are available within
he Brain Entropy in space and time (Best) plugin of Brainstorm soft-
are ( https://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst/ ). 

We incorporated a few changes in standard wMEM implemented in
rainstorm, to localize specifically oscillatory patterns in resting state
ata (more details in the Appendix). (i) Spatial prior model: Our main
daptation of the wMEM spatial prior model consisted in considering
ne stable whole brain parcellation of the cortical surface, following
he strategy proposed for cMEM ( Chowdhury et al., 2013 ), whereas
n our previous wMEM implementation the parcellation was varying
or every time frequency samples. To do so, we proposed data-driven
hole brain parcellation informed by the MSP method ( Mattout et al.,
005 ), a projection technique allowing to estimate the probability of ev-
ry source to contribute to the data, before region growing around local
SP peaks. The main adaptation of our current implementation is that

he MSP projector is applied on all wavelet coefficients of Daubechies
ime-frequency representation of our data, instead of using signals in the
ime domain (see details in the Appendix). (ii) Initialization of the prob-
bility of being active for each parcel: Following the parcellation, we
nitialized the probability of each parcel of being active, using normal-
zed energy calculated for each time frequency sample. (iii) Selection of
aseline for resting state localization: There is no ideal baseline defini-
ion when localizing ongoing resting state data. We proposed to com-
ute the sensor level noise covariance matrix from the ongoing resting
tate data. To do this, we generated a quasi-synthetic baseline from the
ignal of interest by randomly modifying the Fourier phase at each fre-
uency ( Prichard and Theiler, 1994 ). We also adopted a sliding window
pproach to generate the baseline for a more accurate estimation of the
oise covariance matrix for each time frequency sample along the time
cale. More details of these adaptations are described in the Appendix. 

Before applying this new implementation of wMEM on resting state
EG data, we validated it within a controlled environment with re-

listic simulation of epileptic spikes and oscillations on realistic MEG
ackground, as previously proposed in Chowdhury et al. (2013) and
ina et al. (2012) (see supplementary material S.1 and Fig. S1). 

.8. Estimation of virtual iEEG (ViEEG) data from the MEG source map 

MEG and iEEG are two modalities each measuring brain activity
n different units, MEG measurements after source imaging are cur-
ent densities (in nanoAmpere-meters), whereas iEEG measurements are
lectrical potentials in μVolts. To allow quantitative comparison be-
ween these two modalities, we converted MEG-reconstructed source
aps into iEEG channel space, by estimating corresponding iEEG po-

entials that would correspond to those MEG sources on each electrode
ontact (channel) of the atlas ( Abdallah et al., 2022 ; Grova et al., 2016 ).
o do so, we first localized the position of all channels of the atlas within
he native MRI referential system of all healthy subjects from whom we
nalyzed MEG data. Co-registration between anatomical MRI of each
4 
ubject and the ICBM152 template where the atlas is defined was ob-
ained using Minctracc program ( Collins et al., 1994 ). This is obtained
n three steps: (1) estimation of a linear registration to account for the
inear part of the transformation (using bestlinreg_s tool), (2) estimation
f a non-linear transformation to account for the variability between the
wo maps (using minctracc tool); (3) application of the resulting non-
inear transformation to the coordinates of the electrode contacts of MNI
EEG atlas, to convert them from the ICBM152 anatomy to the anatomy
f each healthy subject. 

Then, for each subject, to estimate the virtual iEEG potentials from
EG-estimated current density, J MSI , we calculated a subject specific

EEG forward model, G iEEG that estimates the influence of each dipolar
ource of the cortical surface on each iEEG channel ( Grova et al., 2016 ).
ince we did not intend to solve the inverse problem of source local-
zation from iEEG data, we used a simplified iEEG forward model G iEEG 

ssuming an infinite volume conductor characterized by a conductivity
of 0.25 S.m 

− 1 . For a total number of iEEG contacts c , ( c = 2300) and
 number of cortical sources ( n = 8000). G iEEG is a c x n matrix that
stimates the electrical potential located at each iEEG electrode i ( i = 1,
 ….. c) corresponding to an equivalent current dipole of unit activity
ocated on the vertex S j and oriented along 𝑛 j , normal to the cortical
urface ( j = 1,2,….. n ), calculated as: 

 𝑖𝐸 𝐸 𝐺 ( 𝑖, 𝑗 ) = 

𝑛 𝑗 . ⃗𝑢 𝑖𝑗 

4 𝜋𝜎𝑟 2 
𝑖𝑗 

(1)

here ⃗𝑢 𝑖𝑗 is a unit vector oriented from the source S j to the iEEG contact
 and r ij is the Euclidean distance between S j and contact i . To avoid
umerical instabilities, when the sources on the cortical surface were
oo close to the iEEG contacts ( r ij < 3 mm), the distance r ij was set to
 mm instead, keeping the orientation ⃗𝑢 𝑖𝑗 . Finally, we applied the iEEG
orward model, G iEEG to the MEG-reconstructed source map (J MSI ) to
stimate iEEG potentials on each iEEG channel, ViEEG as: 

 𝑖𝐸 𝐸 𝐺 = 𝐺 𝑖𝐸 𝐸 𝐺 𝐽 𝑀𝑆𝐼 (2)

Here, we applied a simplified iEEG forward model because
osandier-Rimélé et al. (2007) showed that it could estimate
ccurately real iEEG measurements. Moreover, von Ellenrieder
t al. (2012) showed that the use of finite-element models consider-
ng the actual size and the shape of the iEEG electrodes had almost no
nfluence on local electrical potentials at 2 mm from the electrodes. 

As for each source map obtained for all 45 participants, we estimated
iEEG for each iEEG channel in the atlas, we generated more ViEEG
hannels compared to the MNI iEEG atlas (2300 channels in the iEEG
tlas vs 2300 ×45 channels in ViEEG). 

.9. Frequency specific brain maps of relative power 

For each of the iEEG and ViEEG channels, the power spectral den-
ity (PSD) was estimated using Welch’s method (Time duration: 0-60 s,
 s sliding Hamming windows, overlap: 50%). For each channel, a rel-
tive PSD was obtained by dividing each PSD value by the total power
cross the whole frequency range. The group average of relative PSD
as calculated across all channels within a ROI and all frequency bins

n each frequency band of interest: 𝛿 (0.5-4Hz), 𝜃 (4-8Hz), 𝛼 (8-13Hz),
(13-30Hz), and 𝛾 (30-80Hz). 

To compare the relative PSD before and after applying the conversion
rom MEG source maps into virtual intracranial space, we also calculated
he relative PSD after MEG source imaging directly along the cortical
urface (Fig. S12). To obtain a group average of relative PSD for 45
ubjects, we followed the approach described in Niso et al. (2019) . We
rst projected individual relative PSD to a default template, ICBM152
 Fonov et al., 2009 ) and then obtained a group average of 45 relative
SD in each frequency band of interest. 

https://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst/
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.10. Analysis of spectral oscillatory components 

In this study, we applied FOOOF (Fitting Oscillations and One-Over-
) ( Donoghue et al., 2020 ), a commonly used algorithm ( Huang et al.,
021 ; Mahjoory et al., 2020 ; Ramsay et al., 2021 ; Senoussi et al., 2022 ;
iesman et al., 2022 ) to separate periodic components from the ape-

iodic components of the spectra by parameterizing the power spectra
s a composition of these two components. Using an iterative fit-refit
ethod, the FOOOF algorithm models a PSD as a combination of an

periodic component and several periodic component/s, where the ape-
iodic component is modeled as an exponential function and each pe-
iodic component is modeled as a Gaussian function ( Donoghue et al.,
020 ). The central frequency extracted from each Gaussian fit was then
onsidered as an ‘oscillatory peak’. 

For each of the iEEG and ViEEG channels, we decomposed the spec-
ra into periodic and aperiodic components using the FOOOF algorithm.
he following FOOOF parameters were used: frequency range = 0.5–80
z; peak type: Gaussian; peak width limits (minimum bandwidth, max-

mum bandwidth) = 1 – 8 Hz; maximum number of peaks = 8; peak
hreshold: 3.0 dB; proximity threshold = 2 SD; aperiodic mode: knee .
s we concentrated only on the rhythmic activities of the spectra, we
ubtracted (in the log-log scale) the aperiodic component from the raw
SD. The remaining oscillatory component of the spectra (PSD iEEG and
SD ViEEG ) was considered for further analysis and comparison between
EEG and ViEEG. We also identified the oscillatory peaks during the pro-
ess of finding aperiodic components. 

.11. Comparison of ViEEG spectra with iEEG 

For each ROI, we calculated the median of PSD iEEG ( ̃𝑃 𝑆𝐷 𝑖𝐸 𝐸 𝐺 )
cross all available channels within the ROI (N ROI ). The median of
SD ViEEG ( ̃𝑃 𝑆𝐷 𝑉 𝑖𝐸 𝐸 𝐺 ) for each ROI was obtained across a total number
f channels = N ROI x Number of healthy subjects . The overlap between
SD iEEG and PSD ViEEG was calculated for each frequency bin as: 

𝑣𝑒𝑟𝑙𝑎𝑝 = 
⎧ ⎪ ⎨ ⎪ ⎩ 
1 − 

|||𝑃𝑆𝐷 𝑖𝐸 𝐸 𝐺 − ̃𝑃𝑆𝐷 𝑉 𝑖𝐸 𝐸 𝐺 
|||

𝑆𝐷 𝑉 𝑖𝐸 𝐸 𝐺 

; 𝑖𝑓 𝑃𝑆𝐷 𝑉 𝑖𝐸 𝐸 𝐺 − 𝑆 𝐷 𝑉 𝑖𝐸 𝐸 𝐺 ≤ ̃𝑃𝑆 𝐷 𝑖𝐸 𝐸 𝐺 ≤ ̃𝑃𝑆 𝐷 𝑉 𝑖𝐸 𝐸 𝐺 + 𝑆 𝐷 𝑉 𝑖𝐸 𝐸 𝐺 

0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(3) 

Where 𝑆𝐷 𝑉 𝑖𝐸 𝐸 𝐺 is the standard deviation of PSD ViEEG, across all
vailable channels within the ROI (N ROI ). We calculated the overlap
or each ROI before and after removing the aperiodic components of
he spectra. Overlap quantifies the distance between 𝑃 𝑆𝐷 𝑉 𝑖𝐸 𝐸 𝐺 and
 ̃𝑆𝐷 𝑖𝐸 𝐸 𝐺 at each frequency bin. The value of this metric ranges between
 and 1 (calculated for 160 frequency bins). If the 𝑃 𝑆𝐷 𝑉 𝑖𝐸 𝐸 𝐺 perfectly
oincides with the 𝑃 𝑆𝐷 𝑖𝐸 𝐸 𝐺 at a specific frequency bin, the overlap is 1,
nd if the 𝑃 𝑆𝐷 𝑖𝐸 𝐸 𝐺 is greater or less than one 𝑆𝐷 𝑉 𝑖𝐸 𝐸 𝐺 , the overlap is
ero at that frequency bin. We then obtained average overlap across all
he frequency bins within each frequency band of interest: 𝛿 (0.5-4Hz),
(4-8Hz), 𝛼 (8-13Hz), 𝛽 (13-30Hz), and 𝛾 (30-80Hz). 

.12. Comparison of ViEEG with iEEG in terms of peak frequency 

We also compared the oscillatory peaks between the MEG-estimated
iEEG and the MNI iEEG atlas. Using FOOOF, we identified all oscilla-

ory peaks in each iEEG and ViEEG channel. For each ROI, the number
f channels (out of the total number in each ROI N ROI ) exhibiting an os-
illatory peak in a specific frequency band was calculated for the iEEG
nd ViEEG of each subject. Then we calculated the percentage differ-
nce of the number of channels exhibiting peak in a specific frequency
and as: 

 𝑒𝑎𝑘 _ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑈𝐵𝑖 = 

𝑁 𝑝𝑒𝑎𝑘 _ 𝑉 𝑖𝐸 𝐸 𝐺|𝑖 − 𝑁 𝑝𝑒𝑎𝑘 _ 𝑖𝐸 𝐸 𝐺 

𝑁 𝑅𝑂𝐼 

× 100 (4)
t  

5 
Where 𝑁 𝑝𝑒𝑎𝑘 _ 𝑉 𝑖𝐸 𝐸 𝐺|𝑖 is the number of channels exhibiting peaks in
iEEG in subject i and 𝑁 𝑝𝑒𝑎𝑘 _ 𝑖𝐸 𝐸 𝐺 is the number of channels exhibit-

ng peaks in iEEG, in a specific frequency band. This measure was ob-
ained for each ROI and each frequency band for each subject i . To
btain a group level estimation of channels exhibiting peaks per ROI
er frequency band, we calculated the median of 𝑃 𝑒𝑎𝑘 _ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑SUBi 
ver 45 subjects. This metric is a percentage assessing the overesti-
ation or underestimation of MEG-estimated ViEEG channels showing

scillatory peaks, when compared to iEEG. The value of the Median
 𝑃 𝑒𝑎𝑘 _ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑SUBi ) ranges from -100% to 100%. For a particular ROI
nd frequency band, Median ( 𝑃 𝑒𝑎𝑘 _ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑SUBi ) = + 100% indicates
hat all the ViEEG channels in that ROI (N ROI ) showed peaks in that fre-
uency band, whereas no peak was identified in any of the iEEG chan-
els in that ROI and frequency band. We called it a 100% overestimation
f peaks by MEG-estimated ViEEG in that ROI. On the contrary, a -100%
stimation (underestimation) is obtained when all the iEEG channels in
 ROI exhibit peaks, but ViEEG fails to identify any peak in that ROI. The
eaks are well estimated by ViEEG if the Median ( 𝑃 𝑒𝑎𝑘 _ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑SUBi )
s close to zero. 

.13. Comparison with minimum norm estimate (MNE) and LCMV 

eamformer 

To check whether the choice of the source imaging method,
MEM, had influenced the results, we applied two other source

maging methods: (1) depth-weighted minimum norm estimate (MNE)
 Hämäläinen and Ilmoniemi, 1994 ), and (2) Linearly Constrained Min-
mum Variance (LCMV) Beamformer ( Van Veen et al., 1997 ). MNE : To
alculate the noise covariance for MNE, we used 2 s of resting state data
rom each subject. We estimated the regularization hypermeter 𝜆 by us-
ng the signal-to-noise ratio (SNR) of the data, as 𝜆= 1/SNR 

2 , with the
NR set to 3 (default value in Brainstorm software). After source recon-
truction on the cortical surface, we estimated ViEEG potential follow-
ng the method described in Section 2.8. LCMV beamformer : The source
pace for the beamformer consisted of the actual iEEG locations from
he iEEG atlas (after coregistration in each subject native MRI space).
he forward model was created using OpenMEEG (1-layer boundary
lement model). Data covariance was calculated from the entire rest-
ng state data segment (60 s) in each subject. Unlike the distributed
ource imaging methods, wMEM and MNE, LCMV beamformer recon-
tructed the virtual time series as MEG current density, directly at the
ocation of iEEG contacts ( Tamilia et al., 2021 ; Van Klink et al., 2016 ).
or each position, the dipole was modeled with unconstrained orienta-
ion. The dipole orientation which maximizes the spatial filter output
as selected for the final filter computation. The forward and inverse

olutions for LCMV beamformer were calculated using fieldtrip toolbox
 Oostenveld et al., 2011 ). 

. Results 

.1. Frequency specific brain maps of relative power 

Fig. 2 is showing the group average of relative PSD for 38 ROIs for
EEG and MEG-estimated ViEEG, as well as a map of the t-statistic com-
aring PSD in iEEG and ViEEG for each ROI and frequency band. For
ach frequency band in Fig. 2 , we used a common color bar for both
odalities, thus highlighting how much MEG could estimate relative
ower when compared to iEEG. Fig. S2 shows another representation of
he same data, the color bar ranging from minimum to maximum value
or each modality in each frequency band. Fig. S2 highlights the regions
xhibiting the strongest activation of average relative power within each
odality. 

Overall, similar patterns of power distribution were observed be-
ween iEEG and MEG-estimated ViEEG, such as high power in delta,
heta, and gamma bands in the anterior ROIs, and high power in the
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Fig. 2. Group average of relative PSD values across each frequency band and over all the available channels in each ROI of the iEEG atlas, the ground truth, and the 
MEG-estimated ViEEG using wavelet-MEM (wMEM) method (A). The number of channels in each ROI ( N ROI ) in iEEG varies. For each ROI, ViEEG was estimated for 
45 x N ROI channels, where the total number of subjects is 45. The relative PSD for each channel is calculated as the ratio of the power of the signal in each frequency 
bin relative to the total power of the signal. Relative PSD values for a channel range between 0 and 1. The color bar ranges from minimum to maximum value among 
iEEG and ViEEG in each frequency band, such that the scale is the same for both modalities in a given band. The corresponding t_map is shown in (B). We showed 
with color the ROIs which were statistically different (Welch’s unequal variances t-test, p < 0.05, Bonferroni corrected for 38 ROIs and 5 frequency bands, positive t 
corresponding to larger PSD in iEEG when compared to ViEEG). 
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lpha band in posterior ROIs. Beta power was strong around the pri-
ary and supplementary motor regions in both iEEG and ViEEG. How-

ver, for all frequency bands in Fig. 2 , the relative PSD in each iEEG
OI was very distinct, showing important contrasts and a larger range

rom strongest to weakest activity among ROIs, whereas MEG-estimated
iEEG maps were smoother among the neighboring ROIs spanning a
maller range of activity. This was evident especially in deeper regions
uch as the hippocampus and amygdala, which were very distinguished
n iEEG showing very strong or weak activity, whereas these regions
howed smoother activation in ViEEG, almost undistinguishable from
he neighboring ROIs. We also observed high delta power and weak
eta power in iEEG in lateral posterior ROIs, which were not well es-
imated by ViEEG. Figs. 2B and S3 show the difference of relative PSD
etween iEEG and ViEEG for the regions that are statistically different
Welch’s unequal variances t-test, p < 0.05, Bonferroni corrected for 38
OIs and 5 frequency bands), further illustrating regions where MEG
verestimated relative power in alpha, beta and gamma band, and re-
ions where MEG underestimated relative power in theta band. 

.2. Analysis of spectral oscillatory components 

In Fig. 3 , for four typical example ROIs selected at different depths
two in the lateral and two in the medial side), we show the decompo-
ition of spectra into periodic and aperiodic components for iEEG and
iEEG. The spectra are plotted as median ± standard deviation across
ll available channels within a ROI, N ROI channels for iEEG, and the
umber of healthy subjects × N ROI channels for ViEEG. Fig. 3 also shows
he probability histogram of all identified oscillatory peaks in the ROI
or ViEEG and iEEG. For comparison between the ViEEG and iEEG spec-
ra, we only considered the periodic components of the spectra, after
emoving the aperiodic components from the original spectra. The com-
arison between iEEG and ViEEG spectra is discussed in the following
ections. 

.3. Comparison of ViEEG spectra with iEEG 

We show the comparison between iEEG and ViEEG spectra for four
xample ROIs (two in the lateral and two in the medial side) in Fig. 4 ,
efore and after removing aperiodic components. We selected these four
6 
OIs based on how MEG estimated the spectra compared to iEEG, quan-
ified by the metric average overlap (performance worsening from left
o right, after removing the aperiodic components). The figure shows
he value of average overlap quantified for each frequency band for a
OI. For all four ROIs, the average overlap improved after removing the
periodic components ( Fig. 4C ). 

For angular gyrus , the MEG estimated the spectra quite well com-
ared to iEEG, in most frequency bands after removing the aperiodic
omponents. The similarity between spectra was quantified by average
verlap ( 𝛿: 0.53, 𝜃: 0.74, 𝛼: 0.31, 𝛽: 0.77, 𝛾: 0.52 ). Before removing the
periodic components, the average overlap values in all frequency bands
ere clearly lower 𝛿: 0.13, 𝜃: 0.13, 𝛼: 0.16, 𝛽: 0.01, 𝛾: 0.08. 

In the middle temporal gyrus , the average overlap in all frequency
ands after removing the aperiodic spectra are 𝛿: 0.2, 𝜃: 0.55, 𝛼: 0.55,
: 0.47, 𝛾: 0.48 . Here we chose another ROI for which MEG-estimated
iEEG exhibited similar spectra to gold standard iEEG spectra, for all
ands except delta. Before removing the aperiodic spectra, those values
ere much worse: 𝛿: 0.14, 𝜃: 0.3, 𝛼: 0.33, 𝛽: 0.01, 𝛾: 0.03. 

The example medial ROI anterior cingulate also showed improvement
fter removing the aperiodic components. The average overlap values in
ll frequency bands before and after removing aperiodic components are
: 0.09, 𝜃: 0.29, 𝛼: 0.38, 𝛽: 0.18, 𝛾: 0.0 and 𝛿: 0.27, 𝜃: 0.3, 𝛼: 0.61, 𝛽: 0.2,
: 0.3 , respectively . For this medial structure, more difficult to localize
n MEG because of its depth, average overlap values were good in the
lpha band but lower in other bands (around 0.3), when compared to
revious examples. 

Finally, we showed an example of deep ROI, the hippocampus . MEG
stimated the spectra in the hippocampus very poorly compared to iEEG.
he average overlap values in all frequency bands before and after re-
oving aperiodic components are 𝛿: 0.1, 𝜃: 0.32, 𝛼: 0, 𝛽: 0, 𝛾: 0.47 and 𝛿:

.13, 𝜃: 0.04, 𝛼: 0.29, 𝛽: 0.2, 𝛾: 0.37 , respectively. Although the spectral
omparison improved after removing the aperiodic components, they re-
ained inaccurate compared to other lateral superficial ROIs. It is worth
entioning that with MEG we estimated a clear peak in the alpha band

n the hippocampus, whereas iEEG data were exhibiting no alpha band
eak. 

For each ROI, Fig. 4 also shows the frequency bins at which iEEG
nd ViEEG were statistically different using the Mann Whitney U test
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Fig. 3. Decomposition of spectra into periodic and aperiodic components shown in a few example ROIs for iEEG and ViEEG. For both iEEG and ViEEG, the top panel 
shows the relative PSD before and after removing the aperiodic component and the bottom panel shows the probability histogram of identified peaks in 𝛿 (0.5-4Hz), 
𝜃 (4-8Hz), 𝛼 (8-13Hz), 𝛽 (13-30Hz) and 𝛾 (30-80Hz). The aperiodic fits and oscillatory peaks are identified using the FOOOF toolbox ( Donoghue et al., 2020 ). 
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 p < 0.05, Bonferroni corrected for 38 ROIs and 160 frequency bins),
efore ( Fig. 4A ) and after ( Fig. 4B ) removing the aperiodic components
rom the spectra, which is in agreement with the overall improvement
n average overlap after removing the aperiodic components ( Fig. 4C ). 

The comparison between iEEG and ViEEG spectra after removing the
periodic components for all 38 ROIs is shown in Fig. S4. 

In Fig. 5 , we summarized the average overlap for all 38 ROIs before
nd after removing the aperiodic components. It shows that for all fre-
uency bands, the average overlap values improved after we removed
he aperiodic components. If we compare the ROIs after removing the
periodic spectra, we observe that the spectra in lateral regions are over-
ll better estimated when compared to the medial ROIs. It was clearly
he case for deeper regions like the hippocampus and amygdala, for
hich MEG-estimated ViEEG spectra did not accurately recover the ac-

ual iEEG spectra. On the other hand, the PSD in lateral temporal and
arietal regions were localized accurately for all bands, as well as the
edial posterior cingulate region. Especially, the medial ROIs in the

heta band were very poorly estimated compared to other frequency
ands. The delta band was very poorly estimated in occipital ROIs. This
as also the case when we compared relative power in Fig. 2 , iEEG

howed high activation in the delta band in the occipital regions which
ere not well estimated by MEG. Fig. S5 shows the difference of relative
SD between iEEG and ViEEG before and after removing the aperiodic
omponents for the regions that are statistically different (Welch’s un-
qual variances t-test, p < 0.05, Bonferroni corrected for 38 ROIs and 5
requency bands). 
7 
.4. Comparison of ViEEG with iEEG in terms of oscillatory peaks 

Oscillatory peaks in each band were estimated using the FOOOF al-
orithm, after removing the aperiodic component. When we compared
EG-estimated spectra with the MNI iEEG atlas in terms of oscillatory

eaks, we found that the probability histogram of peaks from all ROIs
 Fig. 6A ) in iEEG has more variability in all frequency bands, whereas
EG-estimated peaks are more narrowly concentrated within each fre-

uency band, especially exhibiting high concentration in the alpha band.
lso, the MEG-estimated peaks in the theta band were much fewer than

n iEEG. Fig. 6B shows the probability histogram of peaks identified in
EEG, and ViEEG for an example ROI (hippocampus) for one subject.
t also shows the value of the percentage difference of the number of
hannels exhibiting peaks in a specific frequency band, as a propor-
ion of the total number of channels in that ROI ( Peak_estimated SUBi )
Eq. (4)). For instance, iEEG found peaks in the theta band, whereas
o peak was found in ViEEG channels in this band. This was quanti-
ed in terms of the percentage difference of the number of channels ex-
ibiting peak, Peak_estimated SUBi = -40% (underestimation) in the theta
and. Thus, in the hippocampus, MEG clearly underestimated peaks in
he delta, theta, and gamma band by 36%, 40%, and 31% respectively.
n the other hand, we observed a large overestimation of channels ex-
ibiting peaks in ViEEG in the alpha band by 83%. In the beta band,
he estimation of peaks by ViEEG was comparable with those in iEEG
 Peak_estimated SUBi = 0 ). The probability histograms of peaks identified
n iEEG and ViEEG for all 38 ROIs are shown in Fig. S6. 
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Fig. 4. Comparison of periodic components of MEG-estimated spectra with ground truth iEEG, with aperiodic components (A) and without aperiodic components 
(B) shown for a few selected ROIs. For each spectrum, we are reporting the median value (black, blue and orange straight lines) together with corresponding standard 
deviation (shaded area) over all channels. Average overlaps between ViEEG and iEEG spectra across each spectral band are shown in (C). The value of overlap is 
calculated at each frequency bin and ranges from 0 to 1. For a ROI, if the median of PSD ViEEG perfectly coincides with the median of PSD iEEG at all frequency bins 
within a specific frequency band, the average overlap is 1. In A and B frequency bins are marked as red dots when iEEG and ViEEG are statistically different (Mann 
Whitney U Test, p < 0.05, Bonferroni corrected for 38 ROIs and 160 frequency bins) (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article). 
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In Fig. 7 , we summarized the percentage difference of the number
f channels exhibiting a peak in a specific frequency band for 45 sub-
ects, by plotting the median of Peak_estimated SUBi (calculated for each
ubject) over 45 subjects and shown for 38 ROIs. Warmer colors indi-
ate an overestimation and cooler colors indicate an underestimation
f channels exhibiting peaks by MEG when compared to the MNI iEEG
tlas. We observe that MEG overestimated peaks in the alpha band for
ost ROIs, especially higher in frontal (lateral and medial) ROIs ( > 40%)

nd deeper ROIs such as hippocampus and amygdala ( ∼100% over-
stimation). The peaks in the delta band were well estimated in most
OIs except the occipital ROIs (like Figs. 2 and 5 ), and deep ROIs such
s the hippocampus and posterior cingulate, where peaks were under-
stimated by MEG ( < -35%). We observe an underestimation of peaks
n beta and theta bands, in frontal and central ROIs (both lateral and
edial) ( < -35%). MEG moderately overestimated beta peaks in pos-

erior regions and gamma peaks all over the brain regions. Those re-
ions also showed higher relative power in MEG ( Fig. 2 ) compared to 
EEG. 

It is also important to mention that all our results were reported
n a common average montage. We also produced these results for
ipolar montage and a similar pattern was found. Please see supple-
entary Figs. S7 and S8 comparing the results from the two mon-

ages. Although the spectral components recovered by both montages
ere very reproducible, bipolar montage was slightly better at estimat-

ng the oscillatory peaks in the alpha band, especially in the frontal 
egions. 
8 
.5. iEEG and ViEEG amplitude 

In Fig. 8 , the average amplitude across the iEEG and ViEEG chan-
els in each ROI is plotted for the 38 ROIs, where each ROI amplitude
as normalized by the average amplitude of all 38 ROIs (supplementary
ig. S9 shows actual values in μV). The mean amplitude across 38 ROIs
as 28.4 μV for iEEG, and 0.67 μV for ViEEG, since underestimation
f the amplitude after solving the MEG inverse problem was expected
y the regularization procedure. Thus, we normalized iEEG and ViEEG
mplitudes to be comparable. A strong positive correlation (Spearman’s
 = 0.69, p < 0.001) was found for the amplitudes of 38 ROIs between

EEG and ViEEG. In Fig. 8 , we also plotted the difference of normal-
zed amplitudes between iEEG and ViEEG for each ROI and the corre-
ponding t_map (the ROIs with color which were statistically different,
elch’s unequal variances t-test, p < 0.05, Bonferroni corrected for 38
OIs). We represented the absolute value of amplitude difference in the
ar plot and showed the signed amplitude difference on the inflated
ortical surface. In the lateral parietal and lateral temporal regions, the
iEEG amplitudes were significantly larger than the iEEG amplitudes
 p < 0.05, Bonferroni corrected for 38 ROIs). On the other hand, in the
edial frontal regions and some deep regions such as the hippocampus,

he iEEG amplitudes were significantly higher than the MEG-estimated
iEEG amplitudes ( p < 0.05, Bonferroni corrected for 38 ROIs). 

We calculated the correlation between the signed amplitude differ-
nce and the average overlap (calculated in Fig. 5 B) for 38 ROIs in all
requency bands. It showed moderate negative correlation in alpha band
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Fig. 5. Average overlap between ViEEG and iEEG spectra across each spectral band for each of the 38 ROIs, (A) with and (B) without aperiodic components. The 
value of overlap is calculated at each frequency bin and ranges from 0 to 1. For a ROI, if the median of PSD ViEEG perfectly coincides with the median of PSD iEEG at all 
frequency bins within a specific frequency band, the average overlap is 1. 

Fig. 6. (A) Probability histogram of all identified peaks in all ROIs for iEEG and ViEEG using the FOOOF toolbox. (B) Probability histogram for all identified peaks 
in hippocampus for iEEG and ViEEG for one subject. We also show the percentage difference of the number of channels exhibiting spectral peaks in ViEEG compared 
to iEEG in each spectral band, as a proportion of the total number of channels in the ROI. The value of 𝑃 𝑒𝑎𝑘 _ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑈𝐵𝑖 ranges from -100% to 100%. The peaks 
are well estimated by ViEEG in comparison with iEEG, for a specific frequency band, if 𝑃 𝑒𝑎𝑘 _ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑈𝐵𝑖 is close to zero. 
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Spearman’s R = -0.33, p = 0.04) and beta band (Spearman’s R = -0.3,
 = 0.08). A negative correlation indicates that for regions exhibiting
igher ViEEG amplitude when compared to iEEG amplitudes, the aver-
ge overlap between ViEEG and iEEG spectra was better. In delta and
heta frequency bands, weak negative correlation was found ( 𝛿: Spear-
an’s R = -0.19, p = 0.25, 𝜃: Spearman’s R = -0.22, p = 0.18). No cor-

elation was found in gamma band (Spearman’s R = -0.03, p = 0.8). 

.6. Comparison with minimum norm estimate (MNE) and LCMV 

eamformer 

The comparison among three source imaging methods (i.e. wMEM,
NE and LCMV Beamformer) is described in detail in the supplemen-

ary material. In Figs. S10 and S11, the group average of relative PSD is
lotted for 38 ROIs for iEEG, and MEG-estimated ViEEG from wMEM,
9 
NE, and beamformer. Fig. S10 shows that the group average of PSD
aps estimated from wMEM, MNE, and beamformer are overall similar.
ompared to the iEEG atlas (Fig. S11), ViEEG estimated from MNE un-
erestimated the theta band when compared to wMEM and beamformer.
n overestimation in the gamma band was found in ViEEG estimated
sing MNE and beamformer. In contrast, ViEEG power in the theta and
amma bands estimated from wMEM was in a closer range to iEEG (see
etails in the supplementary material Section S.3). The relative PSD es-
imated by the distributed source imaging methods, wMEM and MNE
n the cortical surface (Fig. S12) also showed similar patterns in all
requency bands, except for gamma (see details in the supplementary
aterial Section S.2). We also showed a detailed comparison between

EEG and ViEEG spectra for four example ROIs (the same presented in
ig. 4 ) using MNE (Fig. S13) and beamformer (Fig. S14), before and
fter removing aperiodic components. Overall, for all three methods,
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Fig. 7. Median values of 𝑃 𝑒𝑎𝑘 _ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑈𝐵𝑖 over 45 subjects are plotted for 38 ROIs. 𝑃 𝑒𝑎𝑘 _ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑈𝐵𝑖 measures the percentage difference of the number of 
channels exhibiting spectral peaks in ViEEG compared to iEEG, as a proportion of the total number of channels in each ROI, for each spectral band and ROI, 
calculated for each subject i . The value of the median 𝑃 𝑒𝑎𝑘 _ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑈𝐵𝑖 over all subjects ranged from -100% to 100%. Median ( 𝑃 𝑒𝑎𝑘 _ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑈𝐵𝑖 ) = + 100% 

indicates that all the channels from ViEEG in a ROI (N ROI ) showed a peak in that frequency band, whereas no peak was identified in any of the iEEG channels in 
that ROI. We called it a 100% overestimation of oscillatory peaks by MEG-estimated ViEEG in this ROI. On the contrary, a -100% estimation is obtained when all 
the iEEG channels in a ROI exhibit peaks, but no peak was identified in ViEEG in that ROI, resulting in a 100% underestimation. The peaks were better estimated 
by ViEEG for the ROIs if the median ( 𝑃 𝑒𝑎𝑘 _ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑈𝐵𝑖 ) was close to zero. The values in the color bar are ranging from underestimation (-100%, negative values, 
cooler color) to overestimation ( + 100%, positive values, warmer color) of channels exhibiting peak by MEG-estimated ViEEG. 
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EG-estimated spectra were more comparable to iEEG spectra after we
emoved the aperiodic components (as demonstrated by increased av-
rage overlap). The spectra provided by wMEM were more accurately
stimated in beta and gamma bands when compared to the beamformer
nd MNE ( Figs. 4A , S13A and S14A). In Fig. S15, we also plotted the
periodic components estimated from wMEM, MNE and beamformer for
hose four example ROIs, and assessed them using the average overlap
etric calculated as described in Section 2.11 . We can see that wMEM

s performing better than MNE and beamformer in beta and gamma
ands. Fig. S16 summarizes the overlap between the aperiodic compo-
ents estimated from iEEG and ViEEG for all 38 ROIs for wMEM, MNE
nd beamformer. Further details are found in the supplementary mate-
ials. 

. Discussion 

We aimed to assess the reliability of MEG source imaging of awake
esting state oscillations by comparing with the MNI iEEG atlas as
round truth ( Frauscher et al., 2018 ). We compared MEG-estimated
iEEG spectra from a healthy group of participants ( Pellegrino et al.,
022 ) with the atlas of healthy brain activity, in terms of (i) oscilla-
10 
ory components of the spectra, (ii) oscillatory peaks, and (iii) relative
ower. This is the first study using an iEEG atlas of healthy awake ac-
ivity to validate quantitatively the accuracy of MEG source imaging
f resting state activity. We investigated the performance of our source
maging technique, the wavelet based Maximum Entropy on the Mean
wMEM) ( Aydin et al., 2020 ; Lina et al., 2012 ; Pellegrino et al., 2016 ). A
uantitative comparison between iEEG and ViEEG spectra showed that
he ViEEG spectra were closer to the iEEG spectra after the aperiodic
omponents were removed from the spectra ( Fig. 5 ). The estimation of
he ViEEG spectra was more accurate in the lateral regions compared
o the medial regions ( Fig. 5B ). Especially better estimation was found
n the regions exhibiting higher ViEEG amplitude compared to iEEG
 Fig. 8 ), such as the lateral parietal, lateral temporal, and some lateral
ccipital regions ( Fig. 5B ). We found that the estimation of ViEEG rest-
ng state spectra was particularly inaccurate in deep regions such as
he hippocampus and amygdala, for most frequency bands. Our study
lso found that MEG-estimated spectra were dominated by oscillations
n the alpha band, especially in anterior and deeper regions, unlike the
ctual in situ measurements from the atlas ( Figs. 4 , 7 , S4). This obser-
ation is consistent with the finding of dominance in alpha oscillations
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Fig. 8. Average amplitude across the channels in each ROI, normalized by the average amplitude across all ROIs. The bar plot shows the absolute difference of 
normalized amplitude between iEEG and ViEEG. The right panel shows the difference of normalized amplitude between iEEG and ViEEG on the inflated cortical 
surface (lateral and medial views) (top) and the corresponding t_map (bottom). For t_map, we showed the ROIs which were statistically different (Welch’s unequal 
variances t-test, p < 0.05, Bonferroni corrected for 38 ROIs, positive t corresponding to larger amplitude in iEEG when compared to ViEEG). 
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eported in previous studies ( Capilla et al., 2022 ; Keitel and Gross, 2016 ;
ahjoory et al., 2020 ). In our study, the MNI iEEG atlas as ground truth

nabled us to quantify the extent of overestimation or underestimation
f alpha dominance in MEG-estimated spectra. A quantitative compar-
son of oscillatory peaks showed that MEG overestimated peaks in the
lpha band in most brain regions, especially in the frontal and deep re-
ions ( Fig. 7 ). In the delta, theta, and gamma bands, the peaks in the
eep regions were underestimated, whereas they were more accurately
stimated in lateral cortical regions. In terms of relative power, the dis-
ribution of MEG relative power reported in our study was consistent
ith the previous MEG studies in different frequency bands ( Figs. 2 , S2
nd S12) ( Hillebrand et al., 2012 ; Mahjoory et al., 2020 ; Mellem et al.,
017 ; Niso et al., 2016 , 2019 ). However, when compared to the MNI
EEG atlas ( Figs. 2 and S3), important differences in average relative
ower were observed in the anterior regions for alpha, in the posterior
egions for delta, beta and gamma, and in deep regions (such as hip-
ocampus and amygdala) for all bands. Especially in theta, MEG largely
nderestimated relative power compared to iEEG in all brain regions. 

We also calculated the relative power for MEG and performed the
pectral comparison using two other source imaging methods, depth-
eighted MNE and LCMV beamformer (Figs. S10–S16), to determine

f our findings were not mainly driven by our source imaging method,
MEM. Indeed, results were overall similar when depth-weighted MNE
nd beamformer were applied. Investigating carefully the comparison
etween MNE, beamformer and wMEM, ViEEG estimated using wMEM
xhibited better performance (i.e., closer to iEEG) in relative power,
hen compared to MNE and beamformer, especially in beta and gamma

Fig. S11). 

n  

11 
.1. Removing the aperiodic component improves the spectral comparison 
etween ViEEG and iEEG 

Electrophysiological power spectra are composed of periodic com-
onents, typically characterized by spectral peaks and aperiodic com-
onents, also known as 1/f-like or arrhythmic components ( He, 2014 ).
hile analyzing electrophysiological power spectra of neuronal oscil-

ations, the separation of periodic and aperiodic components allows a
etter estimation of the periodic component ( Donoghue et al., 2021 ;
en and Liu, 2016 ). We applied FOOOF ( Donoghue et al., 2020 ) to sep-

rate the periodic and aperiodic components of the spectra from iEEG
nd ViEEG. We quantitatively compared the iEEG and ViEEG spectra
efore and after removing the aperiodic components. The spectra es-
imated by MEG became more comparable to iEEG after the aperiodic
omponents were removed ( Fig. 5 ). This is reflected by the metric av-
rage overlap, which quantifies the overlap between iEEG and ViEEG
pectra. In Fig. 5A , the average overlap values of the spectra, which in-
lude the aperiodic components, were very low for all frequency bands,
ith most ROIs exhibiting an average overla p < 0.2. The average over-

ap values of the ROIs were much improved after removing the ape-
iodic components ( Fig. 5B ). This indicates that the discrepancies be-
ween iEEG and ViEEG spectra were mostly driven by the variations in
he aperiodic components between the two modalities (Fig. S16A). The
periodic component might be generated by spatial interactions among
euronal populations ( Aguilar-Velázquez and Guzmán-Vargas, 2019 ).
he iEEG records brain activity locally, with a spatial sensitivity of less
han 1cm ( von Ellenrieder et al., 2021 ), and would therefore not pick
p all the spatial interactions, leading to a different aperiodic compo-
ent from the one recorded by the more spatially spread sensitivity of
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calp EEG or MEG. Moreover, in a recent study based on computational
odeling using the virtual brain project, we found that anatomical and

orward model properties of EEG and MEG resulted in different aperi-
dic components between EEG and MEG ( Bénar et al., 2019 ). 

The differences in the aperiodic components between MEG and iEEG
ould also result from the differences in the inherent mechanism of gen-
ration of the signals in those two modalities. The local bioelectrical
nvironment contributes to the generation of the local field potential
f iEEG ( Bédard and Destexhe, 2009 ), whereas MEG mainly originates
rom the activation of pyramidal sources. 

.2. MEG spectra were better estimated in lateral regions than in medial 
egions 

MEG-estimated spectra were better estimated in lateral regions com-
ared to the medial regions in most frequency bands ( Fig. 5B ). The
ateral parietal and lateral temporal regions in most frequency bands
howed average overlap values greater than 0.5. In contrast, for most
f the medial ROIs, the average overlap values were less than 0.5 in all
requency bands (except gamma). We found a negative correlation be-
ween the signed difference of iEEG and ViEEG amplitude ( Fig. 8 ) and
he average overlap values ( Fig. 5B ) in all bands except gamma. These
egative correlations were moderate in the alpha and beta bands, and
eak in the delta and theta bands. Such negative correlations indicate

hat average overlap values were better in regions having ViEEG ampli-
udes greater than iEEG amplitudes, which means MEG could estimate
he spectra from these ROIs more accurately when underlying signals
ere of larger amplitudes for those regions. Example regions include

he lateral parietal, lateral temporal, and some lateral occipital regions,
hich exhibited ViEEG amplitudes much higher than iEEG amplitudes
 Fig. 8 ) and also resulted in higher average overlap ( Fig. 5B ). Overall,
n important finding was that deep regions were not well estimated by
EG; results were similar for wMEM, MNE and beamformer (section 4.5

nd supplementary material). For instance, the average overlap values
ere less than 0.3 in the hippocampus for all bands except gamma, and

ess than 0.25 in the amygdala for all bands. The reason for such poor
stimation could be the large underestimation of the ViEEG amplitude
ompared to iEEG ( Fig. 8 ). Similarly, in the lingual gyrus and occipital
usiform gyrus, the ViEEG amplitude was largely underestimated com-
ared to iEEG ( Fig. 8 ). The average overlap in this ROI was less than
.25 in all bands except gamma. 

.3. Dominance of alpha oscillations in MEG 

Oscillatory peaks in the alpha band were largely overestimated by
EG, especially in frontal regions ( Median ( 𝑃 𝑒𝑎𝑘 _ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑈𝐵𝑖 ) =
45-84%) and deep regions such as the hippocampus ( Me-
ian ( 𝑃 𝑒𝑎𝑘 _ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑈𝐵𝑖 ) = 86%) and amygdala ( Median
 𝑃 𝑒𝑎𝑘 _ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑈𝐵𝑖 ) = 100%). We found widespread alpha oscil-
ations in all brain regions ( Figs. 7 , S4, S6). A quantitative comparison
etween the spectra from MEG-estimated ViEEG and the atlas ( Fig. 5B )
howed, in most of the lateral frontal and medial regions, an aver-
ge overlap in alpha of less than 0.5. A similar dominance of alpha
scillations in MEG was also reported in MEG resting state studies
 Capilla et al., 2022 ; Keitel and Gross, 2016 ; Mahjoory et al., 2020 ).
sing eyes open MEG data, Capilla et al. (2022) reported the dominance
f alpha oscillations in all posterior regions. Alpha is of much higher
mplitude with eyes closed than with eyes open. Thus, with eyes
losed data, the dominance of alpha oscillations is expected to be more
idespread and could explain why we found an overestimation of the
lpha peak identified in MEG in most frontal regions. On the other
and, the large predominance of alpha oscillations found in deeper
egions, which also had weak amplitudes, could be explained by source
eakage from cortical signals getting localized with very low amplitude
n deep regions. Nunez et al. (2001) and Srinivasan et al. (2006) also
eported alpha dominance in brain regions with scalp recordings,
12 
ncluding frontal regions. It is quite evident from intracranial EEG that
lpha is not as prominent and widespread as seen from scalp recordings,
specially not in the frontal regions ( Groppe et al., 2013 ; Penfield and
asper, 1954 ). 

With electrocorticography (ECoG) recordings in patients with
pilepsy, Groppe et al. (2013) reported that most dominant oscillations
ended to be around ∼7 Hz (in the theta range), not in the alpha range
8-13Hz) typically reported in scalp recordings. This is also evident from
he peak histogram of iEEG and MEG ( Fig. 6A ), iEEG tends to have the
ighest number of peaks around ∼7Hz, within theta and alpha bands,
hereas MEG peaks were around ∼10-12Hz, in much higher propor-

ions. Compared to iEEG, MEG underestimated theta and overestimated
lpha, which was also evident in the relative power calculated in Fig. 2 .
he reason EEG/MEG sees higher alpha oscillations might be a phase
ynchronization over larger extents than other bands ( Groppe et al.,
013 ). The iEEG having a very local sensitivity profile, would pick up
he activity from the alpha band, but also from other bands with low
patial phase synchronization. MEG, on the other hand, having a more
xtended spatial profile, would pick up the generators of synchronous
lpha activity interfering constructively, but generators of theta activity
or other poorly synchronized bands) would partially cancel out, leading
o a dominant alpha rhythm. 

To tackle the dominance of alpha oscillations, a few previous stud-
es normalized each ROI spectrum by considering the average spectra
f all other brain regions. Such normalization gives a measure of the
haracteristic features of each ROI spectrum compared to other brain
egions, resulting in a less widespread influence of alpha oscillations in
ll brain regions ( Capilla et al., 2022 ; Keitel and Gross, 2016 ). We did
ot incorporate such normalization in this study, as we aimed to com-
are the MEG-estimated spectra for each ROI with the MNI iEEG atlas,
ot with other ROIs. We also investigated iEEG and ViEEG data in a
ipolar montage (Figs. S7 and S8). The spectral components estimated
y MEG compared to the MNI iEEG atlas were very similar for bipolar
nd average montages (Fig. S7). However, the peaks estimated by MEG
ere less dominant in the frontal regions in the alpha band in the bipolar
ontage, when compared to an average reference montage (Fig. S8). 

.4. Differences in signal relative power 

A qualitative comparison of relative power between MEG-estimated
pectra and the atlas ( Figs. 2 , S2) showed that in general, both modal-
ties have similar brain distributions, such as strong delta and theta
ower in frontal regions, alpha power in posterior regions, beta power
n motor and frontal regions, and gamma power in frontal areas. How-
ver, when compared to the MNI iEEG atlas, the MEG-estimated rela-
ive power was spatially much more smoothly distributed. For instance,
he atlas showed low power in the hippocampus in theta, alpha, and
eta bands, in contrast to strong power in its neighboring region the
ara-hippocampal gyrus. In MEG, due to source leakage, such sepa-
ation was not possible, resulting in similar distributions in the para-
ippocampal gyrus, the hippocampus, and the neighboring regions for
ll frequency bands ( Figs. 2 , S2). The contrast between strong and weak
elative power was reflected in MEG only where an extended area in
EEG exhibited a similar contrast. For instance, frontal regions showed
eak alpha power compared to posterior regions in iEEG, a pattern that
as also found in ViEEG (Fig. S2). Similarly, posterior regions in theta
nd the orbito-frontal region in beta showed weak power compared to
ther regions within the specific band in iEEG, which were also reflected
n ViEEG (Fig. S2). Due to the source leakage in MSI, subtle changes in
elative power in brain regions (as seen in the atlas) were not accurately
etrieved using MEG ( Fig. 2 ). This was particularly the case for deep re-
ions localized with small amplitude in MEG. Similar mislocalization
atterns were found with wMEM, MNE and beamformer ( Section 4.5 ,
upplementary S.3). 

Our MEG relative power maps were quite consistent with previous
EG studies ( Niso et al., 2016 , 2019 ). We also compared the MEG rel-
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Data will be made available on request. 
tive power on the cortical surface and MEG-estimated ViEEG relative
ower in the intracranial space in Fig. S12 (described in the supple-
entary material). Fig. S12 confirms that the conversion from the MEG

ource map to intracranial space (ViEEG) did not add any discrepancy,
nd the relative power in the virtual intracranial space (ViEEG) was
oncordant with the MEG relative power on the cortical surface. 

.5. wMEM for resting state localization and comparison with MNE and 
eamformer 

We implemented and validated an adapted version of wavelet MEM
o solve the inverse problem in the context of resting state source imag-
ng. wMEM is a MEM framework specifically designed to localize oscilla-
ory brain patterns in the context of EEG/MEG signals utilizing discrete
avelet transformation (Daubechies wavelets). Taking advantage of the
EM specific prior model ( Chowdhury et al., 2013 ), wMEM can accu-

ately localize the oscillatory patterns together with their spatial extent.
e further adapted wMEM to localize wide band oscillations in resting

tate EEG/MEG data. 
We observed that this new wMEM demonstrated improvement in lo-

alizing the underlying spatial extent of the generators when compared
o the previous wMEM implementation ( Lina et al., 2012 ) (results not
hown) and depth-weighted MNE (Fig. S1), therefore justifying our ra-
ionale for incorporating the adaptations when localizing resting state
ata. 

We also included additional results when considering depth-
eighted MNE and beamformer source localization in the supplemen-

ary material (Figs. S10–S16). Overall, we show that the findings were
ot driven by our source imaging method, wMEM. Both MNE and beam-
ormer are widely used source imaging methods. For MNE, we per-
ormed first source imaging on the cortical surface and then applied
 forward model to convert MEG current density into intracranial elec-
rical potential in μV, for each iEEG contact, as done for wMEM. On
he other hand, beamformer estimated the virtual time courses directly
n the iEEG contacts’ locations, consisting in local estimates of cur-
ent density as proposed in Tamilia et al. (2021) . For all methods, we
ound an overall similar pattern in terms of relative PSD, and removal of
he aperiodic component made the spectra estimated from MEG more
omparable to iEEG spectra. When compared to iEEG spectra, wMEM
erformed better than MNE and beamformer in the beta and gamma
ands (see spectra shown in Figs. 4 , S13, S14 and the estimated ape-
iodic components shown in Fig. S15). It is worth mentioning that our
ethod consisting in converting MEG sources into virtual iEEG poten-

ials ( Abdallah et al., 2022 ; Grova et al., 2016 ) offers a solid quantifica-
ion approach to compare MEG sources estimated using different source
maging techniques with actual iEEG in situ recordings, taking into ac-
ount spatial sampling of iEEG data. 

.6. Limitations 

One limitation of this study is that the normative MNI iEEG atlas
as collected from patients with epilepsy, although by including only

he iEEG electrodes implanted in the brain regions which turned out to
e healthy. This limitation cannot be overcome, as iEEG data are never
ollected from healthy subjects. Such normative iEEG atlas data are so
ar the best ground truth and provide us with a unique opportunity to
alidate non-invasive source imaging techniques. Another limitation is
he heterogeneity of iEEG channels in different ROIs. The sampling of
EEG channels was higher in lateral temporal, parietal, and frontal re-
ions compared to medial and occipital regions. This might have biased
ur results, but not severely. We found a mild to moderate positive corre-
ation between the number of channels in a ROI and the average overlap
alue (calculated in Fig. 5B ) in delta and beta bands (results not shown).
t is worth mentioning that the distribution of patients’ age in the iEEG
tlas (31 ± 10 Y, range: 13-62 Y) was wider when compared to our MEG
ataset (28.67 ± 4.13 Y, range: 20-38 Y), and such a difference could
13 
ffect our spectral comparison due to the age-dependency of spectral
haracteristics ( Hoshi and Shigihara, 2020 ). However, these effects are
mall ( Hoshi and Shigihara, 2020 ) and given the fact that in the iEEG at-
as, only three patients were above 55 and that the healthy subjects were
overing the range between the 25% (25 Y) and the 75% (40 Y) quartile
f the patients’ age distribution, we believe our results to be minimally
iased by age. We also combined channels in both hemispheres to max-
mize the sampling and the coverage of the brain. Thus, any effect of
emispheric asymmetry on oscillatory characteristics was lost. Also, the
EG data and iEEG data in this study were not simultaneously recorded.

imultaneous iEEG-MEG recordings would give us more opportunities
o validate region specific spectral components ( De Stefano et al., 2022 ;
izzo et al., 2019 ), which we plan to do in the future. However simulta-
eous iEEG-MEG recordings have limited spatial sampling, whereas we
ould study the whole brain with the normative MNI iEEG atlas. 

. Conclusion 

We aimed to address the reliability of MEG source imaging by vali-
ating source imaging results with the MNI iEEG atlas as ground truth.
e quantitatively estimated the concordance of MEG-estimated spectral

omponents with the atlas and identified the regions for which MEG-
stimated spectra are reliable and regions for which we should be cau-
ious while interpreting MEG results. We found widespread source leak-
ge in the alpha band oscillations in MEG-estimated spectra in frontal
nd deep brain regions, which was present before and after the removal
f aperiodic components. In the future, we are planning to investigate
hese issues on simultaneous MEG-iEEG data and validate MEG source
maging of spectral components at the single-subject level. 

ata and code availability 

The open-source atlas of intracranial EEG data is available at
ttps://mni-open-ieegatlas.research.mcgill.ca/ . The resting state MEG
ata supporting the findings of this study are available upon reason-
ble request to the corresponding authors. MEG and iEEG data were
rocessed with Brainstorm software ( Tadel et al., 2011 ) available at
ttps://neuroimage.usc.edu/brainstorm/ and the BEst plugin ( https://
ithub.com/multifunkim/best-brainstorm ) for wMEM. For the FOOOF
oolbox ( Donoghue et al., 2020 ), we used the MATLAB wrapper avail-
ble at https://github.com/fooof-tools/fooof _ mat . The forward and in-
erse solutions for LCMV beamformer were calculated using fieldtrip
oolbox ( Oostenveld et al., 2011 ). 
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ppendix 

The maximum entropy on the mean (MEM) is a Bayesian inference
echnique that regularizes the inverse problem using prior information.
his prior relies on the notion of functional parcellation of brain activ-

ty over the cortical surface, and hidden state variables describing each
arcel being active or inactive. A data driven parcellization (DDP) based
n Multivariate Source Pre-localization (MSP) method ( Mattout et al.,
005 ) was used to guide the parcellation of the cortical surface into
on-overlapping and functionally homogeneous parcels ( Lapalme et al.,
006 ). For each parcel, the prior is then defined as a mixture of Gaus-
ians, each Gaussian of each parcel will be related to a state as active
nd inactive controlled by a hidden state variable. In the context of rest-
ng state EEG/MEG, we adapted wMEM by incorporating a few changes
n the prior model and initialization of the parcels. 

patial prior model 

Parcellation of the whole cortical surface was obtained using a
ata driven approach, based on the Multivariate Source Pre-localization
MSP) method ( Mattout et al., 2005 ), a projection technique allowing
o estimate the probability of every source contributing to the data. The
EG data (M) were first normalized (across sensors) and then wavelet

ransformed ( �̃� ). In the present implementation of wMEM, time expan-
ion was thus substituted with a time-scale representation. The contribu-
ion of each source to the data (called the MSP score) is obtained using
he normalized MEG data ( �̃� ) and the normalized lead field matrix ( ̃𝐺 ),
here the normalization was performed by the norm of each column.

̃
 is the sensor space data in the wavelet domain (dimension: number of

ensors × discrete wavelet time-frequency indices ), whereas the normalized
ead field �̃� is of dimension number of sensors × n; n is the total number
f sources. The MSP score for each source (a i ), i = 1,…. n , is calculated
n the following steps: 

The normalized lead field matrix �̃� is decomposed into d mutually
rthogonal eigenvectors u i using singular value decomposition (SVD).
e selected a subspace, U s = [u 1 , u 2 , … u s ], by projecting these or-

hogonalized projectors onto the normalized data �̃� as 𝑈 

𝑡 �̃� �̃� 

𝑡 𝑈 and
aking the diagonal of 𝑈 

𝑡 �̃� �̃� 

𝑡 𝑈 that captures 95% of the variability. 
In the data subspace spanned by U s , the data that can be explained

ithin this subspace is calculated as: 

 𝑠 = 𝑈 𝑠 𝑈 

𝑡 
𝑠 �̃� (A.1)

The projector in this subspace is defined by 

 𝑠 = 𝑊 𝑠 

(
𝑊 

𝑡 
𝑠 𝑊 𝑠 

)−1 
𝑊 

𝑡 
𝑠 (A.2)
 

14 
Finally, the MSP score between 0 and 1 for each source i is then
alculated by the norm of the projection of its associated lead field, 

 ( 𝑖 ) = �̃� 𝑡 𝑖 𝑃 𝑠 ̃𝑔 𝑖 (A.3)

here �̃� 𝑖 is the i th column of �̃� . 
Parcels are then constructed using a region-growing algorithm, se-

ecting sources according to decreasing MSP scores. In this version of
MEM, assuming a stable parcellation of the cortex for all the time-

requency samples for resting state data, we followed the strategy pro-
osed for cMEM ( Chowdhury et al., 2013 ), ensuring that the same
nderlying parcellation was considered when localizing all the time-
requency samples (dimension of �̃� as number of sensors × number of dis-
rete time frequency boxes ). In our previous implementation ( Lina et al.,
012 ), a specific parcellation was computed for each time-frequency box
o localize. 

nitialization of the parcels 

The probability 𝛼𝑘 for each parcel k to be active was then initial-
zed as the amount of ‘normalized energy’ in the parcel, for each time-
requency sample. Given the minimum norm estimated energy of the
ources, for a specific time-frequency sample (a column in �̃� ) �̃� , 

 = �̃� 

𝑡 
(
�̃� ̃𝐺 

𝑡 
)−1 

�̃� (A.4)

𝑘 = 

√ √ √ √ 

∑
𝑖 ∈𝑘 𝑗 ( 𝑖 ) 

2 

∑
𝑖 =1 , ….𝑛 𝑗 ( 𝑖 ) 

2 (A.5) 

Although the parcels were identical across time-frequency samples,
his quantity initializing the probability of each parcel to be active
hanged with time and frequency. 

election of baseline for resting state localization 

A baseline is needed to complete the initialization of the prior, to
efine the variance of the active state and inactive state, in comparison
o the noise variance at the sensor level. This is an important feature
hat will allow switching off parcels in the model when they are not ac-
ive. The idea of selecting a baseline is to choose a segment of data with
n amplitude significantly lower than the signal of interest. However,
he selection of such segments in resting state data is not straightfor-
ard. In Aydin et al. (2020) , the baseline was defined as a two-second

egment exhibiting low amplitude in the alpha band, since we were in-
estigating amplitude envelope correlation in the alpha band, as a con-
ectivity metric. This approach worked reasonably when localizing in
 specific and narrow frequency band, however, becomes inappropriate
hen localizing in a wide frequency band. Here, we propose to gener-
te a quasi-synthetic baseline from a segment of the signal of interest.
he baseline was obtained by randomly modifying the Fourier phase at
ach frequency, for all the sensors (originally proposed by Prichard and
heiler 1994 ). This baseline preserves the coherence between the sen-
ors and the power spectrum of the signals while destroying only the
emporal coherence. To consider this new baseline, we adopted a sliding
indow approach to calculate the baseline. For each window with one

econd duration along the sixty second resting state MEG data, a quasi
ynthetic “shuffled ” baseline was thus generated. To solve the inverse
roblem for each time frequency box, we selected the corresponding one
econd “shuffled ” baseline along the time scale. We adopted this sliding
indow approach considering that the selection of baseline is an impor-

ant aspect of the initialization of the prior, allowing the parcels to be
ctive or not, and thus would be more reasonable to use the baseline
hich is temporally associated with the time frequency sample. 
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