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Abstract: This paper presents a methodology for designing a highly reliable Air Traffic Management
and Control (ATMC) methodology using Neural Networks and Peer-to-Peer (P2P) blockchain. A
novel data-driven algorithm was designed for Aircraft Trajectory Prediction (ATP) based on an
Autoencoder architecture. The Autoencoder was considered in this study due to its excellent fault-
tolerant ability when the input data provided by the GPS is deficient. After conflict detection, P2P
blockchain was used for securely decentralized decision-making. A meta-controller composed of this
Autoencoder, and P2P blockchain performed the ATMC task very well. A comprehensive database of
trajectories constructed using our UAS-S4 Ehécatl was used for algorithms validation. The accuracy
of the ATP was evaluated for a variety of data failures, and the high-performance index confirmed the
excellent efficiency of the autoencoder. Aircraft were considered in several local encounter scenarios,
and their trajectories were securely managed and controlled using our in-house Smart Contract
software developed on the Ethereum platform. The Sharding approach improved the P2P blockchain
performance in terms of computational complexity and processing time in real-time operations.
Therefore, the probability of conflicts among aircraft in a swarm environment was significantly
reduced using our new methodology and algorithm.

Keywords: air traffic management; trajectory prediction; fault-tolerant Autoencoder; blockchain
consensus protocol

1. Introduction

Air Traffic Management and Control (ATMC) is one of the most critical issues in avia-
tion transportation [1]. The safety and efficiency of aviation transportation require advanced
path planning systems. Various strategies have been designed for path planning to manage
airspace [2], traffic flow [3], and capacity [4]. Path planning methods can be categorized into
two classes, namely representation and coordinate-related techniques [5]. Representation
techniques are based on c-space and include cell decomposition [6], roadmaps [7], potential
fields [8], and Voronoi diagrams [9]. The coordinate [10] and non-coordinate techniques are
based on various algorithms such as evolutionary models [11], genetic algorithms [12,13],
particle swarm optimization [14], and ant colony optimization [15].

Vulnerabilities in an ATMC system, due to faults and failures [16], can result in
catastrophic aerial collisions [17]. Safe airspace allocation, therefore, has a key role in ATMC
performance [18]. Coordinate-based methodologies have shown very good efficiency
in airspace allocation. Linear programming [19], control theory [20,21], meta-heuristic
algorithms [22], evolutionary techniques [23], and machine learning [24] models are the
most well-known and widely used approaches. The fault-tolerance feature [25] must be
considered a fundamental criterion for the design and development of ATMC systems
in order to improve safety requirements. Among the above-mentioned methodologies,
those based on artificial intelligence (especially deep learning algorithms) have proven
their extraordinary ability for fault detection [26], air traffic management [27], control [28],
and collision avoidance.
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The ATMC system mainly works based on “future trajectories” [29]. By relying
on advanced trajectory prediction algorithms, very good decisions can be made, which
greatly improves the efficiency of trajectory planning, and thus the performance of the
ATMC [30,31]. The first requirement is the design of an accurate Aircraft Trajectory Predic-
tion (ATP) model. Many deterministic and probabilistic approaches have been investigated
for the ATP model [24,32–35]. Among these, data-driven algorithms have shown the best
performance, particularly when they are provided with a rich dataset [36]. Hence, the first
aim of this paper was to design an ATP model based on deep Neural Network architectures.
Among them, the Autoencoder algorithm has shown excellent functionality and results for
vehicle trajectory prediction. Vehicle (automobile) trajectory prediction with a variational
Autoencoder [37], vessel (ship) trajectory prediction using a dual linear Autoencoder [38],
and aircraft trajectory prediction using a deep Autoencoder [39] are some examples of very
good utility and performance of the Autoencoder. Among the advantages of the Autoen-
coder, its fault tolerance feature remains its main and outstanding specification [40]. In
other words, the Autoencoder can perform accurate trajectory prediction despite deficient
(possibly wrong) data obtained from the GPS. This is the reason why we have therefore
selected an Autoencoder algorithm for our UAS-S4 trajectory prediction.

In addition to predicting future trajectories, a decision-making algorithm is also
needed to manage and control aircraft to avoid collisions. In essence, ATMC is a distributed
mission and a central coordinator cannot perform this task properly. By considering a
single air traffic controller for a specific flight area, the ATMC system may have difficulties
in crowded flight zones. Moreover, reliability issues that arise from failures (dues to
miscommunications, adversarial attacks, delayed control commands, or overloaded zones)
confirm the advantages of decentralized over centralized approaches [41].

Local broadcast methodology, control zones, trigger, and Peer-to-Peer (P2P) blockchain
are among the most widely used fault-tolerant methodologies [42]. Local broadcast uses an
efficient and simple algorithm, but it cannot be applied on a grided airspace topology [43].
The control zones approach is fault-tolerant in the case of many agent failures (with high
probability), but a global knowledge of aircraft trajectory is required [44]. The trigger
strategy can tolerate many agent failures without requiring knowledge of its topology, but
in some cases is less efficient than that of control zones [45].

Basically, a vehicle’s movement in an environment requires dynamic path planning, as
each vehicle’s trajectory affects another one. Therefore, a consensus algorithm is needed for
analyzing collected trajectory data, and path planning while minimizing the risk of conflict
between vehicles. The most successful consensus algorithms have been developed based
on deterministic, randomized, leader-free, and leader-based methodologies. Deterministic
approaches may not solve the consensus problem due to a single communication failure in
an asynchronous environment. Randomized methodologies are not suggested for critical
tasks such as air traffic management due to safety issues. The leader-based methodology is
more vulnerable than others in the case of cybersecurity attacks. Leader-free methodology
outperforms others if the safety issue is the main concern. We need Blockchain as the most
reliable infrastructure for implementing a leader-free consensus algorithm.

P2P blockchain is the most secure decentralized coordination methodology that allows
the consensus model to make fully collective decisions [46]. As the ATMC system needs a
concursus algorithm for reliable airspace allocation, blockchain based on the P2P topology
can safely perform this task. Although its high computational complexity is its drawback, by
relying on fast processors and desired GPS data collection time, P2P blockchain outperforms
other methodologies.

Among the P2P strategies, Linear Consensus Protocol has been widely used for decen-
tralized management and control of network dynamic agents. However, it is sensitive in
realistic operation when faults and failures occur on sensors and actuators (hard failures),
and when faced with Adversarial or Sybil attacks (soft failures) [47]. Hence, blockchain
technology was developed to provide a decentralized, scalable, and secure P2P decision-
making system. Ethereum can provide a platform for creating Smart Contracts not only
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for financial transactions [48], but also for swarm robots [49], multi-agent UAV moving
management [50], and others. Our customized Smart Contract based on the Ethereum
framework manages and controls aircraft future trajectories, relying on trajectories pre-
dicted by the Autoencoder.

The paper is organized as follows. Section 2 presents the Air Traffic Management prob-
lem statement. The methodology for aircraft trajectory prediction using an Autoencoder
algorithm with our ATP model and the implementation of the P2P blockchain for the ATMC
are presented in Section 3. Section 4 is devoted to the results, including representing the
accuracy of the ATP model under data failure, and the performance of the Smart Contract
designed for the ATMC. Finally, Section 5 provides a general discussion, conclusions, and
recommendations for future work.

2. Problem Statement

Assume a flight area composed of airspace-like cubes, with several aircraft flying
through their desired trajectories. Figure 1 shows the assumed flight area, constructed by
cubes C(x,y,z), in which u, v, and w are the number of cubes along the x, y, z axes, respectively.

Aerospace 2023, 10, x FOR PEER REVIEW 3 of 14 
 

 

Among the P2P strategies, Linear Consensus Protocol has been widely used for de-

centralized management and control of network dynamic agents. However, it is sensitive 

in realistic operation when faults and failures occur on sensors and actuators (hard fail-

ures), and when faced with Adversarial or Sybil attacks (soft failures) [47]. Hence, block-

chain technology was developed to provide a decentralized, scalable, and secure P2P de-

cision-making system. Ethereum can provide a platform for creating Smart Contracts not 

only for financial transactions [48], but also for swarm robots [49], multi-agent UAV mov-

ing management [50], and others. Our customized Smart Contract based on the Ethereum 

framework manages and controls aircraft future trajectories, relying on trajectories pre-

dicted by the Autoencoder. 

The paper is organized as follows. Section 2 presents the Air Traffic Management 

problem statement. The methodology for aircraft trajectory prediction using an Autoen-

coder algorithm with our ATP model and the implementation of the P2P blockchain for 

the ATMC are presented in Section 3. Section 4 is devoted to the results, including repre-

senting the accuracy of the ATP model under data failure, and the performance of the 

Smart Contract designed for the ATMC. Finally, Section 5 provides a general discussion, 

conclusions, and recommendations for future work. 

2. Problem Statement 

Assume a flight area composed of airspace-like cubes, with several aircraft flying 

through their desired trajectories. Figure 1 shows the assumed flight area, constructed by 

cubes 𝐶(𝑥,𝑦,𝑧), in which 𝑢, 𝑣, and 𝑤 are the number of cubes along the 𝑥, 𝑦, 𝑧 axes, re-

spectively. 

 

Figure 1. Flight area composed of cubic airspaces. 

According to Figure 1, there is no limitation to the cube size. The cube size is 

𝑥 × 𝑦 × 𝑧 in which they are positive integers. The figure is rendered colourful in order to 

well illustration the airspace which is composed of small cubes. Aircraft might be found 

in cubes according to their latitude, longitude, and altitude, and they pass through air-

spaces following their individual trajectories. To avoid aerial collisions, aircraft should 

never be in the same airspace. Hence, traffic management must allocate safe 𝐶(𝑥,𝑦,𝑧) coor-

dinates to aircraft. To improve safety while reducing costs, long-term series of 𝐶(𝑥,𝑦,𝑧) al-

location is needed in time. Producing such long-term series makes the prediction of future 

aircraft trajectories an essential requirement for efficient 𝐶(𝑥,𝑦,𝑧) allocation. For the predic-

tion of future aircraft trajectory, it is assumed that aircraft fly in their air corridors, as 

shown in Figure 2. Considering that GPS data (which includes latitude, longitude, alti-

tude, heading, speed, and time of the aircraft) at a given time 𝑇𝑛 is available, a model can 

therefore be used to predict the aircraft’s future trajectories for the next 𝑖 time steps. 

Figure 1. Flight area composed of cubic airspaces.

According to Figure 1, there is no limitation to the cube size. The cube size is x× y× z
in which they are positive integers. The figure is rendered colourful in order to well
illustration the airspace which is composed of small cubes. Aircraft might be found in
cubes according to their latitude, longitude, and altitude, and they pass through airspaces
following their individual trajectories. To avoid aerial collisions, aircraft should never be
in the same airspace. Hence, traffic management must allocate safe C(x,y,z) coordinates to
aircraft. To improve safety while reducing costs, long-term series of C(x,y,z) allocation is
needed in time. Producing such long-term series makes the prediction of future aircraft
trajectories an essential requirement for efficient C(x,y,z) allocation. For the prediction of
future aircraft trajectory, it is assumed that aircraft fly in their air corridors, as shown in
Figure 2. Considering that GPS data (which includes latitude, longitude, altitude, heading,
speed, and time of the aircraft) at a given time Tn is available, a model can therefore be
used to predict the aircraft’s future trajectories for the next i time steps.

By using such predicted trajectories (the first objective), future airspace C(x,y,z) coordi-
nates that minimize the risk of conflict (the second objective) can be allocated to an aircraft
by relying on its determined cube-based path. These objectives highlight the need for
efficient methodologies for accurate trajectory prediction and reliable airspace allocation.
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Figure 2. Aircraft Trajectory Prediction for Air Traffic Management.

3. Methodologies

This section presents the methodologies for realizing accurate trajectory prediction and
traffic management. To satisfy the first objective, a data-driven model based on a Neural
Network was designed for trajectory prediction. Then, to meet the second objective, a
blockchain-based protocol was designed for airspace allocation to ensure safe and efficient
traffic management.

3.1. Trajectory Prediction

A temporal latent Autoencoder [51] was used as the benchmark algorithm to develop
the Aircraft Trajectory Prediction (ATP) model. This Autoencoder is an unsupervised
protocol that not only removes noise from the GPS data but also reconstructs compressed
data. Following strong dependencies among training data, it can also perform good-quality
predictions even when data is deficient. These outstanding features make this Autoencoder
an essential tool in fault-tolerant prediction strategies. Figure 3 shows the Autoencoder
architecture that has been considered for the ATP model.
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As shown in Figure 3, the data provided by the GPS (i.e., latitude, longitude, altitude,
heading, speed, and time) is fed to the input layer, which then fully propagates it through
the Encoder layer that reduces the dimensions of the input data. The Latent layer in the
middle of the architecture produces the “Code”, which is fully passed to the Decoder
layer. The Decoder is the mirror of the Encoder; its role is to enlarge the Code dimensions,
and thereby prepare the full-dimension data for the Output layer. The robustness of the
Autoencoder varies with the number of neurons in the Latent layer. The Autoencoder is
trained to predict future trajectories even when some elements in the input vector are not
well measured. For instance, in Figure 3, by considering 3 neurons in the Latent layer, in
the worst case, the Autoencoder will still be able to predict trajectories in the case where
there are 3 missing inputs.

The principles of how the Autoencoder works are described next. Let us consider
two Euclidean spaces, decoded GPS data A, and encoded GPS data B. Using decoder
D, and encoder E transfer functions, D : B→ A and E : A→ B , where both functions
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are multilayer perceptrons [52]. For encoded and decoded data samples, the following
statement holds:

For any a ∈ A and b ∈ B → b = E(a) and á = D(b) (1)

where a is the encoded and á is the decoded GPS data. Training this Autoencoder requires
a critical function to evaluate the quality of the training. This task is performed using a
predetermined probability distribution Ωre f over the encoder transfer function E, and a
quality function Q = A× A→ [0, ∞] associated with trajectory reconstruction, such that
d(a, á) measures the difference between a and á. Therefore, the loss function that must
be minimized by solving this optimization problem using the gradient technique can be
mathematically represented as follows [52]:

L = Êa∼Ωre f [d(a, D(E(a)))] (2)

Next, by considering the reference distribution for {a1, . . . , ap} such as [52]:

Ωre f =
1
p

p

∑
h=1

δah (3)

where δ is the Dirac measure.
By considering L2 loss: d(a, á) = ‖a − á‖2

2 as the Autoencoder quality function
(norm 2), the optimal Autoencoder would be formulated as the following least-square
optimization problem [52]:

minL , where L =
1
p

p

∑
h=1
‖ah − D(E(ah))‖2

2 (4)

The hyperparameters of the trained Autoencoder for ATP were fine-tuned by mini-
mizing the optimization criteria given in Equation (4). The trajectories predicted by the
Autoencoder can then be used for airspace allocation and traffic management.

3.2. Airspace Allocation

By using predicted trajectories, a receding-horizon lattice planner was developed
for dynamic airspace allocation [53]. A Consensus Protocol must confirm that an aircraft
will not be in a conflicting (possible collision) zone in any future steps [36]. To guarantee
separation between aircraft, the Peer-to-Peer (P2P) topology [54] shown in Figure 4 was
used as a decentralized Consensus Protocol based on blockchain technology.
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Regardless of blockchain methodology, utilizing the P2P topology provides robust
communication in case of data loss. Blockchain is an outstanding methodology for coming
up with wrong data. Hence, using the blockchain methodology, which is developed based
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on P2P topology, not only provides robustness in case of data loss but also in case of wrong
data (predicted by the Autoencoder) due to adversarial attacks. The Ethereum-based Smart
Contract [55] executes Block(N+1) that allows aircraft to follow their trajectories if there is
no conflict between the trajectories predicted by their corresponding Autoencoders.

As illustrated on the right-hand side of Figure 4, a ground station and k aircraft are
assumed, which are fully connected and communicate with each other, and a P2P topology
is therefore constructed. Each aircraft can be considered an “agent”, and is equipped with
an Autoencoder that can be used to predict its future trajectories. Each aircraft submits its
predicted trajectory (using its own Autoencoder) to the blockchain by itself. In the order
word, each aircraft is an agent that creates a node on the P2P blockchain topology. All
aircraft should confirm the future trajectories of the others relying on the previous executed
block in the blockchain that contains all aircraft future trajectories in the last timestamp. The
ATP is performed decentralized, and its values are shared among agents through the P2P
topology. Blockchain methodology keeps trajectory data private and only allows identified
aircraft to read and write the data on the chain. Each aircraft is considered a node and must
individually act as an agent, share its data with others nodes, and write it on the blockchain.
Block(N+1) is executed when the Smart Contract confirms that there is no conflict between
aircraft relying on the Autoencoders and Block(N). Secured data mainly includes the aircraft
identifier (ID) [1 − k], and its predicted trajectories which are stored in Block(N+1). This
process is performed on-chain, relying on the previous block hash (“data encryptor”), the
added number to the hash (“nonce”), exact time execution (“timestamp”), and j number of
agreements for trajectory predictions (“transactions”). Trajectory Data are logged once an
aircraft enters a district, and lasts as long as it exists in the corresponding districts.

Increasing the number of aircraft in a flight zone is a real challenge. Sharing data
among many aircraft increases both the computational complexity and the error rate for
a Smart Contract. Sharding means we consider aircraft in some classes regarding their
close locations. The Smart Contract cannot execute new blocks quickly, and it may fail in
the Block execution for unnecessary agreement. The concept of Sharding (scaling of the
blockchain network) allows the Smart Contract to categorize aircraft into multiple districts
(sub-flight zones) in terms of their locations. The ground station communicates with the
districts through sharding and each of which oversees the path planning for lm aircraft, as
shown in Figure 5.
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Figure 5 illustrates the P2P communication topology between aircraft. The flight zone
is sharded by considering m districts. Each district creates a sub-flight zone that contains
lm agents (aircraft), where m indicates the number of sub-flight zones (districts). In other
words, k aircraft in a flight zone are sharded into m sub-flight zones according to their
locations. Worth mentioning that nodes 1 to 5 in each district are unique. For instance,
node number 1 in district number 1 is not the same as node number 1 in district number 2,
and each one represents the node corresponding to a particular aircraft.
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The ground station does not communicate directly with the aircraft, but instead calls
Smart Contract for the required data that are obtained from each individual district. The
sharding methodology can reduce the computational complexity of the Smart Contract
while reducing the error rate due to failed agreements associated with unnecessary en-
counter situations. The following section explains and discusses these improvements from
a numerical perspective.

4. Results and Discussion

To test and validate the methodology presented in this study, aircraft trajectories
were generated using our UAS-S4 flight dynamics model [56,57], and its corresponding
controller [58]. This aircraft is pictured in Figure 6, and its specifications are listed in Table 1.
A number of 1820 flight trajectories containing 218,400 samples (i.e., [latitude, longitude,
altitude, heading, speed, time]6×1) were generated and used for the training, testing, and
validation of our newly designed Autoencoder.
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Table 1. The UAS-S4 geometrical and flight data specifications.

Specification Value

Wingspan 4.2 m
Wing area 2.3 m2

Total length 2.5 m
Mean aerodynamic chord 0.57 m
Empty weight 50 kg
Maximum take-off weight 80 kg
Loitering airspeed 35 knots
Maximum speed 135 knots
Service ceiling 15,000 ft
Operational range 120 km

Weighting vectors were initialized, and then a batch normalization was performed by
recentering and rescaling the input data with the aim to obtain a fast and stable trajectory
prediction [59]. Regularization was also performed, as a means to reduce the magnitudes
of regressed trajectories [60]. The hyperparameters were tuned [61]; with a Code size of
3× 1 (vector), the system could be tolerant in the case of faults or failures of three out of all
six elements of the input vector [latitude, longitude, altitude, heading, speed, time]6×1.

For the encoder, 4 and 5 numbers of nodes were considered, and the decoder archi-
tectures were the same as those of the encoder. The Mean Absolute Error (MAE) was
determined as the loss function. Table 2 presents the prediction accuracy, and precision
of the Autoencoder, which is compared with the Long Short-Term Memory (LSTM) [36]
under four different data failure combinations.
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Table 2. The Fault-tolerant Autoencoder and LSTM trajectory prediction accuracy and precision
comparison.

Data Failures
Prediction Accuracy % Precision

LSTM Autoencoder LSTM Autoencoder

No failures 99.5 98.7 0.01 0.01
Latitude 91.6 98.1 0.04 0.03

Latitude and heading 83.2 95.3 0.06 0.04
Latitude, altitude, and speed 58.7 91.2 0.10 0.07

According to Table 2, the LSTM shows slightly better performance than the Autoen-
coder only in the absence of failure. However, when these methods use deficient data
(e.g., latitude, altitude, and speed failure), the Autoencoder shows very good prediction
accuracy (91.2%), while the LSTM shows a much worse prediction accuracy (58.7%). These
results confirm the excellent fault-tolerant ability of the Autoencoder. Worth mentioning
that the training trajectories data were generated using the simulator while random distur-
bances such as wind shear, wind gusts, and turbulences were considered in the simulation
process. In accordance with Table 2, 98.7% prediction accuracy in the test phase confirms
the generalizability of the Autoencoder for trajectory prediction even in case of unknown
disturbances dues to climate changes.

Moreover, the Autoencoder performance is dependent on its architecture (number
of neurons in the Encoder, Latent, and Decoder) as shown in Table 3. For this purpose,
we considered different feasible numbers of neurons for Encoder, Latent, and Decoder to
determine which number gives the best performance.

Table 3. The Autoencoder performance considering different number of neurons in the architectures.

Data
Failures

Number of
Neurons in

the Encoder and
Decoder

Number of
Neurons

in the Latent
Prediction

Accuracy %
Error Rate

%

5
4 97.8 4.2

3 97.6 4.1
3 98.1 3.3Latitude

4 2 43.3 17

5
4 94.9 5.2

3 94.6 6.3
3 95.3 4.4

Latitude
and Heading 4 2 39.2 16.6

5
4 90.8 8.5

3 90.3 9.2
3 91.2 7.1

Latitude,
Altitude,

and Speed 4 2 32.6 19.8

Table 3 shows that using 2 neurons in the Latent layer when 3 elements (i.e., latitude,
altitude, and speed) in the input vector were lost (had failures) resulted in the Code
generating failure, and dramatic prediction accuracy reduction (shown in red). It is worth
noting that the use of 4 neurons in the Encoder layer can provide better data for coding than
using 5 neurons. Prediction Accuracy (shown in green) confirms that the best Autoencoder
architecture is composed of 3 neurons in the Latent layer, and 4 neurons in the Decoder
and Encoder layers.

Relying on the given fault-tolerant Autoencoder for trajectory prediction, 120 UAS-S4s
were arranged in a flight zone, in which each had its own location, heading, and speed.
Their future trajectories were managed and controlled using the Smart Contract. A private
chain combining the “consensus layer” with the “contract layer” was designed for ATMC
decision-making, based on proof of time and Smart Contract approaches, respectively.
We considered the Linear Consensus Protocol (LCP) as the baseline and compared its
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performance to the performance of our Smart Contract-based Consensus Protocol (SCCP).
Both methodologies were analyzed in cases of “soft” failures (Sybil Attacks and Adversarial
Attack). In order to improve Smart Contract performance to avoid unnecessary encounter
situations, the Sharding methodology was used to design several sub-flight zones. Table 4
shows the error rate while different Consensus Protocols were managing the UAS-S4′s
trajectories and different attacks were imposed on the aircraft.

Table 4. ATMC error rate when consensus protocols control and manage traffic.

Methodology Number of
Sub-Flight Zones

Attacks
Imposed?

Error
Rate %

Linear Consensus Protocol (LCP) 1 No 5.3
Yes 83.2

Smart Contract-based Consensus
Protocol (SCCP) 1 No 8.7

Yes 18.6

Sharding-SCCP 4 No 7.7
Yes 15.4

According to the Error Rate shown in Table 4, when soft attacks are not imposed,
the Linear Consensus Protocol (LCP) methodology can perform the ATMC task with the
smallest error rate (5.3%). However, the superiority of the Smart Contract-based Consensus
Protocol (SCCP) and Sharding-SCCP over the LCP becomes obvious when Sybil Attacks
and Adversarial Attacks are considered. Under such conditions, the SCCP showed an
18.6% error rate, while the LCP almost collapsed (83.2% error rate). Sharding improved the
SCCP performance (down to a 15.4% error rate). The following section elaborates on and
summarizes these results.

For the reliability evaluation, we considered the error rate as the performance index.
The error rates due to block execution failures were measured, while various consensus
protocols were approaching adversarial attacks. Worth mentioning that the randomized
consensus methodology is not utilized in the comparison study due to its inherent safety
weakness for performing the ATM critical task. The block execution error rates were
2.24%, 2.09%, and 0.87% when deterministic, leader-based, and leader-free consensus
methodologies were in charge, respectively. These error rate values confirm the leader-free
blockchain methodology is more reliable than other consensus protocols while approaching
adversarial attacks.

The probability of UAS conflicts after airspace allocation might be analyzed as a critical
dynamic performance. A total of 100 UAS-S4s were operated at z = 3.75 km (altitude),
x = 4 to 7.2 km (latitude), and y = 8 to 9.2 km (longitude), by utilizing 16 shards to ensure
safe performance. Figure 7 illustrates the probability of conflicts among three UAS-S4s in a
specific sub-flight zone under two protocols, the LCP (a) and blockchain (b).
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Figure 7 is extracted from the 10th shard, where 3 UASs have conflicts within 3.84 km2.
A comparison between plot (a) for the LCP and plot (b) with blockchain confirms that the
blockchain performance was better than that of the LCP in terms of the probabilities of
conflicts and safety. The average probability of conflicts was 33.1% for the LCP and 26.7%



Aerospace 2023, 10, 357 10 of 13

for the blockchain. In addition, the LCP does not give safe zones, while the blockchain
approach offers a substantial number of such zones.

5. Conclusions

A reliable Air Traffic Management and Control (ATMC) was designed based on an
Autoencoder, and a Smart Contract on the Ethereum blockchain. The Autoencoder was
designed to predict future flight trajectories despite partial failures in the GPS data. It has
shown excellent prediction accuracy when tested with deficient data obtained from the
GPS. The impact of the number of neurons used in the Autoencoder’s hidden layers on
its performance was investigated. The number of neurons in the Latent layer determined
the threshold robustness for the Autoencoder when it is faced with deficient data. Relying
on the predicted trajectories using this fault-tolerant Autoencoder, a Consensus Protocol
was designed for Air Traffic Management and Control (ATMC). A Smart Contract based
on Ethereum blockchain was designed to perform the ATMC task. The Smart Contract
Consensus Protocol (SCCP), and a Sharding SCCP showed very good performance under
Sybil Attacks and Adversarial Attacks. The designed ATMC system composed of the
Autoencoder, and the Smart Contract Consensus Protocol showed very good robustness in
cases of data failures or attacks.
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Nomenclature

A Decoded GPS data
B Encoded GPS data
E Encoder transfer function
D Decoder transfer function
i Number of steps for future trajectory prediction
j Number of executed agreements
k Number of aircraft in a flight zone before sharding
l Number of aircraft in a flight zone after sharding
L Autoencoder loss function
m Number of districts that provide sub-flight zones after sharding
N Number associated with a block in the chain
Q Autoencoder quality function
Tn Time during which the aircraft is in step n



Aerospace 2023, 10, 357 11 of 13

References
1. Lygeros, J.; Tomlin, C.; Sastry, S. On controller synthesis for nonlinear hybrid systems. In Proceedings of the 37th IEEE Conference

on Decision and Control (Cat. No. 98CH36171), Tampa, FL, USA, 18 December 1998; IEEE: Piscataway, NJ, USA; Volume 2,
pp. 2101–2106.

2. Murrieta-Mendoza, A.; Demange, S.; George, F.; Botez, R. Performance DataBase creation using a level D simulator for Cessna
Citation X aircraft in cruise regime. In Proceedings of the IASTED Modeling, Identification and Control Conference, Innsbruck,
Austria, 16–17 February 2015; pp. 818–826.

3. Murrieta Mendoza, A.; Bunel, A.; Botez, R.M. Aircraft vertical reference trajectory optimization with a RTA constraint using the
ABC algorithm. In Proceedings of the 16th AIAA Aviation Technology, Integration, and Operations Conference, Washington, DC,
USA, 13–17 June 2016; p. 4208.

4. Murrieta-Mendoza, A.; Romain, C.; Botez, R.M. Commercial aircraft lateral flight reference trajectory optimization. IFAC-
PapersOnLine 2016, 49, 1–6. [CrossRef]

5. Petres, C.; Pailhas, Y.; Patron, P.; Petillot, Y.; Evans, J.; Lane, D. Path planning for autonomous underwater vehicles. IEEE Trans.
Robot. 2007, 23, 331–341. [CrossRef]

6. Geraerts, R. Planning short paths with clearance using explicit corridors. In Proceedings of the 2010 IEEE International Conference
on Robotics and Automation, Anchorage, AL, USA, 4–8 May 2021; IEEE: Piscataway, NJ, USA; pp. 1997–2004.

7. Yang, K.; Sukkarieh, S. 3D smooth path planning for a UAV in cluttered natural environments. In Proceedings of the 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; IEEE: Piscataway, NJ,
USA; pp. 794–800.

8. Nash, A.; Koenig, S.; Tovey, C. Lazy Theta*: Any-angle path planning and path length analysis in 3D. In Proceedings of the AAAI
Conference on Artificial Intelligence, Atlanta, GA, USA, 11–15 July 2010; Volume 24, pp. 147–154.

9. Wilburn, J.N.; Perhinschi, M.G.; Wilburn, B.K. Implementation of a 3-Dimensional Dubins-Based UAV Path Generation Algorithm.
In Proceedings of the AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, MA, USA, 19–22 August 2013; p. 5232.

10. Murrieta-Mendoza, A.; Botez, R.M. Methodology for vertical-navigation flight-trajectory cost calculation using a performance
database. J. Aerosp. Inf. Syst. 2015, 12, 519–532. [CrossRef]

11. Boughari, Y.; Botez, R.; Ghazi, G.; Theel, F. Evolutionary Algorithms for Robust Cessna Citation X Flight Control; No. 2014-01-2166;
SAE International: Warrendale, PA, USA, 2014.

12. Patron, R.F.; Kessaci, A.; Botez, R.M. Flight trajectories optimization under the influence of winds using genetic algorithms. In
Proceedings of the AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, MA, USA, 19–22 August 2013; p. 4620.

13. Hashemi, S.M.; Barati, S.; Talati, S.; Noori, H. A genetic algorithm approach to optimal placement of switching and protective
equipment on a distribution network. J. Eng. Appl. Sci. 2016, 11, 1395–1400.

14. Murrieta-Mendoza, A.; Ruiz, H.; Kessaci, S.; Botez, R.M. 3D reference trajectory optimization using particle swarm optimization.
In Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations Conference, Denver, CO, USA, 5–9 June 2017;
p. 3435.

15. Murrieta-Mendoza, A.; Hamy, A.; Botez, R.M. Four-and three-dimensional aircraft reference trajectory optimization inspired by
ant colony optimization. J. Aerosp. Inf. Syst. 2017, 14, 597–616. [CrossRef]

16. Hashemi, S.M.; Menhaj, M.B.; Amani, A.M. Reconfigurable Fault-Tolerant Control by Linear quadratic Virtual Actuator under
Control Signal Constraint. J. Eng. Appl. Sci. 2006, 11, 1998–2004.

17. Perhinschi, M.G.; Moncayo, H. Artificial immune system for comprehensive and integrated aircraft abnormal conditions
management. Adv. Comput. Intell. Auton. Aerosp. Syst. 2018, 147–218.

18. Patrón, R.F.; Kessaci, A.; Botez, R.M. Horizontal flight trajectories optimisation for commercial aircraft through a flight manage-
ment system. Aeronaut. J. 2014, 118, 1499–1518. [CrossRef]

19. Patrón RS, F.; Botez, R.M.; Labour, D. Vertical profile optimization for the Flight Management System CMA-9000 using the
golden section search method. In Proceedings of the IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society,
Montreal, QC, Canada, 25–28 October 2012; IEEE: Piscataway, NJ, USA; pp. 5482–5488.

20. Hashemi, S.M.; Botez, R.M.; Grigorie, L.T. Adaptive fuzzy control of chaotic flapping relied upon lyapunov-based tuning laws. In
Proceedings of the AIAA Aviation 2020 Forum, Virtual Event, 15–19 June 2020; p. 3193.

21. Hashemi, S.; Botez, R. Nonlinear adaptive fuzzy control of uncertain chaotic click mechanism flapping-wing. In CASI AERO 2019
(Laval, QC, Canada, 14–16 May 2019); Canadian Aeronautics and Space Institute: Ottawa, ON, USA, 2019.

22. Boughari, Y.; Ghazi, G.; Botez, R.M.; Theel, F. New Methodology for Optimal Flight Control Using Differential Evolution
Algorithms Applied on the Cessna Citation X Business Aircraft—Part 1. Design and Optimization. INCAS Bull. 2017, 9, 31.

23. Boughari, Y.; Botez, R.M.; Ghazi, G.; Theel, F. Flight control clearance of the Cessna Citation X using evolutionary algorithms.
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2017, 231, 510–532. [CrossRef]

24. Ghazi, G.; Botez, R.M.; Bourrely, C.; Turculet, A.-A. Method for calculating aircraft flight trajectories in presence of winds. J. Aerosp.
Inf. Syst. 2021, 18, 442–463. [CrossRef]

25. Hashemi, S.; Abyari, M.; Barati, S.; Tahmasebi, S.; Talati, S. A proposed method to controller parameter soft tuning as accommo-
dation FTC after unknown input observer FDI. J. Eng. Appl. Sci. 2016, 11, 2818–2829.

26. Coulter, N.; Moncayo, H. An Online Machine Learning Paradigm for Spacecraft Fault Detection. In Proceedings of the AIAA
Scitech 2021 Forum, Virtual Event, 11–15 & 19–21 January 2021; p. 1339.

http://doi.org/10.1016/j.ifacol.2016.09.001
http://doi.org/10.1109/TRO.2007.895057
http://doi.org/10.2514/1.I010347
http://doi.org/10.2514/1.I010540
http://doi.org/10.1017/S0001924000010162
http://doi.org/10.1177/0954410016640821
http://doi.org/10.2514/1.I010879


Aerospace 2023, 10, 357 12 of 13

27. Degas, A.; Islam, M.R.; Hurter, C.; Barua, S.; Rahman, H.; Poudel, M.; Ruscio, D.; Ahmed, M.U.; Begum, S.; Rahman, M.A. A
Survey on Artificial Intelligence (AI) and eXplainable AI in Air Traffic Management: Current Trends and Development with
Future Research Trajectory. Appl. Sci. 2022, 12, 1295. [CrossRef]

28. Perez, A.E.; Moncayo, H.; Moguel, I.; Perhinschi, M.G.; Al Azzawi, D.; Togayev, A. Development of Immunity Based Adaptive
Control Laws for Aircraft Fault Tolerance. In Proceedings of the Dynamic Systems and Control Conference, 2014; American Society of
Mechanical Engineers: New York, NY, USA, 2014; Volume 46186, p. V001T03A001.

29. van Iersel, Q.G.; Murrieta Mendoza, A.; Felix Patron, R.S.; Hashemi, S.M.; Botez, R.M. Attack and Defense on Aircraft Trajectory
Prediction Algorithms. In Proceedings of the AIAA AVIATION 2022 Forum, Chicago, IL, USA, 27 June–1 July 2022; p. 4027.

30. Ghazi, G.; Botez, R.M.; Domanti, S. New methodology for aircraft performance model identification for flight management
system applications. J. Aerosp. Inf. Syst. 2020, 17, 294–310. [CrossRef]

31. Ghazi, G.; Gerardin, B.; Gelhaye, M.; Botez, R.M. New adaptive algorithm development for monitoring aircraft performance and
improving flight management system predictions. J. Aerosp. Inf. Syst. 2020, 17, 97–112. [CrossRef]

32. Ghazi, G.; Botez, R.M.; Maniette, N. Cessna Citation X takeoff and departure trajectories prediction in presence of winds. J. Aerosp.
Inf. Syst. 2020, 17, 659–681. [CrossRef]

33. Delahaye, D.; Puechmorel, S.; Tsiotras, P.; Féron, E. Mathematical models for aircraft trajectory design: A survey. In Air Traffic
Management and Systems; Springer: Berlin/Heidelberg, Germany, 2014; pp. 205–247.

34. Dancila, R.; Botez, R. New flight trajectory optimisation method using genetic algorithms. Aeronaut. J. 2021, 125, 618–671.
[CrossRef]

35. Patrón RS, F.; Botez, R.M. Flight trajectory optimization through genetic algorithms for lateral and vertical integrated navigation.
J. Aerosp. Inf. Syst. 2015, 12, 533–544. [CrossRef]

36. Hashemi, S.M.; Botez, R.M.; Grigorie, T.L. New reliability studies of data-driven aircraft trajectory prediction. Aerospace 2020,
7, 145. [CrossRef]

37. Neumeier, M.; Betsch, M.; Tollkühn, A.; Berberich, T. Variational autoencoder-based vehicle trajectory prediction with an
interpretable latent space. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); IEEE:
Piscataway, NJ, USA, 2021; pp. 820–827.

38. Murray, B.; Perera, L.P. A dual linear autoencoder approach for vessel trajectory prediction using historical AIS data. Ocean. Eng.
2020, 209, 107478. [CrossRef]

39. Zeng, W.; Xu, Z.; Cai, Z.; Chu, X.; Lu, X. Aircraft trajectory clustering in terminal airspace based on deep autoencoder and
gaussian mixture model. Aerospace 2021, 8, 266. [CrossRef]

40. Ivanovic, B.; Leung, K.; Schmerling, E.; Pavone, M. Multimodal deep generative models for trajectory prediction: A conditional
variational autoencoder approach. IEEE Robot. Autom. Lett. 2020, 6, 295–302. [CrossRef]

41. Nasreen, M.; Ganesh, A.; Sunitha, C. A study on Byzantine fault tolerance methods in distributed networks. Procedia Comput. Sci.
2016, 87, 50–54. [CrossRef]

42. Burke, E.K.; Burke, E.K.; Kendall, G.; Kendall, G. Search Methodologies: Introductory Tutorials in Optimization and Decision Support
Techniques; Springer: Berlin/Heidelberg, Germany, 2014.

43. Liu, M. Robotic online path planning on point cloud. IEEE Trans. Cybern. 2015, 46, 1217–1228. [CrossRef]
44. Maurer, A.; Tixeuil, S. Containing byzantine failures with control zones. IEEE Trans. Parallel Distrib. Syst. 2014, 26, 362–370.

[CrossRef]
45. Zegers, F.M.; Hale, M.T.; Shea, J.M.; Dixon, W.E. Event-triggered formation control and leader tracking with resilience to byzantine

adversaries: A reputation-based approach. IEEE Trans. Control Netw. Syst. 2021, 8, 1417–1429. [CrossRef]
46. Mokhtar, A.; Murphy, N.; Bruton, J. Blockchain-based multi-robot path planning. In Proceedings of the 2019 IEEE 5th World Forum

on Internet of Things (WF-IoT); IEEE: Piscataway, NJ, USA, 2019; pp. 584–589.
47. Cheng, Z.; Zhao, L.; Shi, Z. Decentralized Multi-UAV Path Planning Based on Two-Layer Coordinative Framework for Formation

Rendezvous. IEEE Access 2022, 10, 45695–45708. [CrossRef]
48. Buterin, V. A next-generation smart contract and decentralized application platform. White Pap. 2014, 3, 36.
49. Castelló Ferrer, E. The blockchain: A new framework for robotic swarm systems. In Proceedings of the Future Technologies Conference;

Springer: Berlin/Heidelberg, Germany, 2018; pp. 1037–1058.
50. De Campos MG, S.; Chanel, C.P.; Chauffaut, C.; Lacan, J. Towards a Blockchain-Based Multi-UAV Surveillance System. Front.

Robot. AI 2021, 8, 557692. [CrossRef]
51. Nguyen, N.; Quanz, B. Temporal latent auto-encoder: A method for probabilistic multivariate time series forecasting. In

Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 9117–9125.
52. Michelucci, U. An introduction to autoencoders. arXiv 2022, arXiv:2201.03898.
53. Andersson, O.; Ljungqvist, O.; Tiger, M.; Axehill, D.; Heintz, F. Receding-horizon lattice-based motion planning with dynamic

obstacle avoidance. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC); IEEE: Piscataway, NJ, USA, 2018;
pp. 4467–4474.

54. Alladi, T.; Chamola, V.; Sahu, N.; Guizani, M. Applications of blockchain in unmanned aerial vehicles: A review. Veh. Commun.
2020, 23, 100249. [CrossRef]

55. Alharby, M.; Van Moorsel, A. Blockchain-based smart contracts: A systematic mapping study. arXiv 2017, arXiv:1710.06372.

http://doi.org/10.3390/app12031295
http://doi.org/10.2514/1.I010791
http://doi.org/10.2514/1.I010748
http://doi.org/10.2514/1.I010854
http://doi.org/10.1017/aer.2020.138
http://doi.org/10.2514/1.I010348
http://doi.org/10.3390/aerospace7100145
http://doi.org/10.1016/j.oceaneng.2020.107478
http://doi.org/10.3390/aerospace8090266
http://doi.org/10.1109/LRA.2020.3043163
http://doi.org/10.1016/j.procs.2016.05.125
http://doi.org/10.1109/TCYB.2015.2430526
http://doi.org/10.1109/TPDS.2014.2308190
http://doi.org/10.1109/TCNS.2021.3068348
http://doi.org/10.1109/ACCESS.2022.3170583
http://doi.org/10.3389/frobt.2021.557692
http://doi.org/10.1016/j.vehcom.2020.100249


Aerospace 2023, 10, 357 13 of 13

56. Hashemi, S.M.; Botez, R.M. Support Vector Regression Application for the Flight Dynamics New Modelling of the UAS-S4. In
Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 2576.

57. Kuitche, M.; Yañez-Badillo, H.; Botez, R.; Hashemi, S. Stabilisation, tracking and disturbance rejection control design for the
UAS-S45 Bálaam. Aeronaut. J. 2022, 126, 1474–1496. [CrossRef]

58. Hashemi, S.; Botez, R. Lyapunov-based robust adaptive configuration of the UAS-S4 flight dynamics fuzzy controller. Aeronaut. J.
2022, 126, 1187–1209. [CrossRef]

59. Hashemi, S.; Hashemi, S.A.; Botez, R.M.; Ghazi, G. A Novel Air Traffic Management and Control Methodology using Fault-
Tolerant Autoencoder and FP2P Blockchain Application on the UAS-S4 Ehécatl. In Proceedings of the AIAA SCITECH 2023
Forum, National Harbor, MD, USA, 23–27 January 2023; p. 2190.

60. Hashemi, S.; Hashemi, S.A.; Botez, R.M.; Ghazi, G. Attack-tolerant Trajectory Prediction using Generative Adversarial Network
Secured by Blockchain Application to the UAS-S4 Ehécatl. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor,
MD, USA, 23–27 January 2023; p. 2192.

61. Hashemi, S.M.; Botez, R.M. A Novel Flight Dynamics Modeling Using Robust Support Vector Regression against Adversarial
Attacks. SAE Int. J. Aerosp. 2023, 16, 19.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1017/aer.2022.22
http://doi.org/10.1017/aer.2022.2

	Introduction 
	Problem Statement 
	Methodologies 
	Trajectory Prediction 
	Airspace Allocation 

	Results and Discussion 
	Conclusions 
	References

