
EUROGRAPHICS 2023 / K. Myszkowski and M. Nießner
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 2

Face Editing Using Part-Based Optimization of the Latent Space

Mohammad Amin Aliari1, Andre Beauchamp3, Tiberiu Popa2 and Eric Paquette1

1Ecole de technologie supérieure, Montreal, Canada
2Concordia University, Montreal, Canada

3Ubisoft La Forge, Montreal, Canada

Editing

Training

zf

Segmented Face
Reconstructed Face

Neural Face
Editing

Edited Face

.

.

.

Initial Face

¶zf

Decoder

Encoder

Encoder

Figure 1: Our 3D face model. Training: We feed each segment of the face to its part encoder. Then, we merge and pass the encoded
representation to a decoder that reconstructs the face. Editing: Our approach modifies the latent vector of the face based on user constraints.

Abstract
We propose an approach for interactive 3D face editing based on deep generative models. Most of the current face modeling
methods rely on linear methods and cannot express complex and non-linear deformations. In contrast to 3D morphable face
models based on Principal Component Analysis (PCA), we introduce a novel architecture based on variational autoencoders.
Our architecture has multiple encoders (one for each part of the face, such as the nose and mouth) which feed a single decoder.
As a result, each sub-vector of the latent vector represents one part. We train our model with a novel loss function that further
disentangles the space based on different parts of the face. The output of the network is a whole 3D face. Hence, unlike part-
based PCA methods, our model learns to merge the parts intrinsically and does not require an additional merging process. To
achieve interactive face modeling, we optimize for the latent variables given vertex positional constraints provided by a user. To
avoid unwanted global changes elsewhere on the face, we only optimize the subset of the latent vector that corresponds to the
part of the face being modified. Our editing optimization converges in less than a second. Our results show that the proposed
approach supports a broader range of editing constraints and generates more realistic 3D faces.

CCS Concepts
• Computing methodologies → Mesh models; Neural networks;

1. Introduction

Face modeling and editing have been very active topics in computer
vision and graphics. It has a wide range of applications in multiple
contexts, such as video games, film, visual effects, and the meta-
verse. In the context of the metaverse and video game production,
especially in open-world games, artists need to generate and edit
new 3D meshed faces at a large scale, and this with a simple and
intuitive interface.

Current commercial tools (e.g., ZBrush® [Max]) for manual 3D
face modeling and editing require a lot of expertise to achieve the
desired output. Our work focuses on developing an approach for
generating new faces at a large scale while providing an intuitive
editing capacity for the artists. This will have a considerable impact
on the time spent by artists on the task.

Over the past 20 years, linear generative models [BV99] have
been the dominant technology for face generation because of their

© 2023 Ubisoft Divertissements and The Authors. Computer Graphics Forum published by Euro-
graphics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-
NoDerivs License, which permits use and distribution in any medium, provided the original work is
properly cited, the use is non-commercial and no modifications or adaptations are made.

DOI: 10.1111/cgf.14760

https://doi.org/10.1111/cgf.14760
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcgf.14760&domain=pdf&date_stamp=2023-05-23

M. Aliari, A. Beauchamp, T. Popa & E. Paquette / Face Editing Using Part-Based Optimization of the Latent Space

simplicity and efficiency. With such generative models, a new face
is generated by a linear combination of an orthogonal basis. This
basis is obtained by applying a statistical analysis (Principal Com-
ponent Analysis – PCA) on a set of face scans. PCA-based linear
models suffer from multiple drawbacks. Their control mechanism
is not intuitive. Also, the generated faces are generally bound by
the statistical prior space; If the parameters are varied a little, the
generated faces are believable but rather similar to the ones in the
dataset, and if the parameters are varied a lot, we get novel faces,
but they are not necessarily realistic. In other words, these methods
tend not to generalize very well. Furthermore, local face editing
is not possible with most PCA-based methods because the orthog-
onal basis does not provide a semantically meaningful separation
of different parts of the face. More recently, non-linear generative
models [RBSB18] based on Deep Neural Networks (DNN) have
emerged and achieved a better generalization capacity than PCA-
based methods. However, it is challenging to balance the realism of
the face with the requirement of allowing the generation of a large
variety of faces. Moreover, providing an intuitive user interface for
local face editing remains a big challenge.

In this work, we propose a novel approach for face modeling
that enables users to generate a wide variety of realistic faces using
a simple and intuitive user interface. We frame the problem as an
optimization problem over the latent space of a graph-based vari-
ational autoencoder (VAE) [KW14] that incorporates both a set of
part-based encoders as well as a global face decoder. This combi-
nation is key to allowing a large variety of faces as well as main-
taining local user control. The part-based encoders allow for more
flexibility in the generated result as well as local user control, while
the global decoder ensures the realism of the result. This formula-
tion also allows the user to perform direct vertex manipulation as
an editing paradigm. Furthermore, our method runs at interactive
rates, taking under one second to generate a new face after user
interaction. Our novel contributions are summarized as:

• A graph convolutional VAE architecture with a contrastive loss
function designed to disentangle the latent space into local parts;

• An approach to editing the face through an optimization of the
latent variables enforcing the locality of the edit.

Compared to state-of-the-art methods, our approach has an im-
proved generalization in contrast to PCA-based methods and a bet-
ter locality of the editing compared to DNN methods.

2. Related Work

Classical 3D morphable face model (3DMM) methods as well as
many recent ones [CWZ∗14,BRZ∗16,LBB∗17,BRP∗18,PWP∗19,
PVO∗20, GRF∗20, EST∗20] use PCA to sample the distribution of
the face models. The popularity of PCA-based methods is due to
their simplicity and efficiency. User control is achieved by opti-
mizing for the eigenvector weights given vertex-based constraints,
typically resulting in a linear system of equations. In many cases
this is done globally on the entire face face [CWZ∗14, BRZ∗16,
LBB∗17, BRP∗18] resulting in a lack of local control. Local con-
trol is less important when the application is global face recon-
struction, but it is a critical limitation when the application is face
editing. To address this limitation, Ghafourzadeh et al. [GRF∗20]

propose a method that further decomposes the face into seman-
tic parts allowing independent generation for each part followed
by an ARAP-inspired reassembling of the parts into one coher-
ent face mesh. Vertex-based editing was added to this part-based
method [GFR∗21]. Similarly to our approach, the user edits the
face by moving mesh vertices. Alas, linear models such as PCA
tend to perform poorly in the presence of large complex changes,
and blending together local parts may result in uncanny effects.

More recent neural methods leverage the generative power
of deep learning by replacing the PCA with either autoen-
coders [TGLX18, BWS∗18, BBP∗19] or Generative Adversarial
Networks (GAN) [BBP∗19,CBZ∗19]. Abrevaya et al. [FA20] uses
a fully connected network along with UV representation of the
vertex positions. Image representation of the geometry is partic-
ularly useful as many state-of-the-art convolutional neural network
(CNN) models can be used with this type of data. However, recon-
structing the final mesh from a UV mesh has its own problems.
There are areas around the lips or the eyes where there is no data.
As a result, those vertices would collapse to (0, 0, 0) coordinates.
That is why Abrevaya et al. [FA20] use the flattened representation
as input of the GAN model while training the discriminator with
the geometry map. Li et al. [LBZ∗20] also use a UV representation
and a hybrid method to address reconstruction issues. They use a
combined linear and non-linear method. The face area, where there
are reliable pixel values, is sampled directly, while the rest of the
geometry is morphed using linear 3DMM deformation modes.

Vesdapunt et al. [VRWW20] uses modeling bones to represent
the face. This representation benefits from the lower count of pa-
rameters due to the compactness of bone data. The JNR model
learns the skinning weights to reconstruct the 3D faces. The pre-
dicted modeling bones can be used for face modeling. However,
this approach needs a base model with modeling bones and ini-
tial hand-painted skinning. Also, the bones are directly transformed
to deform the face, and neither higher-level control nor non-linear
transformations exist.

Ranjan et al. [RBSB18] use graph convolution to build their
CoMA model. A novel mesh sampling operation is also used to
capture details of the face at different levels. It also helps re-
duce the convolution input dimension so the model can converge
more easily. As a result, CoMA and other works inspired by
CoMA [TGLX18, LLLY19, YLL∗19] can outperform linear mod-
els in face reconstruction tasks. Bagautdinov et al. [BWS∗18] use
a variational autoencoder (VAE) architecture to model faces, but
there are several fundamental differences, both conceptual and
technical, between their work and ours. Their goal is high-fidelity
3D face reconstruction from images and video. As such, their VAE
design matches this goal by globally reconstructing the faces using
several latent spaces corresponding to a range from coarse to dense
levels of detail. In contrast, our goal is novel face synthesis through
local editing, and, as such, we employ an architecture where we
segment the face and use part-based encoders and a global decoder.

While the methods presented so far use triangular meshes as a
surface representation, alternative representations like voxel based
exist but are primarily suitable for lower-level detail or a specific
category of 3D meshes. For instance, Guan et al. [GJvK20] use
voxelization to reconstruct and generate 3D desk and chair shapes.

© 2023 Ubisoft Divertissements and The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

270

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14760 by E

cole D
e T

echnologie Superieur, W
iley O

nline L
ibrary on [13/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

M. Aliari, A. Beauchamp, T. Popa & E. Paquette / Face Editing Using Part-Based Optimization of the Latent Space

Most of the work in DNN for faces has been about encoding
the identity and expression of the face rather than enabling edit-
ing operators. Tan et al. [TGLX18] use a set of expression labels
with a conditional-VAE to achieve control. However, describing
face modeling with labels is not feasible as we would need a much
lower level of control over the face. Yang et al. [YZW∗20] propose
a method that can reconstruct a rigged model from a single photo-
graph, while Wang et al. [WCY∗22] and Bao et al. [BLC∗21] pro-
pose methods that can reconstruct a face model from RGB-D data.
Very recently, Jung et al. [JJK∗22] proposed a DNN model to gen-
erate 3D caricatures. While this model works remarkably well for
caricatures, it exhibits a global deformation behavior during editing
that makes it difficult to control.

We propose an approach that outperforms PCA-based 3DMM
methods in terms of generalization from the faces in the dataset.
Furthermore, our approach outperforms DNN methods in terms of
application to face editing, in particular providing a local editing
paradigm.

3. Method

We present a DNN architecture to learn a compact latent space rep-
resentation for 3D meshes of faces. The two main design objectives
of our new architecture are to be able to disentangle different parts
of the face and to allow local editing of the face mesh. For this, our
key idea is to decompose the faces into different semantic parts and
employ an autoencoder architecture where we feed each part to a
separate encoder that produces a semantic latent vector for that part
of the face. A single decoder is then used to aggregate all the latent
vectors and produce the final mesh. The main intuition of having a
separate embedding for each part of the face is to enforce local face
editing by design. The use of a single decoder, that has access to all
the embedding vectors, produces a realistic and consistent mesh.
Our novel loss function enforces the disentanglement of the latent
variables so that each has an influence on a localized region of the
face. After training on a dataset of faces, we get a tailored latent
space that enables multiple applications. It can be used to easily
generate random faces with meaningful variations of facial charac-
teristics, enabling character designers to generate a large set of fa-
cial assets. We also demonstrate that the latent space is very power-
ful in enabling the editing of the face through an optimization of the
latent variables from user constraints in terms of dragging and drop-
ping vertices. This provides a very intuitive interaction paradigm,
and our latent space optimization outputs meaningful deformations
of the face. This section introduces the face generator network, its
training procedure, and our neural face editing approach (Figure 1).

3.1. 3D Face Generator

The first role of the generator is to learn a latent representation of
the face that leverages the generalization capacity of the generative
model to create new faces. For this goal, we introduce a network
that encodes the face into a low-dimensional data representation.
The second role of the generator is to learn a disentangled latent
space where each group of latent variables is related to one specific
part of the face. This encourages local and independent changes
when the latent vector is modified.

Input and Output Data. The input of our network is a 3D face
model represented as a 3D mesh. As we primarily use graph con-
volution operators, we represent the input as the canonical graph in-
duced by the 3D mesh. For this reason, all of the faces in the dataset
follow graph representation: F = (V,A) with matrix V ∈ Rn×3,
n vertices , and an adjacency matrix A ∈ Rn×n showing the edge
connections. Similarly to other methods [BV99,RBSB18,LLLY19,
FA20,GRF∗20], we require that all faces be wrapped with one base
head; they share an identical mesh topology (same triangles and
vertex connectivity). In addition, each face is segmented into seven
different parts: forehead, eyes, ears, nose, cheeks, mouth, and chin.
Each part Pi has ni vertices Vi ∈ Rni×3. The segmentation is user-
provided and shared by all faces. The output is the generated face
with the same mesh topology and dimensions as the input face.

GConv 16

BN

ELU

Down /2

GConv 32

BN

ELU

Down /2

μ σ

GConv 16

BN

ELU

Down /2

GConv 32

BN

ELU

Down /2

μ σ

GConv 16

BN

ELU

Down /2

GConv 32

BN

ELU

Down /2

μ σ

GConv 16

BN

ELU

Down /2

GConv 32

BN

ELU

Down /2

μ σ

Up x2

GConv 32

BN

ELU

Up x2

GConv 16

BN

ELU

FC

GConv 3

Output, 4115x3

Forehead
680x3

Eyes
1059x3

Mouth
847x3

Chin
289x3

z1 z2 z3 z4 z5 z6z0

…

Up: Up sampling
Down: Down sampling
BN: Batch normaliza�on
FC: Fully connected layer
GConv: Graph convolu�on

Figure 2: 3D Face Generator: Network architecture

Network Architecture. We choose variational autoen-
coders [KW14] as our generative model. As in the work of Ranjan
et al. [RBSB18], we use fast spectral convolutions [DBV16] along
with their mesh sampling operation. The mentioned graph con-
volution uses kernel gθ, which is parameterized with Chebyshev
polynomials

gθ(L) =
K−1

∑
k=0

θkTk(L̃), (1)

© 2023 Ubisoft Divertissements and The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

271

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14760 by E

cole D
e T

echnologie Superieur, W
iley O

nline L
ibrary on [13/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

M. Aliari, A. Beauchamp, T. Popa & E. Paquette / Face Editing Using Part-Based Optimization of the Latent Space

where K is the order of the polynomial, L̃ is the scaled Laplacian,
θ ∈RK is Chebyshev coefficients, and Tk ∈Rn×n is the Chebyshev
polynomial order k that can be obtained recursively. The definition
of spectral convolution then becomes:

y j =
Fin

∑
i=0

gθi, j (L)xi ∈ Rn, (2)

where x ∈ Rn×Fin is the input, Fin = 3 is the number of input fea-
ture assuming it represents 3D vertex positions, and y j is each of
y ∈ Rn×Fout features. For more detail, we can refer to the spec-
tral convolution papers [DBV16,RBSB18]. To achieve latent space
disentanglement, we design an asymmetric model where each face
part is fed to a separate encoder called part encoder. Specifically,
each encoder uses two Chebyshev convolutional filters with K = 6
polynomials and dimensions of 16 and 32, respectively. Then, we
apply the ELU activation function [CUH16] to each filter output.
Furthermore, we place a down-sampling layer of factor two be-
tween each filter. Next, similar to traditional VAEs, we use two
fully connected layers in parallel to transform the output to two 8-
dimensional vectors µµµi, and σσσi, which are the mean and standard
deviation of the part Pi. The details of each part encoder are shown
in Figure 2. The initial vertex count of each part affects the dimen-
sions of the following layers, and this is the difference between
each part encoder. Finally, we sample the latent vector zi ∈R8 from
N (µµµi,σσσ

2
i). As for the last step to encode the face, we concatenate

all the latent vectors into the final latent vector z f ∈ R56. We feed
z f to our decoder block to reconstruct the face. This block is built
with a similar set of components. It starts with a fully connected
layer that maps z f to the appropriate dimension for the convolu-
tional filters. We use three filters of dimensions 32, 16, and 3. Also,
we use ELU and up-sampling layers of factor two between the fil-
ters. The decoder output D(z f) ∈ Rn×3 is the final face with the
same dimension as the number of vertices in the initial face. Con-
sequently, it will learn to merge the parts into a whole face. The
decoder architecture is also shown in Figure 2.

Loss Function. Our loss function is composed of three terms: a re-
construction loss, a KullbackLeibler (KL) divergence loss [KW14],
and a contrastive loss:

l = lRec +wkld lKL +wconlC. (3)

We use an L1 distance between the vertex positions of the ground-
truth and decoded meshes.

lRec =
∥∥F −D(z f)

∥∥
1 (4)

The KL loss enforces a normal-like distribution for the latent vector
Q(zi|F). The KL loss weight wkld is 1e-3, and the number of face
parts is Np = 7.

lKL =
Np

∑
i=0

KL (N (0,1)∥Q(zi|F)) (5)

Inspired by the work of Deng et al. [DYC∗20] in disentangling the
latent space for human-face image generation, our third term to
reinforces latent space disentanglement and ensures that each part
of the latent vector only affects the assigned part of the face:

lC =
Np

∑
i=0

∥∥(F ′
i −F

)
⊙δ /∈Pi

∥∥
1 . (6)

For one part Pi, we start with latent vector z f and replace the part
zi with a randomly sampled z′i , while leaving the rest of z f as be-
fore. We randomly sample with a uniform distribution U(−10,10)
to ensure we “push and pull” z f far enough to ensure that even large
deformations of the face remain local. The result is a new final la-
tent vector z f

′ that only differs in zi. We calculate the L1 distance
between the vertex positions of the new face F ′

i generated by de-
coding z f

′ and the vertex positions of the face F decoded from
the original z f . However, we ignore the current part vertices Vi to
only penalize changes outside of part Pi by multiplying (Hadamard
product) with δ /∈Pi

defined that entries matching the part are zero
and others are one. We sum up this L1 distance for each of the Np
parts.

3.2. Training Procedure

We train the model for 70 epochs using the Adam optimizer [KB15]
and a batch size of 16. Like CoMA [RBSB18], we set the learn-
ing rate to 8e-4 and decay that rate by 0.99 every epoch. As men-
tioned before, we set wkld to 1e-3. In addition, we set the wcon to
1e-4 at the beginning and gradually increase it by 1.1 every epoch.
This helps the training process in the early stages by enabling the
optimizer to converge to a good point in terms of reconstruction
quality (Equation 4), plus having a more normal-like distribution
(Equation 5). After that, we apply more weight to the lC loss to for-
tify the latent space disentanglement (Equation 6). We tested with
other numbers of epochs (up to 100), and 70 provided a good com-
promise between generalization and overfitting. We describe the
details of our datasets in Section 4.1.

3.3. Neural Face Editing and Generation

We can now use the trained face generator to create new faces. The
user may directly manipulate each latent variable and observe the
changes in the output of the network. However, operating directly
on the latent space is often unintuitive as there is no clear semantic
meaning behind each latent variable. For a more intuitive editing,
we propose a flexible workflow where the user controls vertex po-
sitions, and latent variables are automatically adjusted by our ap-
proach to reach the desired vertex movement (Figure 3).

Our main goal is to ensure the locality of the edits. As such, at
any given time, the user either manipulates one vertex (e.g., the tip
of the nose) or a pair of symmetric vertices (e.g., corners of the
mouth). At every stage, we aim to fulfill the 3D deformation pre-
scribed by the user, maintain the locality of the edit, and preserve
past edits. We formalize this as an optimization problem and use
the Adam optimizer [KB15] to find the best latent values. Given
our editing workflow, the user controls one part at a time, which
keeps the deformations local and helps the optimizer work on a
smaller subspace and converge in a limited number of runs. After
each modification, we start from the current face latent represen-
tation and gradually optimize that latent vector to achieve the next
edit. To do this, we define the editing loss:

lE =
Nv

∑
i=0

∥∥v′i − ci
∥∥

2 +wreg
∥∥(F −D(z f

′)
)
⊙δ /∈Vs

∥∥
1 . (7)

© 2023 Ubisoft Divertissements and The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

272

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14760 by E

cole D
e T

echnologie Superieur, W
iley O

nline L
ibrary on [13/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

M. Aliari, A. Beauchamp, T. Popa & E. Paquette / Face Editing Using Part-Based Optimization of the Latent Space

z0

z1

z2

z3

z4

z5

z6

z0

z1

z2

z3

z4

z5

z6Initial Face

Decoder

Edited Face

Adam
Optimizer

zf

¶

¶zf

Figure 3: Neural face editing workflow example. The user input can be the movement of the selected vertices. For example, moving the
green spheres in the direction of green arrows. Then to apply the change, we start from the initial face representation z f , and optimize for
lE . The updated latent vector z f

′ is only different in the part latent sub-vector z2. As shown above, the edited face is the decoded result of the
optimizer after a number of iterations. It has a wider nose since the user has moved the desired nose vertices apart.

The first term is the average Euclidean distance between the
edited vertices v′i and the constraints ci set by the user. Nv corre-
sponds to the number of vertices Vs selected for editing (either 1
or 2 in our workflow). The second term is regularization. We use
this term to avoid deviating too much from the current face. We
measure the average per-vertex L1 distance between the two faces,
excluding the selected vertices by defining δ /∈Vs

such that entries
corresponding Vs are zero and others are one. In addition, wreg is
used to adjust the regularization term effect (we use wreg = 3). To
further fulfill local face editing, we only update the required part of
the latent vector by identifying which segment of the face is being
modified and will not include the rest of the vector as parameters of
the optimizer. For example, if the selected vertices belong to part
Pi, only the related part of the latent zi is modified. Therefore, the
rest of the latent vector would remain the same.

Considering that we aim to integrate our solution into an inter-
active application, we want to run the optimizer only for a limited
number of iterations. We use the Adam optimizer [KB15] to find
a solution quickly. Figure 4 shows the decrease of the loss through
500 iterations. We see that with learning rates of 1e-2 and 1e-3
(taking small steps), the learning is predictable yet very slow. The
learning rate of 1e-1 (taking larger steps) still makes reasonably sta-
ble progression and has the advantage of converging much faster,
which is important in our interactive editing context. We can see
that the optimizer makes significant progress toward the solution in
the first tens of iterations and reaches a plateau around the 100th
step, where the per iteration progress becomes negligible. Given
our current target hardware (RTX3070), we choose to run the opti-
mizer for 50 iterations with a learning rate of 1e-1. As a result, the
process takes about 500 ms and is within the interactive range.

Random Face Generation. The trained network can be used as a
3D face generator by sampling from the learned latent space of the
VAE. Our model consistently outputs plausible faces where the la-
tent space is sampled from a normal distribution N (0,1). This is in
contrast to methods like the one of Ghafourzadeh et al. [GFR∗21]
that might generate unacceptable faces and need an additional ver-
ification step to decline them.

Figure 4: Graph of the lE loss history (Equation 7), with different
learning rates of the optimizer [KB15] for vertex-based editing.

4. Results and Experiments

In this section, we first cover the details of our datasets. Then, we
present our editing and random face generation results. Afterward,
we compare our approach with three state-of-the-art methods show-
casing how our approach is better suited for local face modeling.

4.1. Datasets

We evaluate our approach on two different datasets. The first
dataset is composed of 892 scanned faces that share the same mesh
topology. This is our primary dataset used to show the results in
this paper (except Figure 8, which uses our second dataset, and one
clip in the accompanying video). We segment all the faces into the
parts shown in Figure 1. Similar to the work of Ghafourzadeh et
al. [GRF∗20], the segmentation is an offline process done manually
and based on artists’ feedback. We use FaceWarehouse [CWZ∗14]
as our second dataset composed of 150 heads that also have the
same mesh topology. The purpose of using this dataset is to evalu-
ate the generalization capacity of our approach when trained on a
relatively small dataset. Moreover, training independently on each
of these two datasets demonstrated that our approach is not depen-
dent on a specific one. In addition, we train the CoMA [RBSB18]
model with the FaceWarehouse dataset to compare it with ours. We
use 80% of a dataset for the training set and the rest for validation.

© 2023 Ubisoft Divertissements and The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

273

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14760 by E

cole D
e T

echnologie Superieur, W
iley O

nline L
ibrary on [13/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

M. Aliari, A. Beauchamp, T. Popa & E. Paquette / Face Editing Using Part-Based Optimization of the Latent Space

(-) Initial 1 (+)
C

h
in

 N

os
e

W
id

th

E
ye

s

 J
aw

(-) Initial 2 (+)

C
h

in
 (

si
d

e)

N
os

e
L

en
gt

h

 F
or

eh
ea

d

 E
ar

s

(b) Randomly Generated(a)

Figure 5: (a) Vertex editing: Results of various face operations. For example, for the top left, we moved the two green vertices on the sides
of the jaw outward to increase its width and inward for the opposite effect. (b) Examples of using our method to generate faces randomly.

4.2. Results

In Figure 5 (a), we show some examples of vertex editing (Sec-
tion 3.3). We modify two different initial faces (initial 1 and 2)
with different operations. It can be the movement of one vertex or
two vertices. In the case of two control vertices, the user selects
one vertex , and our system automatically selects the symmetric
one. Similarly, the user moves one vertex, and our system moves
the second one in a symmetric manner. In each example, we mod-
ify one part of the face and, thus, one part of the latent vector. We
see that the resulting deformations on the face are local. Moreover,
we observe that even when moving only one or two vertices, we
can effectively edit the face and benefit from our editing-friendly
latent space and workflow. In addition, we have included a number
of clips in the supplementary materials. In the videos, we edit an
initial face with a latent vector of zero. We see that the deformation
from each vertex movement remains effective, realistic, and pre-
dictable throughout the sequence of consecutive edits on the same
face. In the editing clips, we outline a few vertices with red spheres.
This is done to make it easier for the user to select and track the
position of vertices. The user can still select and move any of the
other vertices. Additionally, in Figure 5 (b), we demonstrate some
of faces that are the randomly generated from N (0,1) using our 3D
face generator (Section 3.1). We can observe the broad range of fa-
cial characteristics that our generator can achieve and mix together.

4.3. Ablation Studies

We perform two ablation studies. First, we cumulatively remove
key parts one after the other, and second, we remove them one by
one. These are two complementary analysis, and each helps us gain
better insight into different elements of our approach. We evaluate

the locality of the edits in each step with the following two quan-
titative measures: (i) The average vertex displacement inside the
edited part δin. (ii) The average vertex displacement outside of the
mentioned part δout (vertices located in other parts of the face). δin
shows how much the part has changed locally, and δout is essen-
tial for determining if the changes did not cause unwanted changes
in other areas. In Table 1, we measure the average local vertex dis-
placement (inside the part, δin) compared to the average global ver-
tex displacement (outside the edited part, δout) which we want to
minimize to maintain the locality of the edit.

Cumulative. Figure 6 shows the effect of different elements of our
approach: the regularization term (Equation 7), the local latent op-
timization, and the contrastive loss (Equation 6). In (a), we see our
current approach, where all of the elements are present. In (b), we
remove the regularization term from the optimizer. This change in-
creases the unwanted global deformations (see the mouth and δout
in Table 1 which increases from from 0.18 mm to 0.34 mm). In
(c), on top of removing the regularization term, we also update the
whole latent vector (global latent optimization) instead of only up-
dating the part’s sub-vector (local latent optimization). By compar-
ing (b) and (c), we see how effectively our local latent optimiza-
tion works. It performs much better than the global latent optimiza-
tion because it mitigates most of the global deformations visible in
(c). Finally, it is shown in (d) that when we exclude all the previ-
ous factors and also train our model without the contrastive loss,
the deformations become even less local. For both (c) and (d), we
see in Table 1 that the global deformation δout drastically increases
(0.18 mm to 4.61 mm and 6.92 mm).

One by One. Figure 7 reflects the individual absence of each piv-
otal part of the method when editing the ears of the subject. In (a),
we see our current approach. In (b), we again remove the regular-

© 2023 Ubisoft Divertissements and The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

274

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14760 by E

cole D
e T

echnologie Superieur, W
iley O

nline L
ibrary on [13/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

M. Aliari, A. Beauchamp, T. Popa & E. Paquette / Face Editing Using Part-Based Optimization of the Latent Space

a

0 mm 5 mm>

Initial

(a)

Edited

(d)(c)(b)

Figure 6: Ablation study: showing the effect of each element of our
approach. (a) Our current approach. (b) No regularization term
(Equation 7). (c) Like (b) but global latent optimization instead of
local. (d) Like (c) but the model is trained without the contrastive
loss (Equation 6). δ is the vertex displacement.

ization term. Depending on the edit, the regularization term some-
times makes a big difference (as we saw in Figure 6 (b)), while
here we see that our model is already benefiting from a local la-
tent space, and removing the regularizer makes little difference
(only a slight increase of global deformation δout from 0.19 mm to
0.22 mm, see Table 1). In (c), we only replace the local optimiza-
tion with a global optimization (optimizing the whole latent vector
instead of the part sub-vector). Other elements remain the same as
in (a). We observe that there are more unwanted global deforma-
tions. Furthermore, in terms of speed, the same optimization task
takes 37% more time to compute. This is because we are optimiz-
ing the whole latent vector. Hence we have more variables to tune.
Finally, in (d), we replace the model in (a) with a model that was
trained without the contrastive loss. The unwanted deformations
become even more problematic. Similarly to what we observed for
the cumulative ablation study, for both (c) and (d), the global de-
formation increases further more, even if in this case we make the
changes one by one (δout increases from 0.19 mm to 0.26 mm and
0.48 mm).

Figure, Part δin δout

Fig. 6, Mouth

(a) 4.31 mm 0.18 mm
(b) 5.00 mm 0.34 mm
(c) 3.54 mm 4.61 mm
(d) 7.60 mm 6.92 mm

Fig. 7, Ears

(a) 6.41 mm 0.19 mm
(b) 6.75 mm 0.22 mm
(c) 6.56 mm 0.26 mm
(d) 7.17 mm 0.48 mm

Table 1: Quantitative results of ablation studies. Average vertex
displacement inside (δin) and outside (δout) the edited part.

a

0 mm 3 mm>

Initial

(a)

Edited

(d)(c)(b)

Figure 7: Ablation study: showing the effect of each element of
our approach. (a) Our current approach. (b) No regularization term
(Equation 7). (c) Global optimization instead of local. (d) As (a) but
the model is trained without the contrastive loss (Equation 6).sc δ

is vertex displacement.

4.4. Comparisons

Comparison with CoMA [RBSB18]. We compare our method
with CoMA [RBSB18] as it also uses graph convolution and mesh
sampling. We compare it to the VAE version of CoMA since, as
our approach, it has a better interpolation space. This is because
the VAE version is not only focused on reconstruction tasks in
contrast to the autoencoder version. In order to conduct different
comparisons, we first need to train both models with the same
dataset. FaceWarehouse dataset [CWZ∗14] because the CoMA
dataset [RBSB18] has an insufficient number of subjects in the neu-
tral pose, and a reasonable number of neutral poses is necessary
to train a neural network for editing. We think this is a fair com-
parison since neither model has been designed around the Face-
Warehouse dataset. We first compare the reconstruction capabili-
ties of the models. Our model has an average error of 1.40 mm
on the training dataset (80% of the dataset) and 1.77 mm on the
unseen samples (20% of the dataset). In the case of CoMA, it
is 2.10 mm and 2.28 mm respectively. We can observe that even
though our model’s main task is not reconstruction, it has a bet-
ter performance than CoMA. Next, we want to check each model’s
output in various face editing scenarios. We use our vertex edit-
ing approach (Section 3.3) with both our model and CoMA. As
shown in Figure 8, we edited different areas of the face with both
models. Our model has a much more editing-friendly latent space
and results in localized changes on the face. For example, we can
see that CoMA [RBSB18] introduces a lot of non-local move-
ment: on the forehead when editing the mouth, toward the chin/jaw
when editing the nose, and on the ears when editing the fore-
head. Furthermore, this test shows that using a regularization term
with vertex-editing (Section 3.3) is not enough to prevent global
changes, as apparent in the results of CoMA [RBSB18]. Table 2
verifies this with quantitative measures: the vertex displacement
outside of the edited part (δout) is roughly an order of magnitude
larger for CoMA [RBSB18]. Therefore, the complexity introduced

© 2023 Ubisoft Divertissements and The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

275

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14760 by E

cole D
e T

echnologie Superieur, W
iley O

nline L
ibrary on [13/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

M. Aliari, A. Beauchamp, T. Popa & E. Paquette / Face Editing Using Part-Based Optimization of the Latent Space

0 mm 10 mm>

Original

C
oM

A

O
u

r
C

oM
A

 O
u

rs

Mouth Nose Forehead

Figure 8: Comparison with [RBSB18]. δ is vertex displacement.

in our model is justified. Finally, we can conclude that newer ex-
tensions of CoMA [LLLY19, TGLX18, YLL∗19] that only focus
on the face and expression reconstruction also suffer from a non-
editing-friendly latent space.

Comparison with Jung et al. [JJK∗22]. In order to compare our
method with that of Jung et al. [JJK∗22], we calculate the average
face of our primary dataset and then train the model with our pri-
mary dataset but keep the hyperparameters the same as the original
work. The original dataset of Jung et al. [JJK∗22] contains 1268
meshes for the training set compared to ours with 713 faces (80%
of the dataset). In addition, our faces have 64% fewer vertices, but
the model converges to a similar loss. Consequently, when we train
the model of Jung et al. [JJK∗22] on the whole dataset of 892 faces
(hence, no validation set), the reconstruction error is 5.56 mm. This
is a very high error compared to our model, where the reconstruc-
tion error is 1.22 mm on the training set and 1.51 mm on the val-
idation set. We also should mention that their method has a latent
dimension of 128, which is about double larger than ours. To com-
pare the face editing capabilities of the models, we use both the
“point-handle-based editing” of their work and our method (Sec-
tion 3.3) to make similar modifications to an initial face. The initial
face is not identical since the reconstruction power of the models
differs. We run each method for 50 iterations. Both take 500 ms
to converge on average on an RTX3070. The results are shown in
Figure 9. We observe that while the method of Jung et al. [JJK∗22]
can converge to a solution, it cannot prevent the unwanted changes

0 mm 10 mm>

Original

JJ
K

*2
2

O
u

r
JJ

K
*2

2

O

u
rs

Mouth Nose Forehead

Figure 9: Comparison with [JJK∗22]. δ is vertex displacement.

that appear globally on the face. In Table 2, we observe that this
method has a noticeably higher vertex displacement outside of the
edited part (δout is roughly a order of magnitude larger) in all sce-
narios.

Model
Mouth Nose Forehead
δin, δout δin, δout δin, δout

Fig. 8, Ours 4.71, 0.39 mm 3.44, 0.28 mm 3.73, 0.36 mm
Fig. 8, CoMA 2.47, 3.14 mm 1.96, 3.12 mm 7.54, 2.54 mm
Fig. 9, Ours 3.40, 0.92 mm 2.55, 0.18 mm 4.75, 0.23 mm
Fig. 9, [JJK∗22] 6.90, 3.04 mm 4.32, 3.55 mm 7.29, 2.68 mm

Table 2: Comparing the locality of the editing for our approach
against competing methods [RBSB18, JJK∗22] quantitatively (av-
erage vertex displacement inside, δin, and outside, δout , the edited
part).

Comparison with Ghafourzadeh et al. [GFR∗21]. We com-
pare our approach with the localized 3DMM editing method of
Ghafourzadeh et al. [GFR∗21] since both offer localized vertex-
based editing. We fit that 3DMM model with our primary dataset
to evaluate its face modeling application directly. The [GFR∗21]
method is a clustered PCA-based approach that aims to pick the
best eigenvectors that bring the reconstruction loss to under 1 mm.

© 2023 Ubisoft Divertissements and The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

276

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14760 by E

cole D
e T

echnologie Superieur, W
iley O

nline L
ibrary on [13/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

M. Aliari, A. Beauchamp, T. Popa & E. Paquette / Face Editing Using Part-Based Optimization of the Latent Space

C
h

ee
ks

Initial GFR∗21 SCOL∗04 OursInitial GFR∗21 SCOL∗04 Ours

E
ye

s

N
os

e

M
ou

th

 C

h
in

Initial GFR∗21 SCOL∗04 Ours

Figure 10: Comparison with [GFR∗21] and [SCOL∗04]: Editing different features of the face. The green arrows indicate the edited vertices
and direction of editing.

The budget is 50 eigenvectors on average as it differs for female
and male heads. Also, it segments the face, similar to our method.
The method of [GFR∗21] deforms each part in isolation and uses
an additional smooth blending step to merge the generated part into
the face. As a result, it ensures that the deformation only appears
locally. Therefore, the method of Ghafourzadeh et al. [GFR∗21]
performs better regarding reconstruction quality and keeping the
changes local. Nonetheless, in Figure 10, we observe that our
model deforms the face more naturally and meaningfully while
keeping the changes comparably local. For this comparison, we se-
lected an initial face that is edited by both models. The face has
an African ethnicity because we wanted to examine how well each
model generalizes and works with an underrepresented face in a
dataset (our dataset only contains 19 faces of this ethnicity out of
892 total). For the nose editing, we observe that while both mod-
els can decrease the width of the nose, our model preserves the
shape of the nose, but theirs [GFR∗21] cannot achieve the same.
For mouth editing, we try to close the gap between the lips of the
subject. We can see that the PCA model does not generalize well
and fails to close the gap. On the other hand, our model manages to
achieve its goal naturally while not getting too far from the original
shape of the mouth. When editing the cheeks, we move one ver-
tex on each cheek to create a chubbier or skinnier face. Our model
achieves noticeably more plausible outputs. In contrast, the PCA
model fails to output any visible changes on the face when it tries
to make it skinnier. We find similar results when changing other
features of the face. In conclusion, the method of [GFR∗21] either
cannot make visible changes or, when pushed too far, results in un-
canny and linear deformations.

Comparison with direct deformation. Commercial software al-
low to deform surfaces using various techniques. Such techniques
typically do not rely on prior knowledge of the deformed ob-
ject, as opposed to our approach which uses a data set of faces.
We selected the well-known Laplacian surface editing (LSE) tech-
nique [SCOL∗04] to evaluate how our results can compare to such
non-data-driven deformation techniques. We pick the same face
that was used in the previous comparison. Editing with LSE re-
quired more manual work in defining a proper “deformable” region
(the vertices which are solved) and a “fixed” region (boundary con-
ditions) for each edit to restrict the deformation to where we expect
it. We pulled on the same vertices as in our approach and moved

them trying to achieve a deformation similar to the one from our
results (see Figure 10). The method works well in terms of keep-
ing the deformations local, but this is at the expense of requiring
a manual design of the fixed region for each individual edit. Fur-
thermore, the changes may look overly linear and unrealistic. The
mouth, chin, and cheeks are such examples. Another reason the re-
sults look unnatural is that the method is general and does not take
into account that we want to remain within the manifold of realistic
faces defined by a dataset. To a certain extent, one can circumvent
these issues by carefully moving the handles and defining the fixed
regions iteratively and by trial and error. Nonetheless, this process
can become time-consuming and more similar to manual 3D face
modeling applications.

4.5. Limitations

Even if our approach compares favorably against other methods in
terms of the locality of the edits, some minor deformation (< 1 mm)
of other parts of the face can still be observed. We observe this in
Figure 8 and Figure 9, where we show deformation heat maps in
our model’s outputs. When the mouth area is changed, we can see
about 1 mm of unwanted changes in the forehead and eye areas.

Regarding reconstruction accuracy, DNN models such as ours
need more data to improve the model accuracy. This can be seen in
our tests where the reconstruction error for the dataset of 150 faces
(1.44 mm training dataset and 1.77 mm validation dataset) is larger
than the error from the dataset containing 892 faces (1.22 mm train-
ing dataset and 1.51 mm validation dataset). Still, along the lines of
the reconstruction error, should a user want to edit a face that was
manually modified in a modeling application, we will need to first
encode that face to latent space, and thus inducing a reconstruction
error. As such, for faces created outside of our system, the bene-
fit of the advanced editing power comes at the expense of a slight
global deformation of the face (the reconstruction error for the val-
idation set of our primary dataset is 1.51 mm). Finally, our opti-
mization based methods will inherently be slower compared to di-
rect inference methods. Nevertheless, optimization based methods
provide more control to the user and a performance of 0.5 seconds
for meshes of around 8,000 vertices is still very practical and even
for meshes with 3× higher vertex count, our method scales linearly
achieving 1.5 seconds to compute the target face.

© 2023 Ubisoft Divertissements and The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

277

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14760 by E

cole D
e T

echnologie Superieur, W
iley O

nline L
ibrary on [13/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

M. Aliari, A. Beauchamp, T. Popa & E. Paquette / Face Editing Using Part-Based Optimization of the Latent Space

5. Conclusion

We presented a novel variational autoencoder architecture to dis-
entangle facial features in the latent space. We feed the separate
parts of the face mesh to individual encoders while we use a sin-
gle decoder to reconstruct the facial mesh. We take advantage of
the graph neural networks to improve the learning from meshes.
As such, we can successfully train even with datasets containing
only 150 meshes. Our architecture leverages the disentanglement
properties of VAEs. Furthermore, given our new loss function, the
network learns a latent space where each variable of the latent space
influences a local region of the face mesh. Given our disentangled
latent variables, our decoder is effective in sampling random faces
as well as conducting face editing. For the face editing application,
we developed a new loss function and a process that ensure that
the face editing will remain local. The user can thus push and pull
on a vertex and see the deformed face in interactive time. Thanks
to our tailored latent space, the random face sampling and the fa-
cial editing both reconstruct faces that are realistic variations of the
faces from the training dataset. We validated that our whole DNN
architecture and learning strategy are not dependent on a specific
dataset by successfully training it independently on our dataset as
well as the FaceWarehouse dataset [CWZ∗14]. Finally, we com-
pared our approach with state-of-the-art methods in the application
of facial editing. These comparisons demonstrated that our network
has a better generalization property compared to 3DMM methods.
Furthermore, our approach provides local editing while other DNN
methods deform the face globally, for example, deforming the ears
when editing the nose or mouth.

For now, we allocate the same number of variables for each face
part in the latent vector. For future work, we would want to de-
rive a strategy to automatically decide how many latent variables
are necessary for each part. Ghafourzadeh et al. [GRF∗20] derived
such a technique, but in the context of 3DMM made out of PCA
eigenvectors. Deriving such a strategy is quite different for DNNs.
Another avenue for future work lies in the automatic adjustment of
the graph convolution aspects of the learning, similar to the work of
Li et al. [LLLY19]. We feel that adjusting the K factor (Equation 1)
adaptively based on the mesh density of each part would improve
the learning, locality, and generalization aspects of our approach.

6. Acknowledgments

This work was supported by Ubisoft Inc., the Mitacs Acceler-
ate Program, and École de technologie supérieure. We would
like to thank the anonymous reviewers for their vital feed-
back.

References
[BBP∗19] BOURITSAS G., BOKHNYAK S., PLOUMPIS S., BRONSTEIN

M., ZAFEIRIOU S.: Neural 3d morphable models: Spiral convolutional
networks for 3d shape representation learning and generation. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision
(2019), pp. 7213–7222. 2

[BLC∗21] BAO L., LIN X., CHEN Y., ZHANG H., WANG S., ZHE X.,
KANG D., HUANG H., JIANG X., WANG J., ET AL.: High-fidelity 3d
digital human head creation from rgb-d selfies. ACM Transactions on
Graphics (TOG) 41, 1 (2021), 1–21. 3

[BRP∗18] BOOTH J., ROUSSOS A., PONNIAH A., DUNAWAY D.,
ZAFEIRIOU S.: Large scale 3d morphable models. International Journal
of Computer Vision 126, 2 (2018), 233–254. 2

[BRZ∗16] BOOTH J., ROUSSOS A., ZAFEIRIOU S., PONNIAH A.,
DUNAWAY D.: A 3d morphable model learnt from 10,000 faces. In Pro-
ceedings of the IEEE conference on computer vision and pattern recog-
nition (2016), pp. 5543–5552. 2

[BV99] BLANZ V., VETTER T.: A morphable model for the synthesis of
3D faces. In Proceedings of SIGGRAPH 99 (1999), Annual Conference
Series, pp. 187–194. 1, 3

[BWS∗18] BAGAUTDINOV T., WU C., SARAGIH J., FUA P., SHEIKH
Y.: Modeling facial geometry using compositional vaes. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2018). 2

[CBZ∗19] CHENG S., BRONSTEIN M., ZHOU Y., KOTSIA I., PANTIC
M., ZAFEIRIOU S.: Meshgan: Non-linear 3d morphable models of faces.
arXiv preprint arXiv:1903.10384 (2019). 2

[CUH16] CLEVERT D., UNTERTHINER T., HOCHREITER S.: Fast and
accurate deep network learning by exponential linear units (ELUs). In
Proceedings of ICLR (2016). 4

[CWZ∗14] CAO C., WENG Y., ZHOU S., TONG Y., ZHOU K.: Face-
Warehouse: A 3D facial expression database for visual computing. IEEE
Transactions on Visualization and Computer Graphics 20, 3 (Mar. 2014),
413–425. 2, 5, 7, 10

[DBV16] DEFFERRARD M., BRESSON X., VANDERGHEYNST P.: Con-
volutional neural networks on graphs with fast localized spectral fil-
tering. In Proceedings of the 30th International Conference on Neu-
ral Information Processing Systems (Red Hook, NY, USA, Dec. 2016),
NIPS’16, Curran Associates Inc., pp. 3844–3852. 3, 4

[DYC∗20] DENG Y., YANG J., CHEN D., WEN F., TONG X.: Disentan-
gled and controllable face image generation via 3D imitative-contrastive
learning. In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR) (June 2020). 4

[EST∗20] EGGER B., SMITH W. A., TEWARI A., WUHRER S., ZOLL-
HOEFER M., BEELER T., BERNARD F., BOLKART T., KORTYLEWSKI
A., ROMDHANI S., ET AL.: 3D morphable face models—past, present,
and future. ACM Transactions on Graphics (TOG) 39, 5 (2020), 1–38. 2

[FA20] FERNANDEZ-ABREVAYA V.: Large-scale learning of shape and
motion models for the 3D face. Theses, Université Grenoble Alpes
[2020-....], Nov. 2020. 2, 3

[GFR∗21] GHAFOURZADEH D., FALLAHDOUST S., RAHGOSHAY C.,
BEAUCHAMP A., AUBAME A., POPA T., PAQUETTE E.: Local control
editing paradigms for part-based 3D face morphable models. Computer
Animation and Virtual Worlds (2021), e2028. 2, 5, 8, 9

[GJvK20] GUAN Y., JAHAN T., VAN KAICK O.: Generalized Autoen-
coder for Volumetric Shape Generation. In 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops (CVPRW)
(2020), pp. 1082–1088. 2

[GRF∗20] GHAFOURZADEH D., RAHGOSHAY C., FALLAHDOUST S.,
BEAUCHAMP A., AUBAME A., POPA T., PAQUETTE E.: Part-based 3D
face morphable model with anthropometric local control. In Proceedings
of Graphics Interface 2020 (2020), CHCCS, pp. 7 – 16. 2, 3, 5, 10

[JJK∗22] JUNG Y., JANG W., KIM S., YANG J., TONG X., LEE S.:
Deep deformable 3d caricatures with learned shape control. In ACM
SIGGRAPH 2022 Conference Proceedings (2022). 3, 8

[KB15] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion, 2015. 4, 5

[KW14] KINGMA D. P., WELLING M.: Auto-encoding variational
bayes. In Proceedings of ICLR (2014). 2, 3, 4

[LBB∗17] LI T., BOLKART T., BLACK M. J., LI H., ROMERO J.:
Learning a model of facial shape and expression from 4d scans. ACM
Trans. Graph. 36, 6 (2017), 194–1. 2

© 2023 Ubisoft Divertissements and The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

278

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14760 by E

cole D
e T

echnologie Superieur, W
iley O

nline L
ibrary on [13/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

M. Aliari, A. Beauchamp, T. Popa & E. Paquette / Face Editing Using Part-Based Optimization of the Latent Space

[LBZ∗20] LI R., BLADIN K., ZHAO Y., CHINARA C., INGRAHAM
O., XIANG P., REN X., PRASAD P., KISHORE B., XING J., LI
H.: Learning formation of physically-based face attributes. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2020), pp. 3407–3416. 2

[LLLY19] LI K., LIU J., LAI Y.-K., YANG J.: Generating 3D faces
using multi-column graph convolutional networks. Computer Graphics
Forum 38, 7 (2019), 215–224. 2, 3, 8, 10

[Max] MAXON: ZBrush. Accessed: 2022-09-30. URL: https://
pixologic.com/. 1

[PVO∗20] PLOUMPIS S., VERVERAS E., O’SULLIVAN E.,
MOSCHOGLOU S., WANG H., PEARS N., SMITH W., GECER
B., ZAFEIRIOU S. P.: Towards a complete 3D morphable model of
the human head. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2020). 2

[PWP∗19] PLOUMPIS S., WANG H., PEARS N., SMITH W. A.,
ZAFEIRIOU S.: Combining 3d morphable models: A large scale face-
and-head model. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (2019), pp. 10934–10943. 2

[RBSB18] RANJAN A., BOLKART T., SANYAL S., BLACK M. J.: Gen-
erating 3D faces using convolutional mesh autoencoders. In Proceedings
of the European Conference on Computer Vision (ECCV) (2018). 2, 3,
4, 5, 7, 8

[SCOL∗04] SORKINE O., COHEN-OR D., LIPMAN Y., ALEXA M.,
RÖSSL C., SEIDEL H.-P.: Laplacian surface editing. In Proceedings of
the EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Pro-
cessing (2004), ACM Press, pp. 179–188. 9

[TGLX18] TAN Q., GAO L., LAI Y.-K., XIA S.: Variational autoen-
coders for deforming 3D mesh models. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (June
2018), pp. 5841–5850. 2, 3, 8

[VRWW20] VESDAPUNT N., RUNDLE M., WU H., WANG B.: JNR:
Joint-based neural rig representation for compact 3D face modeling. In
Computer Vision – ECCV 2020 (Cham, 2020), Lecture Notes in Com-
puter Science, Springer International Publishing, pp. 389–405. 2

[WCY∗22] WANG L., CHEN Z., YU T., MA C., LI L., LIU Y.: Face-
verse: a fine-grained and detail-controllable 3d face morphable model
from a hybrid dataset. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2022), pp. 20333–20342. 3

[YLL∗19] YUAN C., LI K., LAI Y.-K., LIU Y., YANG J.: 3D face rep-
resentation and reconstruction with multi-scale graph convolutional au-
toencoders. In 2019 IEEE International Conference on Multimedia and
Expo (ICME) (2019), pp. 1558–1563. 2, 8

[YZW∗20] YANG H., ZHU H., WANG Y., HUANG M., SHEN Q., YANG
R., CAO X.: Facescape: a large-scale high quality 3d face dataset and
detailed riggable 3d face prediction. In Proceedings of the ieee/cvf con-
ference on computer vision and pattern recognition (2020), pp. 601–610.
3

© 2023 Ubisoft Divertissements and The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

279

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14760 by E

cole D
e T

echnologie Superieur, W
iley O

nline L
ibrary on [13/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://pixologic.com/
https://pixologic.com/

