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Abstract: In children, vital distress events, particularly respiratory, go unrecognized. To develop
a standard model for automated assessment of vital distress in children, we aimed to construct a
prospective high-quality video database for critically ill children in a pediatric intensive care unit
(PICU) setting. The videos were acquired automatically through a secure web application with an
application programming interface (API). The purpose of this article is to describe the data acquisition
process from each PICU room to the research electronic database. Using an Azure Kinect DK and
a Flir Lepton 3.5 LWIR attached to a Jetson Xavier NX board and the network architecture of our
PICU, we have implemented an ongoing high-fidelity prospectively collected video database for
research, monitoring, and diagnostic purposes. This infrastructure offers the opportunity to develop
algorithms (including computational models) to quantify vital distress in order to evaluate vital
distress events. More than 290 RGB, thermographic, and point cloud videos of each 30 s have been
recorded in the database. Each recording is linked to the patient’s numerical phenotype, i.e., the
electronic medical health record and high-resolution medical database of our research center. The
ultimate goal is to develop and validate algorithms to detect vital distress in real time, both for
inpatient care and outpatient management.

Keywords: clinical decision support system (CDSS); video database; depth sensor; children;
infrared thermography; intensive care

1. Introduction
1.1. Motivation

In children, 28% of vital distress events go unrecognized. These situations are associ-
ated with a tenfold increased risk of mortality [1,2]. Meanwhile, technological innovations
and computing advances keep transforming health care. As such, assessment and real-time
evaluation of distress events, i.e., respiratory, neurological, and hemodynamic distress, can
benefit from such innovations [3–7].

Over the past two decades, access, organization, analysis, and the use of generated
data in the process of medical care have been widely adopted by many hospitals across
the globe [8–13]. Intensive care units (ICUs) present an especially compelling case not only
because of high-quality data but also due to the variety of treatments and interventions.
Several commercial and non-commercial ICU databases have been developed, typically
recording data such as patient demographics, free-text notes and reports of different
specialties, diagnoses or procedures, laboratory analysis results, vital signs, advanced
monitoring data, ventilator parameters, operating parameters of complex equipment such
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as perfusion pumps, dialysis monitors, extracorporeal membrane oxygenation systems,
and information in the form of images, audio, and video [8,11,14–17].

Intensive care units are work environments with increasing patient complexity and
volume, emerging new technologies, and staffing shortages that are challenges to the provi-
sion of high-quality care [14,18,19]. In such environments, focus has shifted to improvement
strategies and reorganization of care to optimize efficiency and quality of care, as well as
providing an ideal environment to develop technologies applicable to outpatient manage-
ment. Databases collected from ICUs have been perceived as a way of motivating clinical
investigations offering exciting opportunities for research. They enable the development of
clinical decision support tools as well as improving clinical research. They also promote
capabilities, extract new knowledge, obtain guidance for improved patient care, and permit
the testing of algorithms with real-world data [13–15,18,20].

Patients in critical conditions or those who require special care need to be closely
monitored to intervene in cases of sudden worsening. Continuity of care is achieved
through the monitoring of vital signs by bedside monitors and by intermittent human
observation. Conventional vital sign monitoring technologies require the attachment of
adhesive electrodes or transducers to the patient’s skin with wires. Monitoring with wired
sensors is especially cumbersome for patients in neonatal intensive care units (NICUs) and
pediatric intensive care units (PICUs). Furthermore, it is susceptible to motion artifacts, can
cause discomfort and irritation, may damage the skin, increase the risk of developing an
infection, and might interfere with clinical and parental care [21–26].

Likewise, children under two years of age are unable to express what they are feeling
verbally, nonverbally, or deliberately through hand gestures, or head nods and head shakes.
As a result, the rate and range of movements or facial expressions are considered to be
indicators of potential abnormal motor patterns, pain, discomfort, and sedation levels
in young children [5,23,25,27–30]. Clinical interventions, routine care events, and visual
inspections are needed to evaluate abnormal movements or comfort levels in NICUs and
PICUs and even by parents at home. However, accuracy is subjective and depends on the
clinician’s expertise and healthcare resources; it is time-consuming and non-continuous
and invokes high costs.

Over the past few years, video-based monitoring has been used to assist clinical staff in
patient care and to access patients’ conditions. Video-based technologies are desirable due
to their affordability and ease of mounting. These technologies are non-invasive monitoring
solutions under investigation in NICUs and PICUs. However, to the best of our knowledge,
there is no publicly available database for non-contact continuous physiological monitoring,
and pain/discomfort assessment in the PICU.

To bridge this gap, the research center of the Centre Hospitalier Universitaire Sainte-
Justine (CHU Sainte-Justine) de Montréal is creating a real-time monitoring and diagnostic
system through videos for patients in the PICU and plans to include it in stand-alone devices
for use in outpatient management. While most databases comprise only one modality of
information, our video database is multimodal. This database incorporates thermographic,
point cloud, and color videos to address hemodynamic changes, surface and volume
calculations, and recognition and detection problems, respectively. Furthermore, this
database is linked to our high-resolution research database and electronic medical records
of patients [18,19,31–33].

The purpose of this paper is to describe the data acquisition system for images and
videos from a PICU room to a secure research electronic database. The entire process, from
the acquisition of the images and videos to the insertion of the data in the database in a
structured way is done automatically and securely. The final framework has different com-
ponents including (1) Data Collection and Synchronization, (2) Database Organization and
Automatic Insertion of Data (3) User Interface Web Application and (4) an Authentication
and Authorization component. The ultimate goal is to develop and validate algorithms to
detect vital distress in real time, both for inpatient care and outpatient management.
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1.2. Related Works

Vital signs that are usually monitored include heart rate (HR), respiratory rate (RR),
blood pressure (BP), temperature (T), and peripheral oxygen saturation (SpO2). Non-
contact monitoring is becoming the preferred solution in NICUs and PICUs, where patients
need to be attached to multiple wired sensors. These sensors are uncomfortable, irritating,
and prone to false alarms due to motion artifacts.

Villarroel et al. [24] recorded a total of 426.6 h of video from 30 preterm infants in the
NICU in order to evaluate the accuracy and proportion of time that HR and RR can be
estimated. In studies [3,26,34,35] Red Green Blue and Depth (RGB-D) sensors were used to
estimate and assess the respiratory activity of neonatal and pediatric patients. Two RGB-D
cameras (Kinect V2) were used in [3] to provide quantitative measures of tidal volume and
RR in a PICU room. One Asus Xtion Pro Live Motion RGB-D was mounted over the cribs
of three preterm infants in an NICU to estimate the RR by measuring morphological chest
movements [34]. In [26,35] data were collected from an overhead Intel RealSense SR300
RGB-D camera in an NICU room for RR estimation of four and five patients, respectively. In
a pilot study, different settings of the Asus Xtion Pro Live Motion RGB-D sensor were used
to visualize and quantify the motion of the thorax and abdomen regions of a mannequin
during the breathing process [4]. Chen et al. [36] proposed a non-contact HR monitoring
system for neonates using an RGB camera, while Kim et al. [37] proposed the use of a
thermal camera to estimate HR remotely for athletes and children. [6,7] assessed the efficacy
of thermographic profiles to monitor changes in cardiac output and detect cardiogenic
shock in post-cardiac surgery infants using RGB and thermal cameras (Kinect Azure and
the FLIR Lepton 3.5 LWIR). Shi et al. [38] explored the use of an RGB-D sensor and an
infrared thermal camera for the detection of neonatal necrotizing enterocolitis. They used
the Kinect Xbox One sensor to capture RGB-D information and the FLIR A320 IR camera to
record the thermal data of 12 neonates, each for 60 s.

Video-based monitoring is not limited to the vital signs and physiological assessment
of patients. Throughout patients’ stays in critical and intensive care units, most of their time
is spent in bed. Thus, monitoring body movement and facial expression leads to continuous
and consistent monitoring of pain and abnormal movements in clinical environments.

An automatic movement analysis for preterm infants using an RGB-D sensor was
proposed in [28]. The camera was placed over the infant lying on the crib to collect
sequences of depth images. The detection of abnormal paroxysmal events in newborns,
namely, clonic seizures and life-threatening apnea events using multiple video sensors
placed around a patient was investigated in [23]. Their motion analysis approach was
versatile and allowed them to investigate various scenarios, including a single RGB camera,
an RGB-D sensor, or a network of a few RGB cameras. Refs. [39–41] focused on assessing
pain and discomfort from facial expression and motion analysis. Sun et al. [40] used a fixed-
position high-definition camera (uEye UI-222x) to evaluate 183 video segments of 11 infants
to recognize infants’ status of comfort or discomfort. Refs. [39,41] utilized publicly available
databases for assessing neonatal pain.

1.3. Summary of Main Contributions

This work describes the architecture, design, and implementation of the first and
second tiers of a data science pyramid, data collection and data storage, using the cyber-
infrastructure setting of a public academic hospital. In short, this system captures videos
and images from different cameras remotely and automatically, generates the associated
metadata, and saves data in a structured way, all through a secure and easy-to-use web-
based user interface (UI) accessible through the hospital intranet. Figure 1 depicts the
general architecture of this distributed system with all its components.

To this end, three types of video data are collected: thermographic or infrared (IR)
to provide heat distribution (mostly due to hemodynamic status), point cloud to enable
surface and volume calculations (such as tidal volume), and Red Green Blue (RGB) or color
data for general computer vision tasks such as detection and recognition. Cameras are
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calibrated prior to data collection, and these three types of video data are synchronized to
ensure frame consistency before being stored automatically on hospital servers.
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The specific contributions can be summarized as the design and implementation of:

1. An acquisition software as well as an application programming interface (API) for
the remote collection of video and image data from different cameras located in each
PICU room;

2. A calibration and synchronization software to calibrate and synchronize data gathered
through various devices;

3. A database that allows you to save data in a structured way using a database manage-
ment system;

4. A software for automatic insertion of video and image data for patients admitted to
the intensive care unit;

5. A web-based user interface (UI) and user experience (UX) to display recordings
accessible both remotely and through the hospital intranet;

6. An authentication and authorization component that controls and communicates
between multiple instances of the acquisition system in 1 and the web-based UI in 5;

7. A secure system accessible remotely with the above subsystems that can be deployed
on different servers.

Objectives 1 through 6 are discussed in detail in Section 2: Material and Methods.
Objective 1 is covered in Section 2.1 Data Collection, Objective 2 is reviewed in Section 2.2
Data Synchronization, Objectives 3 and 4 are discussed in Section 2.3 Database Organization
and Interpretation, Objective 5 is examined in Section 2.4 User Interface Web Application,
and Objective 6 is studied in Section 2.5 Authentication and Authorization. Objective 7, i.e.,
security and deployment of the final distributed system as well as the results, are discussed
in Section 3: Results.

2. Materials and Methods
2.1. Data Collection

Video and image data collected in this project are IR, point cloud, and RGB data. The
IR data is gathered with a Flir Lepton 3.5 Long Wave InfraRed (LWIR), whereas point
clouds and RGB are captured with an Azure Kinect development kit (DK).

Azure Kinect DK and its multiple sensors allow capturing raw depth (D) data as well
as RGB videos. Acquisition of these two types of data is done through the Azure Kinect
SDK (software development kit) interface and the Py4KA Python 3 library [42]. The Py4KA
Library is used to start recordings as well as access raw data associated with recordings.
Raw depth (D) data is post processed into point cloud data using Open3D [43] and Open
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Computer Vision (OpenCV). OpenCV adds color to the points, whereas Open3D is used to
create the PLY file representing the point cloud on disk.

To capture thermographic data, a Teledyne Flir Lepton 3.5 LWIR with a resolution
of 160 × 120 pixels and a thermal sensitivity of ≤50 mK is used. To interact with the Flir
Lepton device, the Flirpy library [44] is used. This allows the device to start recording
and extract the data. There are two different types of data extracted using Flirpy: the raw
thermal image and a matrix of the temperature for each pixel. The raw thermal image is
stored directly on disk for later use, whereas the temperature matrix is saved in Kelvin in
an Excel file using the Pandas library and the Openpyxl library [45].

For calibration of the two cameras, the RGB images from the Azure Kinect DK are
superimposed with the IR images from the FLIR Lepton. This involves taking photos of
a calibration marker whose dimensions are known [46]. Images of this marker are taken
from both cameras, and the checkerboard is detected in each image using object detection.
A special marker made of aluminum squares instead of ink is used for the IR sensor, so
that the squares show up clearly in the IR image. As aluminum has a low IR emissivity, it
shows up dark in the image, while the rest of the marker remains white.

These two cameras are connected to a Jetson Xavier NX board. The device is responsi-
ble for gathering raw data to process and produce all the artifacts, such as point clouds and
Excel sheets with the temperature of each pixel for the thermographic data. In addition to
data processing and recording, the acquisition software provides an API to command the
Azure Kinect DK and FLIR Lepton to start recording remotely. The API is created using
the REST API to connect the software on the Jetson Xavier NX to other devices running on
the same network. Since most of the operations executed by acquisition software are I/O
related, the asynchronous server gateway interface (ASGI) web server framework [47] is
used for the REST API. To reduce the load on CPU while recording, data is processed after
each recording. This is implemented with the in-process background task of FastAPI, which
enqueues the captured data with the desired processing method to be completed later. The
hardware setup and data acquisition UI used for this project are shown in Figure 2.
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2.2. Data Synchronization

Raw data is gathered through different sensor interfaces. This results in these three
types of data being unsynchronized. Unsynchronized data can be used independently,
yet it is not suitable for other applications such as machine learning. Consequently, it is
non-trivial to synchronize data between the Azure Kinect DK device and the Teledyne Flir
Lepton device. The FLIR Lepton can record at a framerate of up to 9 frames per second
(FPS), while the Azure Kinect can record up to 30 FPS. In other words, for every frame
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captured by the FLIR Lepton, there would be roughly 3 (30/9) frames captured by the
Azure Kinect DK.

To synchronize data between the Azure Kinect DK device and the Teledyne Flir Lepton
3.5 LWIR device, the timestamps of their frames can be compared. However, due to the
granularity of timestamps and the FPS difference between the two devices, comparing
timestamps of frames is not an optimal approach for synchronization. In Table 1, the
number of synchronized frames using the timestamps approach is reported. The best
reported Ratio of Frames Saved over Total Frames Captured is only 0.68% (4 out of 585 frames)
for a duration of 15 s. Since timestamps are in nanoseconds and are relatively small, this
approach is unsuitable for synchronization.

Table 1. Number of synchronized frames saved using timestamps (in nanoseconds).

Duration of
Recordings (Seconds)

Azure Kinect DK
Framerate (Faster Device)

FLIR Lepton
Framerate

Number of
Saved Frames

Ratio of Frames Saved over
Total Frames Captured

5 30 FPS 9 FPS 2 1.03% (2/195)
10 30 FPS 9 FPS 0 0.00% (0/390)
15 30 FPS 9 FPS 4 0.68% (4/585)

To improve the ratio of synchronized frames, the “windowing query” approach,
also known as the “interval problem approach”, is used. This approach is popular in
scheduling and meeting applications for which the availability of someone in a time
interval for a specific day needs to be determined. For this project, a mutable, self-balancing
interval tree is used [48]. This approach stores time intervals and is optimized for the
intervals overlapping with a given interval query. To collect all overlapping data from
Azure Kinect DK and FLIR Lepton, the time window at the higher frame rate is selected,
i.e., 1/maximum (FPS). This is the optimal time window for this project: in addition to
synchronizing all overlapping frames within the same time interval, additional frames
from the faster-producing device are collected.

Table 2 presents synchronization results using the “intervaltree” approach and the time
window of 1/maximum (FPS). Here, the reported Ratio of Frames Saved over Total Frames
Captured is 62% at the lowest and 72% at the highest. It is important to note that this number
is higher than 33% (30/9) because the device with the higher frame rate might have a frame
without corresponding frame from the device with the lower frame rate. In this case, we
still save those frames in the database to keep the data from the faster-producing device.

Table 2. Number of synchronized frames saved implemented with the “intervaltree” approach.

Duration of
Recordings (Seconds)

Azure Kinect DK
Framerate (Faster Device)

FLIR Lepton
Framerate

Number of
Saved Frames

Ratio of Frames Saved over
Total Frames Captured

5 30 FPS 9 FPS 140 72% (140/195)
10 30 FPS 9 FPS 240 62% (240/390)
15 30 FPS 9 FPS 400 65% (400/585)

2.3. Database Organization and Interpretation

To create a database that allows saving raw and post-processed synchronized data
in a structured way, PostgreSQL is chosen. It is an open-source database management
system (DBMS) capable of managing large amounts of data as well as supporting several
operating systems. The data to be stored includes not only videos and images but also all
the associated metadata. This includes an exceptionally large amount of data that must
be saved in a structured way so that the metadata can be associated with the right image
or video.

To create the database, initial, data attributes are specified. Our research team decided
that patient ID, patient’s consent, video URL, metadata, video acquisition parameters,
video calibration parameters, and annotation to the video are the most important attributes.
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These data attributes are critical as the database is meant to be used for research and
diagnostic purposes in later stages.

Based on the above attributes, the conceptual data model is built. Figure 3 show-
cases different tables in the database and illustrates the relationships between cardinal-
ities. The final tables are patient, patient_consent, video, metadata, respiration_parameters,
temperature_parameters, acquisition_parameters, calibration_parameters, temporal_annotation,
and spatial_annotation.
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The patient table is the one that stores the patient identifier. This identifier is not the
unique identifier of a patient that is used in their electronic medical record (EMR), but
a temporary number used only in the context of video acquisitions. The purpose of this
identifier is to maintain the confidentiality of patients. A secure system is in place to link
this identifier to the patients’ unique identifier found in their health records. This table also
contains the identifier of the patient’s consent, which makes it possible to specify which
type the patient or their parents have consented to: data storage for research purposes only
or consenting to the use of videos for scientific presentations.

We created two more tables, temporal_annotation and spatial_annotation, for potential
annotations to the video that can be inserted later. temporal_annotation is used to comment on
a temporal range of the video, whereas spatial_annotation is used to specify the coordinates
of the region of interest for the image. In the temporal_annotation table, we can find attributes
that allow us to define the beginning and end of the video sequence to be commented. In
the spatial_annotation table, we can find the coordinates that allow us to annotate a zone
of the image as well as which image in the video we are annotating. For both types of
annotation, the person who made the annotation is specified.
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The metadata table gathers all the data related to the videos, such as the date and time
of acquisition, the name of the video, and the resolution. respiration_parameters and tempera-
ture_parameters are two separate tables that complement the metadata table. Temperature
and respiration information would record some specific data whenever necessary; thus,
the information in these two tables is not necessarily logged when recording a video. Nev-
ertheless, their information is related, so two new tables specific to the type of acquisition
are created.

In addition, the cameras that make these videos have calibration and acquisition
parameters that are worth saving. Thus, the calibration_parameters and acquisition_parameters
tables are created. Saving all this data will allow researchers to compare different acquisi-
tions and draw conclusions.

Finally, the conceptual model (Figure 3) lets us build the relational model (Figure 4).
The relational model defines the relationships between tables more precisely. These two
models are the basis for creating the database with PostgerSQL.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 19 
 

 

In addition, the cameras that make these videos have calibration and acquisition pa-
rameters that are worth saving. Thus, the calibration_parameters and acquisition_parameters 
tables are created. Saving all this data will allow researchers to compare different acquisi-
tions and draw conclusions. 

Finally, the conceptual model (Figure 3) lets us build the relational model (Figure 4). 
The relational model defines the relationships between tables more precisely. These two 
models are the basis for creating the database with PostgerSQL. 

 
Figure 4. Database Relational Model. 

For the automatic insertion of data, Java is used. PostgreSQL is an object-relational 
database management system (ORDBMS), which means that data is managed and repre-
sented as objects. As such, when there is a new occurrence of any of the events, it is in-
serted and validated into the directory/database automatically. This means that the appli-
cation manages to recognize when a new file is created, retrieve the file path, and send it 
to the class that reads the data. In the same way, the results are used to validate that the 
writing of the SQL query and the sending of it by the Java Database Connectivity (JDBC) 
driver are done correctly. 

Figure 4. Database Relational Model.

For the automatic insertion of data, Java is used. PostgreSQL is an object-relational
database management system (ORDBMS), which means that data is managed and repre-



Sensors 2023, 23, 5293 9 of 17

sented as objects. As such, when there is a new occurrence of any of the events, it is inserted
and validated into the directory/database automatically. This means that the application
manages to recognize when a new file is created, retrieve the file path, and send it to the
class that reads the data. In the same way, the results are used to validate that the writing
of the SQL query and the sending of it by the Java Database Connectivity (JDBC) driver are
done correctly.

Sending SQL queries in the usual unprotected way has flaws and some vulnerabilities
because, when the Java application communicates with the DBMS without protection,
additional query snippets can be added to the base query without being expected. Using
the NamedParameterJdbcTemplate library [49] allows one to work with queries that are
parameterized. This allows for data validation and solves this security problem. This is
especially important in this project because we are working with patient data that requires
a high degree of confidentiality.

2.4. User Interface Web Application

User Interface (UI) is responsible for showing a preview of each room and displaying
recordings through a video stream. However, this web-based UI would not interact
directly with Data Collection and Synchronization’s API; rather, it would interact with the
authentication and authorization system. The reason for this will be discussed later in more
detail in Sections 3 and 4: Results and Discussions.

The web-based UI design should account for the user’s minimal or nonexistent inter-
actions with the data acquisition system. We chose React [50] for the web-based UI; it is a
single-page application (SPA) UI library and is responsible for doing the task of displaying
the content to users. React is open source, well-documented, has plenty of styling libraries
to choose from, and separates concerns between the server and the client. The issue with
React is that SPAs are created with a framework that involves a lot of JavaScript. This
means that the user’s browser needs to download the JavaScript code of the chosen library
before the website can interact with or display it to the user. We use a React framework
called NextJS [51], as NextJS abstracts all the complexity of server-side rendering with React
while allowing the user to see the website while the required components and libraries
might still be loading. To make the web-based UI visually appealing, a React UI library
called Material UI (MUI) is used [52].

The other important consideration in developing a web-based UI is enabling it to
display different data types to the user. Displaying IR data or RGB data is like displaying
an image. To reduce the network bandwidth required to display RGB videos, the video
stream is compressed before being previewed. The JPEG method in OpenCV is used to
compress the RGB images.

However, displaying point cloud data differed in two ways: the file size and the type
of data itself. This 3D data is saved as a PLY file on the Jetson Xavier. These PLY files
represent points in 3D space with extra metadata, such as the color of each pixel, when
available. With a resolution of 256 × 256 pixels, each file weighs around 38 MB. This size
could impact the hospital’s internal network, so each PLY file needs to be compressed
before being displayed. To this end, a JavaScript Object Notation (JSON) file is created,
which contains two arrays: points and colors. The points array contains the coordinates of
all the points in 3D space, and the colors array has the color data for that point. Since JSON
files are text files, they can be compressed with any traditional compression algorithm.
The compressed JSON file size (around 3 MB) can be safely transferred over the internal
network and displayed using ThreeJS [53] and React Three Fiber [54].

Creating a web application to interact with the API allows for the development of
a modern user interface. As we can see in Figures 5 and 6, the user interface remains
similar while adapting to the screen size. This makes it easier for the user to transition
from one device to another. This also allows the user to render 3D point clouds directly
in the browser, i.e., the user does not have to use any specialized 3D software to see the
recorded data.
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2.5. Authentication and Authorization

The authentication and authorization system acts as the communicator as well as a
secure connection between the web-based UI and multiple instances of the data acquisi-
tion system.

Having an intermediary system or an API gateway is necessary as data acquisition
might be running in more than one room and on more than one of the Jetson Xavier NX
devices. The PICU at CHU Sainte-Justine has 32 beds, and this system is installed in all
these rooms. This intermediary system prevents web-based APIs from having to know
and connect with every single instance of data acquisition directly. Additionally, an API
gateway allows us to put a facade on all the other systems and make them seem like one
coherent system. While this project does not have a microservice architecture, it could be
seen as one with each embedded device as a microservice. In that context, each Jetson
Xavier NX device would act as a microservice.
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Nginx, an open-source software that can serve as a reverse proxy and a web server,
is used to make the API gateway. This system is also responsible for non-camera-related
requests such as authentication and authorization. To facilitate maintenance, the modules
are separated: modules running on devices and connected to the cameras reside in a
separate codebase that is distinct from the rest of the code, which is unrelated to the cameras.

The two APIs, are authenticated using OAuth2 [55] with JSON Web Tokens (JWT).
The authentication API has two parts: the access token and the refresh token. The access
token is a JWT, which contains data allowing the user to be identified. The refresh token
is an encrypted string that allows the user to request another JWT token without signing
in again. To prevent someone from stealing another user’s identity or refresh token, three
security measures are put in place. The original IP of each user is kept in the database
after each sign-in attempt. This IP is verified the next time the user asks for a new JWT
with a refresh token. If IPs are not matched, the refresh token will be deleted from the
database, and the user will be asked to sign in again. Furthermore, each JWT and refresh
token would expire after a certain amount of time. In order to ensure both a secure system
and a pleasant user experience, we have implemented fast-expiring JWTs alongside long
expiring refresh tokens.

The authorization API assigns and verifies user permissions. Any user can have
multiple roles, such as Recorder, Approver, Inputter, and Admin. This API enables user
verification as well as their permission. As such, if users are authenticated but do not have
the required permission, their access is denied, and the server would deny the request with
an HTTP status code of 401.

2.6. Ethics

The study and database construction were approved by the institutional ethics com-
mittee of Sainte-Justine Hospital (protocol code 2016-1242, approved on 31 March 2016).
Parental consent is obtained by a research assistant with human ethics training prior to
video recording. The exploitation of the database is regulated by a database policy vali-
dated by the institutional review board. Additionally, the physicians that labeled the data
are medical students or attending physicians trained in the management of critically and
acutely ill children.

3. Results

The final framework of this project is depicted in Figure 7. The proposed system
is a distributed system that focuses on efficiency and usability. As seen in Figure 7, it
consisted of various subsystems, including a (1) Data Collection and Synchronization
component, (2) Database Organization and Automatic Insertion of Data (3) User Interface
Web Application and (4) an Authentication and Authorization component. The software for
data collection and synchronization, as well as 3D rendering in the browser, was developed
specifically for this project. The other two are off-the-shelf: the database component
uses PostgreSQL, and the network file system (NFS) component uses Windows Server.
The web-based API never interacts directly with the software running on the cameras.
Instead, there is an API gateway between those two components. This design choice allows
data acquisition and synchronization to solely focus on features regarding the camera,
whereas the authentication and authorization system could focus on security and HTTP
communication.

These components are not all deployed on the same server (Figure 8). There is only
one instance of the authentication and authorization system deployed on the server. As
for data acquisition and synchronization, Azure Kinect DK, Flir Lepton 3.5 LWIR, and
Jetson Xavier NX boards are used. The data acquisition and synchronization component
has 32 instances, one deployed for each PICU room. Finally, the server-side rendering
component is on the same server as the authentication and authorization system. As for
the client-side component, it does not have to be deployed at all; it will be downloaded
over the wire by each user when they first load the web application.
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The results of the synchronization technique save up to 72% of captured frames (ratio
of frames saved over total frames captured coming from two different cameras) while still
having the frame synced within the time window defined (see Table 2). The recording also
included all the necessary metadata to enable the correct usage of the point cloud, IR, and
RGB data.
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Moreover, the data collection and synchronization component and the authentication
and authorization component are easily accessible through REST APIs and WebSocket.
This setup allows the development of UI web-based applications and facilitates the use of
acquisition components related to the cameras. With this, a user could perform recordings
without having a deep knowledge of the systems used by the cameras.

Containerization is used for the web-based UI as well as the authentication and
authorization system’s API to facilitate transfer and deployment in different environments.
Data collection and synchronization’s API is not containerized because it needs extra
configuration to access devices connected through USB ports. As such, each of these
components runs on different web servers. The web-based API is easy to containerize, as
NextJS provides a quick way to deploy the application with containers. It does not require
any access to disk; it is a front-end application and does not need access to any file on the
system on which it is running. The authentication and authorization system bootstraps
several components, such as the database running PostgreSQL, the reverse proxy, and
itself. PostgreSQL needs access to the disk to have persistent data. As for the reverse proxy,
volumes are used to access files such as the configuration files and the public and private
keys used for HTTPS communication. Finally, the system itself needs access to the disk to
be able to save log files.

This deployed system can be commanded securely and remotely through an API to
start recordings in any of the rooms. Raw data is post processed into point clouds and
RGB, as well as the raw thermal image and a matrix of the temperature of each pixel. It
is synchronized according to a time window before being stored automatically on the
research servers.

The recordings in this database started on 14 April 2021, and to date, there are more
than 290 recordings in the database. Each recording is a 30 s long video for any of the
RGB, IR, or point cloud videos. Data collected in the research database includes the
patient’s specific identification number as well as the data described above. From admission
to discharge, all patients’ demographic, physiologic, medical, and therapeutic data are
prospectively collected. All this information is linked to our high-resolution research
database and electronic medical records for patients.

To further enhance data security, the servers dedicated to the database are physically
located in the informatics department of the CHU Sainte-Justine with restricted access.
The applied clinical research unit of the hospital oversees the database and workstation
maintenance and security.

4. Discussion

This article described a video acquisition system in a 32-bed medical, surgical, and
cardiac PICU at a free-standing tertiary maternal and child health center, i.e., the Centre
Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine) de Montréal, QC, Canada.

The use of video and image databases have been increasing because of the value
they add to the assessment of vital distress. Our proposed system has the potential for
effective patient monitoring as well as facilitating clinical decision-making at the bedside.
Having such a video database is crucial for the development and validation of algorithms
to quantify and standardize vital distress in children. Since this database is linked to a
patient’s numerical phenotype [18,19,31–33], we can use video data with demographic and
biological data to develop clinical decision support systems. This work was the first step to
making this possible. Accordingly, the main goal of this project was to automate the whole
process in a secure way, from the acquisition of the images and videos to the insertion of
the data in a database in a structured way.

Video data collected in this work were thermographic or infrared data (IR), point
clouds, and Red Green Blue or color (RGB) data. IR data provided heat distribution, point
clouds enabled surface and volume calculations, and RGB addressed different computer
vision tasks. The IR data was collected with a Teledyne Flir Lepton 3.5, whereas raw RGB-D
(RGB and depth) data was captured with an Azure Kinect DK (development kit). Raw
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depth data was post-processed into point cloud data using Open3D [43] and OpenCV.
Both sensors (Teledyne Flir Lepton 3.5 and Azure Kinect DK) were connected to a Jetson
Xavier NX board and were calibrated prior to data collection. The three types of video
data, i.e., IR, RGB, and point cloud, were synchronized to ensure frame consistency before
being stored automatically on hospital servers. Moreover, a web application as well as
an authentication and authorization system were developed to make recording secure
and remotely accessible. Cameras were installed on the ceiling, above each PICU bed. As
such, the design for sensor configuration and the data acquisition process did not have an
inference with regular patient care.

A system was created as a result, which had the following subsystems: (1) Data
Collection and Synchronization component, (2) a Database Organization and Automatic
Insertion of Data component (3) User Interface Web Application component and (4) an
Authentication and Authorization component. The choices of frameworks and technologies
such as Java, PostgreSQL, FastAPI, and Nginx were made based on efficiency and usability.
PostgreSQL and Java were both openly available. FastAPI allowed us to build easy-to-use
and well-documented REST APIs through its in-process background tasks, WebSocket
support, OpenAPI documentation support, and ASGI by default feature. As for reverse
proxy, the API gateway architectural pattern was implemented without any coding. Finally,
the system had a distributed design, for which any component could be deployed on a
different computer/server.

Any recording took place only if patients and/or their parents signed the consent
forms. Cameras were commanded to perform a 30 s acquisition and to send recorded data
automatically to the research database then. There were two types of consents for this
project: those who agreed to have their data used for research purposes only and those who
agreed on their data to be used for research as well as their data appearing in conferences
and publications. The reason for admission is not considered, and any patient in the PICU
who agreed to participate in this study was considered. We included all patients under
18 years old at admission to the PICU of CHU Sainte-Justine who consented to be part of
this study.

On a final note, it is important to state that our database does have certain limitations.
Firstly, data are collected from patients who agreed to be part of this study. As a result
of this, the variability in our database may be limited to specific age groups and/or
ethnic backgrounds. For this study, we included all patients from the age of 0 to 18 years
at admission to the pediatric ICU of Sainte-Justine University Hospital. To date, the
median age in our database is 6 months old. This could lead to bias in future research
and studies. As data acquisition continues, we might have less bias toward a specific
age group. Secondly, cameras are installed and fixed to the ceiling above each PICU
bed. This configuration is to ensure that the data acquisition process does not interfere
with regular patient care. Nevertheless, this setup provides only one viewpoint and
limits the visualization of some signs of respiratory distress, such as thoraco-abdominal
asynchrony. Furthermore, this database, like many others, is single centered. This limits its
generalizability. For the generalizability of algorithms, there is a need to develop similar
databases in other PICUs. With knowledge translation, this architecture can be replicated in
other PICUs with similar networks. This allows for the potential for further data expansion.

5. Conclusions

The accomplished work was the creation of a clinical video database to support a
wide range of clinical studies aimed at analyzing vital distress in children. This database
has already been used in a few research works [3–7]. Reliable localization and tracking
of the eye region for hospitalized PICU patients using RGB images has been achieved [5].
The future direction of this work is to assess pain and evaluate comfort in young children.
Non-invasive heat distribution at the skin surface using infrared thermography (IRT) was
studied in [6,7]. In the future, we can combine IR and RGB to evaluate the hemodynamic
status of patients (such as clinical hypoperfusion). Analyses of respiratory distress as well
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as tidal volume have been studied in [3,4]. A future direction of these works is to investigate
respiratory volumes (according to ventilation mode) by fusing RGB and point cloud data.
Another future research direction is to use RGB and IR videos to analyze sleep posture and
evaluate distressed motion (such as apnea and seizure) in children. Nevertheless, there are
far more clinical and research applications for this database.

The main question that needs to be currently addressed is the following: “Does
this database have the potential to assist in clinical practice through the development of
algorithms that monitor vital distress?”. To answer this question, the research challenges
are: to record a wide range of videos for various clinical scenarios in pediatric patients
(aged 0 to 18 years old); to check the reliability of the data collected; to develop real-
time algorithms that analyze vital distress; to validate the possible use of algorithms
in inpatient and outpatient care; to create similar databases in other PICUs to further
generalize algorithms; and to create a multimodal multiview camera framework to fuse and
incorporate observations from multiple modalities and views. Accordingly, the following
steps are to check the reliability of the collected data and validate its possible use in inpatient
and outpatient care.
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