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Abstract. Developing cement-based mortar mixes for three-dimensional print-
ing applications is a challenging task with multiple competing objectives, espe-
cially with climate change adaptation. Mortar mix design is a laboratory method 
that determines the necessary quantities and types of cement, sand, chemical 
admixtures, and water to form a combination with the specified qualities. The 
influx of new ingredients to investigate can lead to an inefficient amount of la-
bour. This research is part of a bigger project aiming to automate the develop-
ment of mortar mixtures for three-dimensional concrete printing technology. A 
party optimizer suggests novel combinations by adjusting the ingredients and 
their proportions, whereas feed-forward neural networks predict their proper-
ties. In total, seven factors are investigated, five of which are quantitative and 
two qualitative. These factors include the type of cement and superplasticizer 
used, as well as the sand-to-binder ratio, water-to-binder ratio, and admixture 
doses. The initial set of mixes formed in the laboratory derived from a D-
optimal set of 18 mixes. Tests frequently used in traditional construction are 
conducted to correlate them with important properties for 3D concrete printing 
applications. The flow table test correlates with flowability, whereas the slump 
test correlates with shape stability. The mixtures with the desired properties are 
then tested with the extrusion system, which includes a progressive cavity pump 
and an extrusion head. This is an ongoing study also including lower carbon 
mixes and it is expected that as the number of iterations increases, so will the 
qualities of the mixtures according to the given design criteria. 
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rithms. 

1 Introduction 

When looking for solutions to adapt to climate change, prior knowledge on mortar 
mixes have an important role in mix design. In many studies the mixture proportion is 
given directly, with no design method or explanation of how the parameters were 
obtained. Various techniques are being used where the most popular ones being the 
trial and error process, change one factor at the time, or following a full-factorial de-
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sign [1-3]. In 3D concrete printing applications, the property of the mixtures during 
the fresh state is crucial. The mixture should be pumpable, extrudable, able to keep its 
shape once deposited and able to withstand the weight of the additional layers without 
deforming or collapsing [4-10]. This adds to the complexity in the mix design process 
where compared to the mixtures formed in the traditional construction [11]. The vari-
ous available options of ingredients that can be added in the mix design often leads to 
mix designs with high complexity. As the number of the factors and their levels are 
increased the number of experiments can become an onerous task to fulfil [12-14]. 
Many researchers opt to concentrate on a few factors of the mixture while focusing 
the majority of their attention on specific ingredients of the mixes, such as chemical 
admixtures and their dosages. As a result, the main compositions of the mix, such as 
cement, sand, or water, remain constant. This study attempts to accelerate the devel-
opment of new mixtures for 3D printing applications while investigating complex mix 
designs. This research is part of a bigger project aiming to later include lower carbon 
mixes to adapt to climate change. Initially, it gathers information on numerous factors 
of a complex mix design using a design of experiments (DoE) method. Part of the 
experiments are simulated while using optimization algorithms to guide the process 
and feedforward neural networks to estimate the properties of the mixtures. Artificial 
intelligence has been used in many studies in civil engineering [15-17]. The printable 
and buildability region of the mixtures can be defined using two popular tests in the 
construction field, the slump and flow test [8].  
 

2 Materials, testing methods and methodology 

2.1 Materials 

The selected ingredients are five admixtures, including the superplasticizers, and three 
types of cement. Fine sand with particle sizes below 2.5 mm is used [18, 19]. The 
three admixtures are a biopolymer polysaccharide viscosity modifying agent (B), a 
water-reducing-non-chloride accelerating admixture (A), and a calcium silicate hy-
drate admixture (CSH-C). Both superplasticizers selected are based on synthetic or-
ganic polymers (PCE 1 & 2). For cement, the three types are binary cement with silica 
fumes (GUbSF), general use Portland cement blended with limestone (GUL), and 
Portland cement with a high early strength (HE).  
 
2.2 Testing methods 

All the selected tests are conducted in the dormant period of the mortar mixtures. The 
ASTM C1437 flow test is used to measure the spread of the mixes and to correlate the 
results with the pumpability of the mixes. These measurements can ensure that there 
will be no clogging while transferring the material from the pump towards to the out-
let of the extruder. The flow target was to achieve a spread of at least 115 % [8] 5 
minutes after the mixing process. Tests were conducted after 5, 15 and 30 minutes. 
Two cameras were placed, capturing a side and the top view, to inspect the behaviour 
of each mixture over time (Fig. 1a). The ASTM C143 slump test provided an insight 
on the behaviour of the mixture related to its shape stability. The mini-slump cone is 
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used with dimensions of 150 mm x 100 mm x 50 mm height, base and top diameter 
respectively. Tests were conducted after 5, 15 and 30 minutes (Fig. 1b, c, and d).  
 

  
Fig. 1. Top view of the flow table (a), side view of the slump test (b, c, d). 

 

Finally, the ASTM D3080 direct shear test is used to observe the strength develop-
ment of the mixture during the dormant period. Multiple tests are conducted within 90 
minutes following a similar methodology where the same test was performed [5, 6]. 
The main components of the direct shear apparatus are a linear displacement motor 
and a shear box. For this study the apparatus is modified by adding a displacement 
sensor and a load sensor to capture the strength development of the mixture. An illus-
tration of the equipment is shown in Fig. 2. 
 

  
Fig. 2. The direct shear apparatus (a), and the shear box (b). 

 
2.3 Extrusion system 

The 3D concrete printer used in this study utilizes a 6-DOF robot manipulator, a pro-
gressive cavity pump, and an extrusion head. The robot manipulator is the IRB6700 
from ABB, and it has a working envelope of 3.2 m and a maximum load of 150 kg.  
The progressive cavity pump can deliver highly viscous and thixotropic mixtures with 
accuracy and repeatability. The extrusion head (fig. 3b) consists of an auger screw to 
convey and deposit the material through the nozzle. The motors at the pump and the 
extrusion head are calibrated to give the desired constant flow using variable frequen-
cy drives. Temperature and pressure sensors are added as a feedback subsystem to 
monitor the printing process. The large-scale additive manufacturing laboratory of 
ETS is depicted in Fig. 3. 



4 

 

   
Fig. 3. The large-scale additive manufacturing laboratory of ETS and the extrusion system used 

in this study (a), the extrusion head (b), and the progressive cavity pump (c). 
 

 
2.4 Methodology 

To reduce the number of mixes to be formed in the laboratory, an initial set of mixes 
were selected using a design of experiment methodology. An optimal subset of 18 
mixes were selected following a D-optimal design as in our previous study [19]. After 
the initial set, a multiobjective Pareto optimizer guides the procedure by proposing 
new combinations of the ingredients and their dosages [20]. Up to seven factors can 
be edited by the algorithm; of these, two are handled as qualitative factors and the 
other five as quantitative ones. The type of superplasticizers and the type of cement 
are the qualitative parameters. The quantitative factors include the ratios of water and 
sand to the binder, as well as the dosages of superplasticizer, biopolymer polysaccha-
ride viscosity modifier, water-reducing-non-chloride accelerating admixture, and 
crystalline calcium silicate hydrate. Feedforward artificial neural networks are trained 
using data from lab experiments, and they are updated in every iteration of the pro-
cess. These networks are used to predict the properties of the new proposed mixtures 
during the optimization procedure. The final set of party front mixtures are formed 
and tested in the laboratory to acquire the real fresh and final properties of the mix-
tures. The objectives are to increase simultaneously the buildability and the shape 
stability of the mixes, while acquiring an acceptable flowability. 
 

3 Results 

During the printing process, the plastic collapse of the printed structure was observed 
due to inadequate strength of the mix (Fig. 4a), and the elastic bulking due to inade-
quate stability of the mix (Fig. 4b). Those are two failure mechanisms which are often 
observed in 3D concrete printing [21]. The images of Fig. 4 were captured during the 
printing process from a camera placed near the printing area. Multiple tests have been 
made with adjusting the printing speed or the layer cycle time. The two examples in 
Figure 4, had a layer cycle time of 6 seconds with 38 layers being deposited before 
collapsing, and the Figure 4b, had a layer cycle time of 12 seconds with 19 layers 
being deposited before collapsing.  
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Fig. 4. Plastic collapse (a), and elastic buckling failure (b). 

 
Six new mixes are introduced after two iterations of the Pareto optimization process. 
So far, 24 mixes are formed, including the initial set of mixes from the D-optimal 
design. All the new proposed mixes include the GUL cement type, the admixtures A, 
and CSH-C. The results obtained are shown in Fig. 5 and Fig. 6. The results are illus-
trated in two-dimensional figures with the flow, slump or yield stress of the mixes. 
The initial mixes are represented with hollow markers whereas the mixes proposed 
during the optimization process are shown with filled markers. 
 
In Fig. 5a, the x-axis is the slump test and the y-axis is the flow test, both at 5 minutes 
after the mixing process. Aiming to improve both properties, the best mixes are locat-
ed in the top left corner of the figure. As it can be noticed, there is always a compro-
mise between the two properties. Four out of the six optimized mixes had a slump less 
than 4 cm. The x-axis and the y-axis of Fig. 5b are the shear stress at 90 minutes after 
the mixing process and the flow test at 5 min, respectively. Aiming to increase both 
properties, the best mixes are located in the top right corner of the figure. Five out of 
the six proposed mixes have a yield stress above 11 kPa. Finally, in Fig. 5c, the x-axis 
is the yield stress and the y-axis is the slump test, at 90 and 5 minutes after the mixing 
process respectively. With the goal to increase the yield stress but reduce the slump, 
the best mixes are located in the bottom right corner of the figure. Three of the pro-
posed mixes have the best performance among the 24 formed mixes. 
 
The flow of the mixes has been defined to be above 115%~120% during the calibra-
tion of the extrusion system. Hence, the area of interest of the flow in our study is 
between 115% to 135%. As mentioned previously, with the aim to increase the yield 
stress and reduce the slump, the results can be illustrated in a two-dimensional graph 
with the ratio of the yield strength and slump of the mixes. In Fig. 6a, the results are 
summarized in one graph focused in the area of interest. The best mixes are located in 
the right side of the figure. After only two iterations of the party optimization meth-
odology, there is already one proposed mixture that outperforms the initial set of mix-
es. In Fig. 6b a few of the printed structures are presented with adequate buildability. 
One of the mixes had a layer cycle time of printed 6 seconds and it was possible to 
reach 54 layers. Not all of the mixes proposed by the party optimization algorithm 
have been tested while this manuscript is written.  
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Fig. 5. Comparison between the initial and optimized mixes among the three investigated prop-
erties. Flow-slump (a), flow-yield stress (b), and slump-yield stress (c) of the 24 formed mixes. 
The measured yield stress is 90 minutes after mixing, whereas the flow and the slump is 5 
minutes after mixing. 
 
 

  
Fig. 6. Comparison between the initial and optimized mixes in the area of interest. The flow 
and yield/slump ratio are illustrated to summarize the results in a two-dimensional graph (a). 
Printed structures that succeeded the tests (b). 
 

4 Conclusion 

With this approach, less labour may be required to develop mixtures with enhanced 
properties. Statistics, optimization algorithms, and artificial intelligence all play an 
important role. This research is part of a bigger project aiming to automate the devel-
opment process of 3D concrete printing mixtures to adapt to climate change. The 
suggested approach pursues a multiobjective party optimization trend while attempt-
ing to enhance the properties of the mixtures. In an effort to reconcile the competing 
goals, the optimizer determines the most crucial components and their optimal ratios. 
The slump test correlates with form stability, while the flow table test correlates with 
flowability. As the number of iterations rises, it is anticipated that the mixes will con-
tinue to be improved in this ongoing study. This method promises to enhance the 
conflicting goals of the mortar mixtures by drastically reducing the time and quantity 
of experiments needed. 
 



7 

 

Acknowledgments 

This study is supported by Master Builders, Mitacs Acceleration, the Canada Re-
search Chair program and the Canadian Foundation for Innovation. Sofoklis Gianna-
kopoulos is gratefully acknowledged for his collaboration in fabricating the extrusion 
system. 

References 

[1] T. Ding, J. Xiao, S. Zou, and Y. Wang, "Hardened properties of layered 3D printed 
concrete with recycled sand," Cement and Concrete Composites, vol. 113, 2020, doi: 
10.1016/j.cemconcomp.2020.103724. 

[2] R. A. Buswell, W. R. Leal de Silva, S. Z. Jones, and J. Dirrenberger, "3D printing 
using concrete extrusion: A roadmap for research," Cement and Concrete Research, 
vol. 112, pp. 37-49, 2018, doi: 10.1016/j.cemconres.2018.05.006. 

[3] F. Bos, R. Wolfs, Z. Ahmed, and T. Salet, "Additive manufacturing of concrete in 
construction: potentials and challenges of 3D concrete printing," Virtual and Physical 
Prototyping, vol. 11, no. 3, pp. 209-225, 2016, doi: 
10.1080/17452759.2016.1209867. 

[4] K. Ghafor, W. Mahmood, W. Qadir, and A. Mohammed, "Effect of Particle Size 
Distribution of Sand on Mechanical Properties of Cement Mortar Modified with 
Microsilica," ACI Materials Journal, vol. 117, no. 1, 2020, doi: 10.14359/51719070. 

[5] R. J. M. Wolfs, F. P. Bos, and T. A. M. Salet, "Triaxial compression testing on early 
age concrete for numerical analysis of 3D concrete printing," Cement and Concrete 
Composites, vol. 104, 2019, doi: 10.1016/j.cemconcomp.2019.103344. 

[6] R. J. M. Wolfs, F. P. Bos, and T. A. M. Salet, "Early age mechanical behaviour of 3D 
printed concrete: Numerical modelling and experimental testing," Cement and 
Concrete Research, vol. 106, pp. 103-116, 2018/04/01/ 2018, doi: 
https://doi.org/10.1016/j.cemconres.2018.02.001. 

[7] R. Jayathilakage, J. Sanjayan, and P. Rajeev, "Direct shear test for the assessment of 
rheological parameters of concrete for 3D printing applications," Materials and 
Structures, vol. 52, no. 1, 2019, doi: 10.1617/s11527-019-1322-4. 

[8] Y. W. D. Tay, Y. Qian, and M. J. Tan, "Printability region for 3D concrete printing 
using slump and slump flow test," Composites Part B: Engineering, vol. 174, 2019, 
doi: 10.1016/j.compositesb.2019.106968. 

[9] P. Shakor, J. Renneberg, S. Nejadi, and G. Paul, "Optimisation of Different Concrete 
Mix Designs for 3D Printing by Utilizing 6DOF Industrial Robot," presented at the 
Proceedings of the 34th International Symposium on Automation and Robotics in 
Construction (ISARC), 2017. 

[10] A. V. Rahul, M. Santhanam, H. Meena, and Z. Ghani, "3D printable concrete: 
Mixture design and test methods," Cement and Concrete Composites, vol. 97, pp. 13-
23, 2019, doi: 10.1016/j.cemconcomp.2018.12.014. 

[11] D. Marchon, S. Kawashima, H. Bessaies-Bey, S. Mantellato, and S. Ng, "Hydration 
and rheology control of concrete for digital fabrication: Potential admixtures and 



8 

 

cement chemistry," Cement and Concrete Research, vol. 112, pp. 96-110, 
2018/10/01/ 2018, doi: https://doi.org/10.1016/j.cemconres.2018.05.014. 

[12] M. Cavazzuti, Optimization Methods: From Theory to Design. Scientific and 
Technological Aspects in Mechanics. 2013. 

[13] J. Lawson, Design and Analysis of Experiments with R. CRC Press Taylor & Francis 
Group, 2015. 

[14] M. Charrier, Ouellet-Plamondon C., "Artificial neural network for the prediction of 
the fresh properties of cementitious materials," Cement and Concrete Research, 2019. 

[15] K. T. Ateş, C. Şahin, Y. Kuvvetli, B. A. Küren, and A. Uysal, "Sustainable 
production in cement via artificial intelligence based decision support system: Case 
study," Case Studies in Construction Materials, vol. 15, 2021, doi: 
10.1016/j.cscm.2021.e00628. 

[16] S. Paul, B. Panda, H.-H. Zhu, and A. Garg, "An Artificial Intelligence Model for 
Computing Optimum Fly Ash Content for Structural-Grade Concrete," ASTM 
International, vol. 8, pp. 1-15, 01/14 2019, doi: 10.1520/ACEM20180079. 

[17] Y. Pan and L. Zhang, "Roles of artificial intelligence in construction engineering and 
management: A critical review and future trends," Automation in Construction, vol. 
122, 2021, doi: 10.1016/j.autcon.2020.103517. 

[18] V. Sergis and C. M. Ouellet-Plamondon, "Fractional factorial design to study 
admixtures used for 3D concrete printing applications," Materials Letters vol. 
Submitted, 2022. 

[19] V. Sergis and C. M. Ouellet-Plamondon, "D-optimal design of experiments applied to 
3D high-performance concrete printing mix design," Materials & Design vol. 
Submitted 2022. 

[20] V. Sergis and C. M. Ouellet-Plamondon, "Automating mix design for 3D concrete 
printing using optimization methods," Digital Discovery, 10.1039/D2DD00040G 
2022, doi: 10.1039/D2DD00040G. 

[21] R. Wolfs, S. Lucas, and T. A. M. Salet, "Elastic buckling and plastic collapse during 
3D concrete printing," Cement and Concrete Research, vol. 135, p. 106016, 09/01 
2020, doi: 10.1016/j.cemconres.2020.106016. 

 


