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On the evaluation of the carbon 
dioxide solubility in polymers using 
gene expression programming
Behnam Amiri‑Ramsheh 1, Menad Nait Amar 2, Mohammadhadi Shateri 3* & 
Abdolhossein Hemmati‑Sarapardeh 1,4*

Evaluation, prediction, and measurement of carbon dioxide  (CO2) solubility in different polymers 
are crucial for engineers in various chemical applications, such as extraction and generation of 
novel materials. In this paper, correlations based on gene expression programming (GEP) were 
generated to predict the value of carbon dioxide solubility in three polymers. Results showed that the 
generated correlations could represent an outstanding efficiency and provide predictions for carbon 
dioxide solubility with satisfactory average absolute relative errors of 9.71%, 5.87%, and 1.63% for 
polystyrene (PS), polybutylene succinate‑co‑adipate (PBSA), and polybutylene succinate (PBS), 
respectively. Trend analysis based on Henry’s law illustrated that increasing pressure and decreasing 
temperature lead to an increase in carbon dioxide solubility. Finally, outlier discovery was applied 
using the leverage approach to detect the suspected data points. The outlier detection demonstrated 
the statistical validity of the developed correlations. William’s plot of three generated correlations 
showed that all of the data points are located in the valid zone except one point for PBS polymer and 
three points for PS polymer.

In the recent years, application of different polymers has become an attractive issue in various industries includ-
ing the petroleum industry. The fluid adsorption process in different polymers is a vital circumstance in the oil 
industry concepts such as enhanced oil recovery (EOR)1–3, gas separation, imbibition of additives, and foaming 
 processes4,5. Carbon dioxide  (CO2) is one of the most significant gases, which plays a noteworthy role in polymers’ 
structure, polymer foams, and production  properties4,6. Also,  CO2 and supercritical carbon dioxide  (SCCO2), 
(a supercritical carbon dioxide is described as a fluid for which both temperature and pressure are higher than 
critical values) have become one of the most conventional green materials, that have been extensively used in 
solvent, anti-solvent or a solute in numerous field processing including material synthesis, material modification, 
foaming processes, polymerization and particle  production7–9.  SCCO2 is potentially appealing as a solvent that 
shows properties that are a mixture of those commonly combined with liquids or gases.  CO2 solubility is the 
maximum  CO2 quantity that can solute in different solutions. Evaluation, prediction, and measurement of  CO2 
solubility in different biodegradable polymers has become notable technology for engineers in various chemical 
applications such as extraction and generation of novel  materials10–14. Biodegradable polymers are a particular 
type of polymers that collapse by bacterial dissolution process to eventuate in natural fluids such as  CO2 and  N2. 
Poly butylene succinate (PBS) and polybutylene succinate-co-adipate (PBSA) are two applicable biodegradable 
polymers that have been generated by Showa Highpolymer Co. Ltd. and Showa Denko K.K15,16.

In order to predict gas solubilities in polymers, especially  CO2, various experimental, empirical, and theoreti-
cal approaches were investigated since 1986. In 1986 and 1993, Shah et al.17,18 measured solubility of different 
gases including  CO2 in silicone polymers at pressures up to 26 atmosphere and temperature values of 10, 35, and 
55 °C. In 1994, Li et al.19 predicted the solubility of  CO2 in amine systems. They considered binary and ternary 
mixtures containing three solvents, namely mono-ethanolamine (MEA), methyl-diethanolamine (MDEA), and 
water  (H2O). They used temperature in a range of 0–225 °C. They modeled  CO2 solubility in amine mixtures 
as a function of temperature. Two years later, Sato et al.20 investigated solubility of  CO2 and  N2 in polystyrene 
under high pressure and temperature conditions. They measured gas solubility at pressures up to 20 MPa and 
temperatures from 373.2 to 453.2 K. In 1998,  Aubert21 calculated  CO2 solubility at pressures up to 9.65 MPa using 
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quartz crystal microbalance technique. Next year, Webb et al.22 and Sato et al.23 evaluated diffusion and solubility 
of  CO2 in polymers under high pressures and temperatures. According to their research, the solubilities increased 
by increasing pressure and decreased by increasing temperature. In 2000, Sato et al.15 suggested empirical rela-
tions to determine solubility and diffusion coefficient of  CO2. They considered pressure and temperature as the 
dependent variables in the range of 1.025–20.144 MPa and 323.15–453.15 K, respectively. They achieved that 
solubility of  CO2 in molten state polymers increases by increasing pressure and decreasing temperature. A year 
later, Hilic et al.24 measured solubility of  N2 and  CO2 in polystyrene, which considered pressure from 3.05 to 45 
MPa and temperature from 338 to 402 K. In addition, an experimental technique with a vibrating-wire force 
sensor was applied. They got a linear relationship between increasing solubility with increasing pressure and 
decreasing temperature. In the same year, Sato et al.25 calculated solubilities of  CO2 at the temperature range of 
313.15–373.15 K and pressures up to 17.5 MPa. In 2002, Park et al.26 studied about  CO2 solubility in alkanola-
mine solutions in the values of 40, 60 and 80 °C for temperature and 0.1–50 psia for pressure. They represented a 
vapor–liquid equilibrium of  CO2 in these solutions. In the same year, Sato et al.27 examined  CO2 solubility in poly 
(2,6-dimethyl-1,4-phenylene ether) (PPO) and PS at temperatures of 373.15, 427.15, and 473.15 K and pressures 
up to 20 MPa. They obtained that solubility of  CO2 increases with increasing PPO concentration. A year later, in 
2003, Hamedi et al.28 predicted the adsorption of  CO2 in various polymers based on a group contribution equa-
tion of state (EoS) with input ranges of 283–453 K and 1–200 bar for temperature and pressure, respectively. Their 
best result was an average absolute relative error (AARE) of 5.5% for polystyrene. In 2006, Li et al.29 measured 
gas solubilities and diffusivities in polylactide at a temperature of 180–200 K and pressures up to 28 MPa using a 
magnetic suspension balance (MSB). Furthermore, they adopted a theoretical model based on Fick’s second law 
to extract diffusion coefficients of  N2 and  CO2 in polylactide. They obtained that  CO2 exhibited lower diffusivity 
than  N2 at the same temperature. At that year, Nalawade et al.9 used  SCCO2 as a green solvent for processing 
polymer melts. They earned  SCCO2 is applicable in many polymerization processes due to its high solubility in 
polymers. In 2007, Lei et al.30 generated buoyancy correlations and Sanchez and Lacombe equation of state to 
estimate  CO2 swelling degree, crystallinity, and solubility in polypropylene. They achieved  CO2 solubility first 
decreased and then increased with temperature. Two years later, Khajeh et al.31 developed intelligent model based 
on adaptive neuro fuzzy inference system (ANFIS) to predict solubility of  CO2 in polymers. They used up to 37 
data points for different polymers. In 2011, Xu et al.32 investigated a theoretical study of solubility correlations of 
 CO2 in ether and carbonyl groups of polymers, namely poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), 
poly(vinyl acetate) (PVAc), poly(ethylene carbonate) (PEC) and poly(propylene carbonate) (PPC). They showed 
that the  CO2 solubility in PPC is higher than other polymers used in their study. Next year, Han et al.13 developed 
continuous reactions and considered economical concepts in  SCCO2 applications. In 2013, Li et al.33 developed 
an artificial neural network (ANN) to estimate gas solubilities in polymers. Their research demonstrated good 
agreement between experimental and predicted data using their correlation. At the same year, Minelli and  Sarti34 
measured solubility and permeability of  CO2 in various glassy polymers by considering diffusion coefficient as 
a kinetic factor. In 2015, different mathematical and theoretical approaches by Ting and  Yuan10, Li et al.7 and 
Quan et al.12 were studied to estimate  CO2 properties including solubility. All of them showed that the  CO2 
solubility has direct relation with pressure and reverse relation with temperature. Two years later, Mengshan 
et al.8,35 developed an artificial neural network and artificial intelligence technique based on diffusion theory 
to predict solubility of  CO2 and  SCCO2 in polymers. In 2019, Soleimani et al.4 developed decision tree (DT) 
based smart model for estimating solubility of  CO2. They used 515 data points with a range of 306–483.7 K for 
temperature and 1.025–44.41 MPa for pressure. One year later, Li et al.36 investigated a comprehensive review 
of  CO2 polymer system. They used two types of multi-scaled methods, namely thermodynamic-calculation 
model and computer simulation to measure  CO2 solubility in polymers. Their developed model can be utilized 
in chemistry and chemical industries, such as phase rheological property and polymer self-assembly. In 2022, 
various experimental, theoretical, and modeling researches have been done in order to measure solubility of  CO2 
and other gases in water-polymer systems. Sun et al.37 measured  CO2 solubility in oil-based and water-based 
drilling fluids using the sample analysis approach. Their results indicated that the salting-out effect of electrolyte 
on gas solubility can be increased with increasing the molar concentration of ions. Their study also showed that 
the errors of  CO2 solubility in the oil-based and water-based drilling fluids are 6.75% and 3.47%, respectively. 
Besides, Ushiki et al.38 evaluated  CO2 solubility and diffusivity in polycaprolactone (PCL) performing perturbed-
chain statistical associating fluid theory (PC-SAFT) and free volume methods. According to their work,  CO2 
solubility was recognized to conform with Henry’s law, and the PC-SAFT EoS sufficiently described the solubility. 
Also, Kiran et al.39 assessed diffusivity and solubility of  CO2 and  N2 in polymers. They usedSanchez-Lacombe 
EoS in modeling solubility. Furthermore, Ricci et al.40 provided a comprehensive theoretical framework for the 
supercritical sorption and transport of  CO2 in polymers. In their study,  CO2 sorption was modelled utilizing 
data available across the critical region, at different temperatures and pressures up to 18 MPa.

The present research mostly focuses on generating accurate correlations for  CO2 solubility prediction con-
sidering the pressure and temperature of the polymer as input variables. The generated correlations are based 
on gene expression programming (GEP) technique. A comprehensive databank including of 53 data points for 
PBS, 43 data points for PBSA and 92 data points for PS polymer is  collected15,20,24,25. After generating correlations, 
statistical and graphical error tests are applied to assess the accuracy of the correlations. Likewise, the capability of 
the represented correlations in predicting the real trend of the  CO2 solubility with the change of pressure and tem-
perature is appraised. Lately, the leverage approach is performed to detect the outlier data points in the dataset.
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Data collection
In this research, GEP algorithm was implemented to predict the amount of  CO2 solubility in three different poly-
mers, namely PBS, PBSA, and polystyrene (PS). For this aim, 53 data points for PBS, 43 data points for PBSA, and 
92 data points for PS polymer were  collected15,20,24,25. In this work, pressure and temperature of carbon dioxide 
were considered as input parameters. A summary of the gathered data points is shown in Table 1. As pointed up 
in Table 1, extensive ranges of temperature and pressure of  CO2 are supplied in this study.

Correlation development
In order to generate  CO2 solubility correlations, Gene expression programming (GEP) evolutionary algorithm has 
been applied. GEP which was firstly proposed by Ferreira in  200141, is a normally comprehensive phenotype tech-
nique in which the chromosomes form a correctly inseparable, operative  entity42. This technique is extensively 
used in computer programming and modeling  applications43–46. Gene expression programming algorithms are 
complicated tree-based structures that coordinate by changing their shape, composition and sizes. By encoding 
trees as vectors of symbols and transforming them into them just in order to assess their fitness, this technique 
can indirectly produce  trees47. This soft computing technique is strong predictive algorithm that is widely used 
for various field application purposes. Commonly, the GEP technique has two components, namely chromo-
some and the expression trees (ETs). The possible solutions are encoded by the chromosomes and is regarded 
as the linear string with particular length, hence these solutions will be decoded into the real candidate solution 
termed expression  tree48. After producing of chromosomes of first-production individuals and choosing them 
based on fitness function to re-generate with modifications, new generation individuals were presented to the 
developmental operation of selection environment confrontation, genome expression, and modified  reproduce49. 
Additionally, gene expression programming automatically creates algebraic expressions to answer nonlinear 
 problems50. The schematic flowchart of GEP procedure is depicted in Fig. 1.

Results and discussion
Development of correlations. In the present study, gene expression programming tree-based soft com-
puting approach was carried out to develop accurate correlations for predicting  CO2 solubility in different poly-
mers. The developed correlations consider  CO2 solubility as a function of pressure and temperature of cor-

Table 1.  Summary of experimental data points utilized in this work.

Polymer Pressure (MPa) Temperature (K) CO2 solubility (g/g) Number of data

PBS 1.025–20.144 323.15–453.15 0.00876–0.1761 53

PBSA 1.098–20.074 323.15–453.15 0.01184–0.1741 43

PS 2.068–44.41 338.22–473.15 0.00714–0.16056 92

Figure 1.  The schematic framework of the gene expression programming (GEP).
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responding polymer and use them as input variables. To generate accurate and user-friendly correlations, an 
exhaustive databank consists of 53 data points for PBS polymer, 43 data points for PBSA polymer and 92 data 
points for PS polymer was collected from previous literature. Table 2 represents the GEP parameters utilized in 
this research.

Using the aforementioned approach, the final formulas for the determination of  CO2 solubility based on gene 
expression programming technique, are listed below:

CO2 solubility correlation in PBS polymer. 

CO2 solubility correlation in PBSA polymer. 

CO2 solubility correlation in PS polymer. 

where P and T denote pressure and temperature of aforenamed polymers, respectively. In the above correlations, 
the units of P and T are MPa and K, respectively. The generated correlations in this study are applicable for  CO2 
solubility prediction in various ranges of temperature and pressure of the mentioned polymers.

Statistical performance assessment. In order to show and compare the precision of the generated cor-
relations, some important statistical parameters including root mean square error (RMSE), standard deviation 
(SD), coefficient of determination  (R2), the average relative error (ARE) and the average absolute relative error 
(AARE) were  applied51. These terms are given below:

where Ei is the partial deviation that is described as:
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Table 2.  GEP setting parameters used in the study.

Parameters Value/setting

The number of head size 10–15

Chromosome 500

Number of generation 300

Mutation rate 0.25

Inversion rate 0.1

Operators used +, −, × , /, exp,  X2, INV, cos, ln, sqrt
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where n, S (exp), S (cal) and S (avg) are the number of data, actual  CO2 solubility value, calculated  CO2 solu-
bility value, and the average of the actual data points, respectively. The prementioned statistical parameters for 
the three generated correlations are detailed for the training, testing, and whole datasets in Table 3. As described 
in this table, the AARE of the correlation for the PBS polymer is lower than other two correlations generated in 
this work. Results demonstrate that generated correlation for the PBS polymer has the lowest standard deviation 
(0.028) and RMSE (0.00178). However, the correlations developed for the other two polymers also have accept-
able accuracy. As presented in Table 3, the AARE values for PBS and PBSA polymers were obtained less than 
AARE for PS polymer, which was due to the nature of the experimental data related to PS polymer. It is obvious 
that the generated correlations are reliable and sometimes, due to the nature of the experimental data values of 
different materials (like polymers), different error values may be obtained.

Graphical performance assessment. This section represents a graphical description of the comparison 
among the results of the generated correlations and the actual data. The predicted  CO2 solubility values in PBS 
polymer are sketched versus actual ones in Fig. 2a. Likewise, the predicted  CO2 solubility values in PBSA and 
PS polymers are depicted versus experimental data in Fig. 2b,c, respectively. The closer the sketched data points 
to the 45° line, the greater the uniformity of the correlations is. According to these plots, it is apparent that 
the results of the generated user-friendly correlations illustrate satisfactory agreement around the ideal line. 
Additionally, the relative error curves of the developed correlations of the  CO2 solubility in PBS polymer, PBSA 
polymer, and PS polymer are presented in Fig. 3a–c, respectively.

Furthermore, to show the accuracy of the presented correlations in different ranges of pressure and tempera-
ture, the correlations’ performances in terms of AARE were sketched against five sets of pressure and three sets 
of temperature. Figure 4 demonstrates the AARE of the correlations in different ranges of input parameters. For 
various ranges of pressure, the correlation of  CO2 solubility in PBS polymer clarifies a steady performance and 
its AARE is lower than 2.9% in all ranges. Besides, a reliable performance can be perceived from the correlation 
of  CO2 solubility in PBS polymer up to the last temperature range. This figure validates the efficiency of the 
developed correlation of  CO2 solubility in PBS polymer over other developed correlations in the present study.

Afterwards, the cumulative frequency analysis of the absolute percent relative error (APRE) for the generated 
correlations in this work is shown in Fig. 5. According to the results of this figure, the correlation of  CO2 solubility 
in PBS polymer could estimate more than 90% of  CO2 solubility values with an APRE of less than 5%, and also 
more than 98% of the  CO2 solubility values by the correlation for PBS polymer have an AARE of less than 10%.

Additionally, absolute relative error comparison among generated correlations was carried out. Figure 6 
describes the AARE comparison between the prementioned correlations. According to this figure, the developed 
correlation of  CO2 solubility in PBS polymer revealed the highest accuracy and the lowest AARE between other 
correlations generated in this research.

Trend analysis of the generated correlations. Trend analysis is a well-known applicable technique 
to visualize the output variation with the change of input  variables52,53. The predictions of the  CO2 solubility 
correlations are depicted versus temperature and pressure in Fig. 7 to investigate the capability of the generated 
correlations in following the actual expected trends of  CO2 solubility values with the change of pressure and tem-
perature. According to Henry’s law, it is evident that  CO2 solubility increases with decreasing temperature and 
increasing  pressure54. Carbon dioxide has a propensity, namely plasticizing  effect55. It means that the molecules 
of  CO2 are pressured in the chains of the polymer as a consequence of increasing pressure, which results in an 
extension of the pore space within the molecules and, then, for this reason, an addition of their  movement56,57. 
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Table 3.  Statistical assessment of the generated correlations in this work.

Polymer Status ARE (%) AARE (%) RMSE SD R2

PBS

Train 0.217 1.775 0.001 0.031 0.997

Test 0.510 1.097 0.000 0.014 0.999

All 0.278 1.635 0.001 0.028 0.998

PBSA

Train 1.660 1.271 0.002 0.092 0.995

Test − 4.402 8.175 0.004 0.099 0.989

All 0.391 5.879 0.003 0.093 0.993

PS

Train 3.305 9.197 0.004 0.156 0.991

Test 4.274 11.819 0.005 0.242 0.973

All 3.494 9.710 0.004 0.176 0.989
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This causes it feasible to absorb more gas molecules. Likewise, by decreasing the temperature the  CO2 molecules 
obtain lower kinetic energy and they do not have a tendency for releasing from the solution and for staying in a 
condition with more  independence58. As a consequence, the solubility would increase.

Outlier discovery of the developed correlations. Outlier discovery plays an important role to identify 
data that may vary from other data points exist in a  dataset59. The leverage technique is a trustworthy method 
for outlier discovery which concerns with the values of the standardized residuals and a matrix, namely the Hat 
matrix made of the actual and the predicted values obtained from the  correlations60. According to this approach, 
if most of the data points located in the ranges of − 3 ≤ R ≤ 3 (R denotes the standardized residual) and 0 ≤  Hi ≤ H*, 
it illustrates that the results of the generated correlations are dependable and  valid61–63. Figures 8, 9 and 10 rep-
resent William plots of the generated correlations of  CO2 solubility in PBS, PBSA, and PS polymers, respectively. 
For PBS polymer it is obvious that all of the data points placed in a valid zone except one. Also, the results of 
the generated correlation of PBSA polymer show that all of the data points located in a valid region. At the end, 
Fig. 10 presents a William plot of  CO2 solubility correlation in PS polymer, showing that among whole dataset 
consists of 92 data points used for this polymer, only 3 data points are recognized as out of leverage data points.
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Figure 2.  Cross plots of the predicted and experimental  CO2 solubility values in (a) PBS, (b) PBSA, (c) PS 
polymers.
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Conclusions
The present research aimed to predict  CO2 solubility as a strong effective parameter in polymerization processes. 
PBS, PBSA, and PS were three polymers, which were utilized in this work. For this purpose, gene expression 
programming (GEP) technique was applied. To this aim, a widespread dataset was gathered from previous litera-
ture. Results showed that the generated correlation of  CO2 solubility for PBS polymer could present the highest 
accuracy in predicting solubility of  CO2 with an AARE of 1.63%, SD of 0.028, and RMSE of 0.001. The sketched 
 CO2 solubility curves using the trend analysis demonstrated that all three generated correlations in this study 
could exactly fit the actual trends of  CO2 solubility variation. The simple generated correlations can be performed 
in wide ranges of pressures and temperatures and represent high accuracy. The leverage approach showed that 
all the data points seem to be reliable and valid except four, which were placed in a lower suspected and out of 
leverage zones. In order to precisely simulate  CO2 solubility in polymers in a future works, it is recommended 
to generate new correlations, and also develop intelligent schemes.
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Figure 8.  The William plot of the generated correlation for PBS polymer.
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Figure 9.  The William plot of the generated correlation for PBSA polymer.
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Figure 10.  The William plot of the generated correlation for PS polymer.
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