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Abstract: Predicting the corrosion behavior of materials in specific environmental conditions is impor-
tant for establishing a sustainable manufacturing system while reducing the need for time-consuming
experimental investigations. Recent studies started to explore the application of supervised Machine
Learning (ML) techniques to forecast corrosion behavior in various conditions. However, there is
currently a research gap in utilizing classification ML techniques specifically for predicting the corro-
sion behavior of stainless steel (SS) material in lactic acid-based environments, which are extensively
used in the pharmaceutical and food industry. This study presents a ML-based prediction model
for corrosion behavior of SSs in different lactic acid environmental conditions, using a database
that described the corrosion behavior by qualitative labels. Decision tree (DT), random forest (RF)
and support vector machine (SVM) algorithms were applied for classification. Training and testing
accuracies of, respectively 97.5% and 92.5% were achieved using the DT classifier. Four SS alloy
composition elements (C, Cr, Ni, Mo), acid concentration, and temperature were found sufficient to
consider as input data for corrosion prediction. The developed models are reliable for predicting
corrosion degradation and, as such, contribute to avoiding failures and catastrophes in industry.

Keywords: corrosion; stainless steel; machine learning; classification; decision tree; feature reduction

1. Introduction

A material’s chemical composition and various environmental or operational factors,
including temperature, pH, chloride content [1,2], humidity [3,4], stray currents [5], oxygen
levels [6], and impurity levels [7] have a significant impact on corrosion processes. There-
fore, it is difficult to link individual environmental factors to corrosion processes or predict
corrosion lifetimes from physics-based corrosion laws. Predicting corrosion behavior of
materials in any given environmental condition is important, because testing materials in
each possible environmental condition is time-consuming and expensive [8]. In addition,
analyzing corrosion data and predicting corrosion behavior needs advanced data mining
methods [9,10]. The predictive capability of corrosion behavior in stainless steel (SS), which
is widely employed in various industries, plays a crucial role in maintaining sustainable
manufacturing processes and mitigating the detrimental effects of corrosion [11,12]. The
present study focuses on the corrosion behavior prediction of different SSs in a lactic acid
environment. This type of corrosive environment is typical for applications in health-related
industries such as food, pharmaceuticals, and cosmetics [12–14].

In the field of materials research, machine learning (ML) techniques have gained
significant popularity due to their effective data mining abilities [9]. Instead of relying on
pre-established equations, ML algorithms learn from input data and previous experiences.
ML techniques like Random Forest (RF), Support Vector Regression (SVR), and Artificial
Neural Networks (ANN) have recently found application in corrosion research to explore
corrosion behavior [8,10,15,16]. ML algorithms can be divided into two categories: unsu-
pervised learning and supervised learning. Typically, in unsupervised learning the data
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has no labels, thus the model must generate a reasonable output without external support.
In supervised learning processes, a network is provided with the desired output. Here,
the output for specific inputs should be available to train the model and find the mapping
function, and then the model can be used to predict the output of new inputs [17].

To model corrosion processes, supervised ML algorithms are mainly deployed. In
such cases, typically, the chemical composition of the alloy and environmental factors
are considered as input features, and the corrosion rate is considered as output to estab-
lish a ML-based corrosion rate prediction model [9,10,15]. Supervised ML techniques are
applied in corrosion research for various objectives. These include predicting corrosion
rates [16,18–20], forecasting pitting corrosion behavior [8], and modeling the maximum
dimensions of pits [21]. Additionally, ML methods are utilized to explore the corrosion be-
havior by considering the underlying physic-based corrosion laws in physic-based models.
These models utilize various physical factors associated with corrosion, such as material
properties, temperature, salinity, humidity, and more, in order to establish a deterministic
relationship [22]. As an example, Shi et al. [23], have used Arrhenius equation in the ANN,
which relates the rate of chemical reactions (corrosion) to temperature and activation en-
ergy, providing insight into how temperature affects stress corrosion crack growth rates of
Inconel alloy 600.

Literature reports various applications of ML in corrosion research, including data
visualization, simulation, correlation analysis, and multivariate fitting. ML techniques offer
distinct advantages over traditional regression analysis methods [24,25]. ML algorithms
can handle diverse features, perform robust regression analyses, and effectively generalize
data sets of any scale [26]. Consequently, ML enables in-depth investigations into corrosion
behavior and enhances the prediction capabilities through improved technical conditions.

Typically, supervised ML techniques were used to predict corrosion behavior, and
the technique was selected based on the size and the type of dataset. Most of the studies
applied regression methods and ANNs for prediction [18,23,27,28]. However, there is a
lack of research using classification ML techniques, and analyzing their performance for
predicting corrosion behavior. Although, often, in practical use cases, datasets are classified
based on labels, which needs classification-based predictive models to assign a class label
to input numerical data.

Hence, the main objective of this contribution is to determine and evaluate whether
categorized (i.e., labeled) datasets are applicable and accurate for prediction of corrosion
behavior using classification methods. The studied algorithms include Decision Tree (DT),
RF, and Support Vector Machine (SVM), as a classification problem can typically be solved
using one of these supervised ML algorithms [29]. As presented in Figure 1a, a DT algo-
rithm has the structure of a tree and is used for classification and prediction. It contains root
and internal nodes (non-leaf nodes), which are used to separate instances based on their fea-
tures. Internal nodes are the result of attributed test cases and leaf nodes (or terminal nodes)
denoting the class label [30]. The SVM algorithm applies supervised learning techniques,
utilizing support vectors to identify an optimal hyperplane that separates classes within the
n-dimensional plane, enabling accurate predictions [31]. In Figure 1b, a two-dimensional
data set is considered as a sample, and the hyperplane divides the training data represented
by red circles and blue squares. As shown in Figure 1c, in the RF algorithm, multiple ran-
domized DTs are combined, and their predictions are aggregated as a final class [32]. RF is
capable of handling high-dimensional data and non-linear classification tasks [33]. Indeed,
DTs are widely employed for classification tasks due to their simplicity, interpretability,
and capacity to handle both numerical and categorical features. Given the mixed feature
types in the dataset of this study, DTs offer a straightforward approach to capture and
comprehend the decision-making process, enabling the extraction of meaningful insights
from the model [34]. In addition, RF is utilized as an ensemble learning method to address
overfitting and check the possible enhancement in the overall accuracy. Generally, by
combining multiple decision trees and aggregating their predictions, RF demonstrates a
tendency to generalize well on unseen data, making it a suitable choice for improving
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the model’s robustness and performance [35]. Furthermore, SVM is a powerful classifier
renowned for its effectiveness in high-dimensional spaces and ability to handle complex
decision boundaries [31]. Considering the presence of multiple features and potentially
©ntricate relationships between them in the dataset of this study, SVM was selected to
explore non-linear decision boundaries and establish a competitive baseline for comparison
with other algorithms.
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Figure 1. Conceptual diagram of (a) DT algorithm indicating root node, internal nodes, and leaf
nodes (inspired from [30]); (b) SVM algorithm in a 2D data set (inspired from [36]); (c) RF algorithm
consisting of N decision trees (inspired from [37]).

This study proposes the use of classification methods to categorize and predict the SS
alloys’ corrosion behavior based on the literature data published in the ASM Handbook of
Corrosion Data (2nd edition) [38]. The dataset’s features comprise the chemical composition
of SS alloys, which includes 13 elements, the electrolyte temperature and the concentration
of lactic acid in the electrolytic solution. Various corrosion behaviors within this dataset
were qualitatively labeled as Resistant, Good, Poor, and Questionable, with each label defined
as follows:

• Resistant: Corresponding to a mass loss rate of less than 0.1 g/h/m2 or less than
0.11 mm/year decrease in thickness.

• Good: Corresponding to a mass loss rate ranges from 0.1 to 1.0 g/h/m2 or 0.11 to
1.10 mm/year decrease in thickness.

• Poor: Corresponding to a mass loss rate ranges from 1.0 to 10.0 g/h/m2 or 1.1 to
11.0 mm/year decrease in thickness.

• Questionable: Corresponding to a mass loss rate exceeding 10.0 g/h/m2 or 11.0 mm/year
decrease in thickness, or being susceptible to local corrosion, pitting, crevice, or
stress corrosion.

On this dataset, it was proposed to develop and apply ML classification techniques
that map the chemical composition of steel, acid concentration, and temperature to a label,
which was defined based on the corrosion rate. Different ML techniques were analyzed
by comparing their accuracies. The effect of feature selection and reduction on the accu-
racy of the models was studied. Finally, the prediction accuracy was improved using
hyperparameter tuning techniques.
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2. Methodology

Figure 2 illustrates a schematic representation of the proposed methodology for as-
sessing the corrosion condition of SSs in lactic acid. In the first step, the corrosion data
are preprocessed before being transferred to the modeling step. Three ML algorithms, in-
cluding DT, RF, and SVM, are considered as classification methods. After fitting the model,
its performance is assessed by computing training and testing accuracies. Additionally,
the models are evaluated using the confusion matrix and Receiver Operator Character-
istic (ROC) curves to provide a comprehensive assessment. Hyperparameter tuning is
conducted to optimize the model’s hyperparameters, leading to subsequent enhancements
in the model’s performance [17]. In addition, feature selection is performed based on the
importance of input features to improve the model performance by maintaining high
accuracies, while using fewer inputs.
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Figure 2. Diagram illustrating the designed and implemented procedures for classifying and predict-
ing corrosion behavior.

The following Sections 2.1–2.3 provide the details of the database, the preprocessing
methods, the fitted models, and the feature reduction methods utilized in the developed
classification ML.

2.1. Corrosion Data Preprocessing

It is necessary to prepare the dataset for ML approaches with the help of preprocessing
techniques. At first, the database underwent a uniformity check. The majority of the
corrosion behavior labels are qualitative; however, as the experimental data provided in
the handbook originated from different references, some data were not qualitative (see the
red box in Figure 3) and the corrosion rate was reported numerically in these cases. For
a few data series, some features were missing, shown as a red box in Figure 4, where the
lactic acid concentration was not reported and, consequently, they were removed from the
database. Hence, these undesirable data were removed in the first step of preprocessing to
make a uniform dataset. After these manipulations, 198 rows of data were obtained in total.

The chemical compositions of SSs were obtained from the literature [39]. This resulted
in the definition of 15 features: 13 representing the elemental compositions in the SS alloy
(Table 1), and two features indicating the environmental conditions (electrolyte temperature
and acid concentration) as shown in Table 2. The corrosion behavior is also listed in Table 2
as the output feature.
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Table 1. The chemical composition of the studied SSs [39].

Stainless Steels %C %Mn %Si %P %S %Cr %Mo %Ni %N %Ti %Nb + Ta %Al %Fe

301 0.15 2 1 0.045 0.03 16 - 6 - - - - 74.77
302 0.15 2 0.75 0.05 0.03 17 - 8 0.1 - - - 71.92
303 0.15 2 1 0.2 0.35 17 - 8 - - - - 71.3
304 0.08 2 0.75 0.05 0.03 18 - 8 0.1 - - - 70.99

304L 0.03 2 0.75 0.05 0.03 18 - 8 0.1 - - - 71.04
304LN 0.03 2 0.75 0.05 0.03 18 - 8 0.16 - - - 70.98

316 0.08 2 0.75 0.05 0.03 16 2 10 0.1 - - - 68.99
316L 0.03 2 0.75 0.05 0.03 16 2 10 0.1 - - - 69.04

316LN 0.03 2 1 0.05 0.03 16 2 10 0.3 - - - 68.59
316 Ti 0.08 2 1 0.05 0.03 16 2 10 0.1 0.7 - - 68.04
317L 0.03 2 1 0.05 0.03 18 3 11 0.1 - - - 64.79

317LN 0.03 2 1 0.05 0.03 18 3 11 0.22 - - - 64.67
321 0.08 2 0.75 0.05 0.03 17 - 9 0.1 0.7 - - 70.29
329 0.05 2 1 0.05 0.02 25 1.3 4.5 0.05 - - - 66.04
347 0.08 2 1 0.05 0.03 17 - 9 - - 1 - 69.84
403 0.15 2 1 0.05 0.03 11.5 - - - - - - 85.27
405 0.08 1 1 0.05 0.03 11.5 - - - - - 0.1 86.24
409 0.08 1 1 0.05 0.05 10.5 - 0.5 - 0.7 - - 86.13
410 0.15 1 1 0.05 0.03 11.5 - 0.75 - - - - 85.52
416 0.15 1.25 1 0.06 0.15 12 - - - - - - 85.39
420 0.15 1 1 0.05 0.03 12 - - - - - - 85.77
430 0.12 1 1 0.05 0.03 16 - - - - - - 81.8
434 0.08 1 1 0.05 0.03 16 0.75 - - - - - 81.09
F51 0.03 2 1 0.05 0.03 21 2.5 4.5 0.08 - - - 68.81
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Table 2. Features list used in models for the corrosion classification.

Feature Unit Descriptions

Material wt%

C amount
Mn amount
Si amount
P amount
S amount

Cr amount
Mo amount
Ni amount
N amount
Ti amount

Nb and Ta amount
Al amount
Fe amount

Lactic acid concentration % -
Temperature ◦C -

Corrosion behavior Qualitative

Questionable
Poor
Good

Resistant

2.2. ML Approach

This study compares the performance of corrosion rate prediction of different ML algo-
rithms, including DT, SVM, and RF. For these three training methods, respectively 80% and
20% of the data are considered as training and testing data sets. As shown in Table 3, four
classes of corrosion behavior present in this database and the number of available data for
each class is: Resistant—95 labels, Good—58 labels, Poor—22 labels, and Questionable—23 la-
bels. The symbolic labels, Questionable, Poor, Good, and Resistant, are quantified automat-
ically by defining a function label_encoder. The performance of each model was assessed
by calculating its test and train accuracy using the sklearn.metrics.accuracy_score function
from the Scikitlearn library [40]. For each model, a confusion matrix was generated to
examine misclassified labels. The training set was created using two variables, x_train and
y_train, and a DT classifier was trained on these variables with random_state = 0. Also, the
maximum DT depth was set to the default value max_depth = None to expand nodes until
all leaves are pure (i.e., there is only one class on that node). Based on the plotted DT, with
max_depth = 10, the lowest class impurity was achieved. Hyperparameter tuning led to a
tuned set of parameters with max_depth = 5 and criterion = ‘gini’. In the next step, K-fold
cross validation [40] was applied, where the data were divided into k = (2, 3, . . ., 11) equally
sized chunks and each chunk had its turn “pretending” to be a test set. Comparing these
validation results with the obtained test accuracies, it can be concluded that the K-fold
cross validation is a reasonable and conservative estimate of the testing accuracies for the
used ML approaches.

Table 3. Labels and the defined values.

Labels Number of Labels Defined Value

Questionable 23 2
Poor 22 1
Good 58 0

Resistant 95 3

Initially, the SVM model was fitted on the training data using the default hyperpa-
rameters (C = 1 and gamma = ‘scale’) with a kernel of ‘rbf’. Subsequently, hyperparameter
tuning was conducted to enhance the model’s accuracy. This tuning involved inspecting
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the regularization parameter C and the kernel coefficient gamma with a reciprocal random
distribution. The resulting optimized hyperparameters were found to be C = 1.38 and
gamma = 0.019. After applying the SVM algorithm, the RF algorithm was also employed for
comparison. To do so, the RF Classifier with random_state = 0 was fitted to the training data.
A hyperparameter tuning process was performed to determine the best number of trees in
the forest (n_estimators) for this algorithm. The optimal number of estimators, in this case,
was identified as 8 for RF classification. It is important to note that further increasing the
parameter n_estimators did not yield any positive influence on the accuracy of the model.

The ROC curve is a common and effective method to visualize the performance of the
classifier [41,42]. To draw the ROC curve, the false positive rate (FPR) and true positive
rate (TPR) values, as shown in Equations (1) and (2) below, were evaluated.

TPR =
Tp

Tp + Fn
(1)

FPR =
Fp

Fp + Tn
(2)

Here, Tp represents the correctly classified known positives (“True positives”), Tn
represents the correctly classified known negatives (“True negatives”), Fp represent the
incorrectly classified known positives (“False positives”), and Fn represents the incorrectly
classified known negatives (“False negatives”). In order to draw a ROC curve for a multi-
classification problem, binarization is applied to the data series. Therefore, the function
label_binarize from the sklearn.preprocessing library [40] was deployed.

2.3. Feature Reduction

Model development and training for predictive modelling problems can be slow due
to the large number of involved variables. To reduce the number of input variables, related
features can be selected according to their effectiveness for predicting the target variable
(here: corrosion behavior). Some models perform worse when the target variable has a low
correlation with the input variables [43]. Therefore, the main reason for feature selection
and reduction is to increase the classification accuracy and decrease the training time. As we
have numerical input and classified output, the most common feature selection technique
is the analysis of variance (ANOVA) [44–46]. In this study, the most related features for
training models were adopted using the ANOVA feature selection method.

3. Results and Discussion

In this section, the training and testing accuracies for each model are reported sepa-
rately. To visualize the erroneous predictions, the confusion matrixes and the ROC curves
are constructed. In addition, the influence of feature reduction on the accuracy of the
models is presented.

3.1. DT Model

The training and testing accuracies of the developed DT model, calculated by
sklearn.metrics.accuracy_score [40], are 98.73% and 90.00%, respectively. After the hyperpa-
rameter tuning and using the optimized parameters, the obtained accuracies changed to
97.47% and 92.50%. The confusion matrix (Figure 5) visualizes the number of correct and
wrong predictions for each category. In each row, the sum of horizontal values represents
the total data series associated with its corrosion label. In other words, in the testing data
set, there are 11 datapoints with a Good label, 7 datapoints with a Poor label, 5 datapoints
with a Questionable label, and 17 datapoints with a Resistant label. For the data series corre-
sponding to the Good label, 10 of them are classified correctly (Tp), and one is mislabeled
by Poor (Fn). For the data series with Questionable and Resistant labels, one Fn classification
with a Good label was made. All data series with Poor labels are Tp and are therefore
classified correctly.
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The DT classifier achieved an average accuracy of 83.92% across all 11 folds with a
standard deviation of 5.5%. These results demonstrate the stability and consistency of the
model’s performance during cross-validation. It is worth noting that the model exhibits
consistent performance across different folds, indicating a good level of generalization. No
overfitting is observed, as the performance on the validation sets remained relatively close
to the training set accuracy.

3.2. RF Model

The training and testing accuracies of the applied RF model are, respectively, 98.10%
and 87.50%. In Figure 6, the confusion matrix shows that all Poor and Questionable labels,
which corresponds to an undesired corrosion behavior, were correctly classified. However,
some mislabeling for Good and Resistant labels did occur. In other words, the Fn for the
Good and Resistant labels are equal to 2 and 3, respectively.
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3.3. SVM Model

Considering the default hyperparameter values for the SVM model, the obtained
training and testing accuracies are, respectively, 60.13% and 55.00%, which indicates a low
performance of this model on the dataset. Figure 7a indicates that none of the Good and Poor
classes were classified correctly by the model, and all of them were mistakenly predicted
(Fn) as Questionable and Resistant. After applying the hyperparameter tuning, the accuracies
improved to 93.04% and 87.50%, respectively. Figure 7b also shows an improvement in
detecting the right label for each class. All the Resistant classes are predicted correctly in
the dataset; however, some errors in predicting the right label for Good, Questionable, and
Poor classes still remain.
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Figure 8 presents a ROC curve for the developed SVM multi-class model, where
each curve represents a class (here: class 0 to class 3). The area under each ROC curve
represents the degree of separability; the closer this area is to 1, the higher is the capability of
distinguishing between classes. For the specific class of TPR equaling 1, all data belonging
to that class were classified correctly. In the case of a class with FPR equaling 0, not a single
data was considered erroneous for this class. The ROC curve of Figure 8, representing the
corrosion behavior of SS in lactic acid, demonstrates that all the Poor labels were correctly
classified, and the area under the Questionable curve is very close to 1. Indeed, this is of
great importance for practical use, because wrongly classified Poor or Questionable classes
(i.e., when wrongly classified as Good or Resistant) may result in a disaster such as failure of
systems, accidents and leakage of hazardous substances in industrial applications exposed
to corrosive environments.
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3.4. Feature Reduction

Due to the large number of variables involved in predictive modelling problems,
model development and training can be slow. However, input variables can be reduced
by selecting features that are most useful for target variable prediction. Moreover, in the
database considered for this study, it is not possible to measure the atomic percentage of
all elements, so it is preferred to have a simplified model based on a smaller number of
elements. Therefore, feature selection and reduction are aimed to increase classification
accuracy, decrease training time, and save time and costs for preparing experimental
data that are used to train the models. Table 4 shows the list of input features ranked by
deploying the ANOVA technique.

Table 4. Rank of feature importance based on ANOVA feature selection technique.

Rank Feature Name Rank Feature Name Rank Feature Name

1 Fe 6 C 11 Al
2 Ni 7 N 12 S
3 Cr 8 Mo 13 P

4 Temperature 9 Lactic acid
concentration 14 Nb, Ta

5 Mn 10 Si 15 Ti

A comparison of training and testing accuracies based on different input numbers for
each model (DT, RF and SVM) is shown in Figure 9 to determine the required number of
features to be considered as input.
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Figure 9 presents the obtained graphs of accuracy versus number of features for each
model (Figure 9 (a) DT, (b) RF and (c) SVM). It can be concluded that the highest training
accuracy was achieved when considering the first nine features, and further increasing the
number of input features has no influence on training accuracy. Testing accuracy varies,
specifically for RF, but it can still be considered as stable. Thus, we can conclude from
Figure 9 that considering nine input features, including Fe, Ni, Cr, temperature, Mn, C,
N, Mo, and lactic acid concentration will provide the same training accuracy compared
to considering all 15 input features. The testing accuracy only reduced 2.5%, 7.5%, and
0% for DT, RF and SVM models, respectively. Therefore, feature reduction has a minor
impact on the training and testing accuracies. The ROC curves of the SVM models after
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feature reduction are shown in Figure 10. The latter gives a good indication on how the
ML performance is affected. It can be observed that the values remain almost unchanged,
indicating no significant influence on the model’s performance.
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According to materials science literature, in SS alloys; Ni, Cr, Mo, and C are essential
elements in the chemical composition to form corrosion-resistant passive layers [47]. The
aforementioned elements are considered to be the most important influencing factors.
Thus, feature reduction is also justified from a materials science perspective. It should
be highlighted that the feature reduction step, which excludes Si, Al, S, P, Nb, Ta, and Ti
elemental composition as input features does not impact prediction accuracy, however, it is
not necessarily implying that these elements have no influence on the corrosion behavior
of SS in lactic acid. It is important to note that the developed prediction in this study
is qualitative, where each label describes a range of corrosion rates, as explained in the
introduction Section 1. To comprehensively discuss the effect of the elements Si, Al, S, P,
Nb, Ta, and Ti on the corrosion behavior of SSs in lactic acid, conducting experiments and
numerical evaluations are necessary next steps in future studies.

ROC curves and accuracy measurements show no major negative impacts after feature
reduction. It was proven that the number of inputs can be reduced to keep modeling
and prediction faster, and to prepare the experimental data in a more time- and cost-
effective manner.

4. Conclusions

In the present study, different ML algorithms were used to model and predict the
corrosion behavior of SS alloys in an aqueous environment containing different lactic acid
concentrations at varying temperatures. It was demonstrated that using the DT classifier,
training and testing accuracies of, respectively, 97.47% and 92.50% could be achieved. The
training and testing accuracies of the RF algorithm were 98.1% and 87.5%, respectively,
which are close to the DT classifier results. Using the SVM algorithm, a training accuracy of
60.1% and testing accuracy of 55.0% were obtained. To improve the model, hyperparameter
tuning was applied, leading to values to 93.0% and 87.5%, respectively. To evaluate the
FPR and TPR parameters, an ROC curve for multiclassification was constructed. Based
on its graph, it was shown that the area under the curve of the Poor class is equal to 1,
which is highly important from a material selection perspective. Finally, ANOVA feature
selection was applied to the pre-processed data set and nine input features including Fe,
Ni, Cr, temperature, Mn, C, N, Mo, and lactic acid concentration were found as the most
influencing factors on the corrosion behavior of SSs in a lactic acid environment. Finally,
it can be concluded that SVM, RF, and DT techniques are useful to predict the corrosion
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behavior of data sets, which consists of quantitative input and qualitative output (labeled)
data. The models can predict the corrosion behavior of SS in ‘unseen’ situations (lactic acid
concentration and temperature), and then label or classify the corrosion behavior of the
material as Poor, Good, Questionable, or Resistant.

Although corrosion engineers prefer to work with quantitative corrosion data, such
as corrosion rate or corrosion current density, in some cases, categorization of materials
based on their corrosion behavior in different environments is useful and, often, the only
information available in practical use cases. This study successfully demonstrates that
labeled corrosion behavior of relatively small datasets can be correctly predicted using ML
algorithms. In addition, it was observed that, according to the obtained accuracies, DT is
the best model to train and test; whereas, according to the confusion matrixes, RF performs
best in terms of identifying all Poor and Questionable labels.
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