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Abstract
Purpose Flourine-18-flortaucipir tau positron emission tomography (PET) was developed for the detection for Alzheimer’s disease. 
Human imaging studies have begun to investigate its use in chronic traumatic encephalopathy (CTE). Flortaucipir-PET to autopsy 
correlation studies in CTE are needed for diagnostic validation. We examined the association between end-of-life flortaucipir PET 
and postmortem neuropathological measurements of CTE-related tau in six former American football players.
Methods Three former National Football League players and three former college football players who were part of the DIAGNOSE 
CTE Research Project died and agreed to have their brains donated. The six players had flortaucipir (tau) and florbetapir (amyloid) 
PET prior to death. All brains from the deceased participants were neuropathologically evaluated for the presence of CTE. On average, 
the participants were 59.0 (SD = 9.32) years of age at time of PET. PET scans were acquired 20.33 (SD = 13.08) months before their 
death. Using Spearman correlation analyses, we compared flortaucipir standard uptake value ratios (SUVRs) to digital slide-based AT8 
phosphorylated tau (p-tau) density in a priori selected composite cortical, composite limbic, and thalamic regions-of-interest (ROIs).
Results Four brain donors had autopsy-confirmed CTE, all with high stage disease (n = 3 stage III, n = 1 stage IV). Three of 
these four met criteria for the clinical syndrome of CTE, known as traumatic encephalopathy syndrome (TES). Two did not 
have CTE at autopsy and one of these met criteria for TES. Concomitant pathology was only present in one of the non-CTE 
cases (Lewy body) and one of the CTE cases (motor neuron disease). There was a strong association between flortaucipir 
SUVRs and p-tau density in the composite cortical (ρ = 0.71) and limbic (ρ = 0.77) ROIs. Although there was a strong asso-
ciation in the thalamic ROI (ρ = 0.83), this is a region with known off-target binding. SUVRs were modest and CTE and 
non-CTE cases had overlapping SUVRs and discordant p-tau density for some regions.
Conclusions Flortaucipir-PET could be useful for detecting high stage CTE neuropathology, but specificity to CTE p-tau is 
uncertain. Off-target flortaucipir binding in the hippocampus and thalamus complicates interpretation of these associations. 
In vivo biomarkers that can detect the specific p-tau of CTE across the disease continuum are needed.

Keywords Biomarkers · Chronic traumatic encephalopathy · Football · Neurodegenerative disease · Positron emission 
tomography imaging · Repetitive head impacts · Tau · Flortaucipir

Introduction

Chronic traumatic encephalopathy (CTE) is a neurodegenerative 
disease that has been diagnosed in the postmortem brains 
of individuals exposed to repetitive head impacts (RHI), 
particularly former American football players [1–5]. A 
diagnosis of CTE can be made only by neuropathological 
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nine amyloid-negative TES participants. Other data on 
flortaucipir-PET in CTE are from case reports [26, 28]. 
Autoradiography research has shown minimal flortaucipir 
binding in postmortem CTE tissue across the disease 
continuum [41]. The use of ethanol wash complicates the 
interpretation of the findings as has been alluded to in other 
autoradiography studies of flortaucipir [31].

PET to autopsy studies are needed to validate biomarkers 
using neuropathological standards [32, 42]. To date, there has 
only been a single case report of flortaucipir PET to autopsy 
study in CTE [27], a deceased former NFL player with 
autopsy-confirmed severe CTE who had a flortaucipir-PET 
52 months prior to death. The predominant frontotemporal 
distribution of flortaucipir retention corresponded to CTE 
p-tau distribution at autopsy. There was a modest and 
non-significant correlation between flortaucipir SUVR 
and tau area fraction at autopsy. Larger flortaucipir-
neuropathological correlation studies are needed to clarify 
these findings and to determine the usefulness of flortaucipir-
PET for detecting CTE. In the present study, we examined 
the association between antemortem flortaucipir-PET uptake 
and postmortem p-tau neuropathology in six deceased former 
elite American football players.

Materials and methods

Participants and study design

The sample included six male former American football 
players (n = 3 former NFL players, n = 3 former college foot-
ball players) who participated in the “Diagnostics, Imaging, 
and Genetics Network for the Objective Study and Evalu-
ation of Chronic Traumatic Encephalopathy (DIAGNOSE 
CTE) Research Project” [43]. Participants underwent a 
3-day baseline visit that consisted of neurological and neu-
ropsychological examinations, MRI, and flortaucipir and 
florbetapir PET scans for tau and amyloid imaging, respec-
tively. One participant in the current postmortem study 
did not have an MRI. All participants in the DIAGNOSE 
CTE Research Project were asked to donate their brain to 
the Veterans Affairs-Boston University-Concussion Legacy 
Foundation (VA-BU-CLF) brain bank and to become part of 
the Understanding Neurologic Injury in Traumatic Enceph-
alopathy (UNITE) study [44]. The sample for the present 
study includes all former American football players from the 
DIAGNOSE CTE Research Project who died and donated 
their brains to the UNITE study as of March 2022. On aver-
age, the time from PET scans to death was 20.33 months 
(SD = 13.08, range = 4–41 months). Average postmortem 
interval was 49.17 (SD = 22.38) h. Reported causes of death 
included cancer, cardiovascular disease, falls, and motor 

examination that shows phosphorylated tau (p-tau) in neurons 
around small blood vessels at the depths of the sulci [6, 7]. 
Aggregation of p-tau epicenters begins in the frontotemporal 
cortices [7, 8]. Medial temporal lobes (MTL) are typically 
affected in later disease stages [7, 8]. Like Alzheimer’s disease 
(AD), the tau aggregates of CTE consist of mixed three (3R) 
and four (4R) microtubule binding site repeat motifs. However, 
evidence shows a shift from 4 to 3R in the tau aggregates with 
disease progression in CTE [9]. The molecular composition of 
p-tau in CTE is also unique from AD and frontotemporal lobar 
degeneration (FTLD), as is the distribution of the tau tangle 
pathology [10–12]. Unlike aging-related tau astrogliopathy 
(ARTAG), the p-tau lesion in CTE must be neuronal [13]. 
Neuritic amyloid plaques are not diagnostic and often absent 
in CTE [5, 7, 14].

Validation of in vivo biomarkers for the detection of the 
p-tau in CTE does not yet exist, thereby contributing to 
the inability to accurately diagnose CTE during life [15]. 
Advances have been made in the identification of biomarkers 
of CTE [16–19]. Positron emission tomography (PET) has 
the potential to characterize the tau tangle changes in CTE. 
Case studies have examined the usefulness of the tau tracer 
floruine-18-FDDNP for the detection of CTE [20–23]. 
However, the broader literature on this tracer shows it to 
have many limitations, including non-specific binding[24] 
and low signal-to-noise ratio [25]. Attention has shifted 
to the tau radioligand fluorine-18-flortaucipir [26–30]. 
This ligand detects the paired helical filament (PHF) tau 
in AD[31–33] and has been approved by the Food and 
Drug Administration (FDA) for this purpose. The value of 
flortaucipir to bind to tau aggregates in other tauopathies, 
including frontotemporal degenerative disorders[31, 34–38] 
and CTE, is less clear [29, 30]. This is perhaps due to the 
biochemical composition of tau in primary tauopathies, 
differences in molecular structure of the p-tau aggregates 
between the different tauopathies including between CTE 
and AD [10, 11], the spatial distribution and severity of tau 
pathology, as well as other reasons.

Stern et  al.[29] observed higher mean flortaucipir 
SUVRs in the bilateral superior frontal cortices, bilateral 
MTL, and left parietal lobe among 26 symptomatic former 
National Football League (NFL) players (ages 40–69) 
compared with 31 same age asymptomatic men without a 
history of traumatic brain injury (TBI). Effect sizes were 
small and SUVRs were lower than those reported in AD 
[39]. Lesman-Segev et al.[30] observed a similar pattern 
among 11 men (10 former football players, ages 30 s to 
70 s) diagnosed with the clinical syndrome of CTE known 
as traumatic encephalopathy syndrome (TES), based on 
the 2014 research diagnostic criteria [40]. The distribution 
of flortaucipir retention was consistent with high stage 
CTE with intense uptake in two TES participants who 
were amyloid positive and variable uptake among the 
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neuron disease (Table 1). Four of the six former football 
players met criteria for TES, which was adjudicated while 
the participants were alive as part of DIAGNOSE CTE 
Research Project multidisciplinary diagnostic conferences 
and using the 2021 National Institute of Neurological Dis-
orders and Stroke (NINDS) consensus diagnostic criteria 
[15]. TES was developed to represent the clinical syndrome 
associated with underlying CTE neuropathology [15]. The 
NINDS TES criteria include provisional levels of certainty 
for CTE pathology (i.e., suggestive of CTE, possible CTE, 
probable CTE). Specific criteria for the levels of certainty 
include clinical presentation, course, degree of RHI expo-
sure, and level of functional impairment.

There are four evaluation sites for the DIAGNOSE CTE 
Research Project. For this study, one participant had PET 
scans at Boston University School of Medicine (with MRI 
conducted at Brigham and Women’s Hospital), two had PET 
scans at Cleveland Clinic Lou Ruvo Center for Brain Health 
in Las Vegas, two had PET scans at Mayo Clinic Arizona 
(with PETs conducted at Banner Alzheimer’s Institute), and 
one had PET scans at NYU Langone Medical Center. For 
the DIAGNOSE CTE Research Project, all sites received 
approval by their Institutional Review Boards and partici-
pants provided written informed consent. For the UNITE 
study, procedures have been approved by the BU Medical 
Campus and Bedford VA Hospital Institutional Review 
Boards. All next of kin or legal representatives of brain 
donors provided written informed consent.

Imaging acquisition and analysis

MRIs across the four sites were conducted using the same 
3 T MRI model (MAGNETOM Skyra; Siemens Health-
ineers, Erlangen, Germany). All images were acquired at 
high resolution (1 × 1 × 1  mm3, 176 slices, 256 × 256  cm2 
field of view) in the sagittal plane using 3D sequences, 
including MPRAGE (repetition time (TR) = 2530 ms, echo 
time (TE) = 3.36 ms, inversion time (TI) = 1100 ms). One 
participant did not have an MRI (case 3). The PET-CT scan-
ners were not identical across the four sites. The florbeta-
pir protocol included a 370 MBq (10 mCi) bolus injection, 
immediately followed by acquisition of brain scans consist-
ing of 10 frames, each one minute in length. Fifty minutes 
post-injection, the participant completed a second 15-min 
brain scan consisting of three frames, each of which required 
5 min. PET images were reconstructed in a 128 × 128 matrix 
and a post hoc Gaussian filter = 5 mm. Corrections for ran-
dom coincidences, scatter, system dead time, and attenuation 
were performed as provided by the camera manufacturer. 
Partial volume corrections were not performed because 
not all participants had an MRI scan. As described below, 
our goal was to match the PET ROIs to the tissue ROIs. To 
accomplish this, the ROIs were defined using various atlases 

which makes it challenging to perform partial volume cor-
rection consistently across all ROIs.

For the five participants with an MRI, reconstructed PET 
images were processed using PMOD software including 
motion correction and co-registration onto the participant’s 
MRI. The participant’s MRI was segmented into gray mat-
ter, white matter, and cerebrospinal fluid. Subsequently, the 
MRI was normalized into the standard MNI (Montreal Neu-
rological Institute) and the same transformation was applied 
to the co-registered PET images. ROIs were defined by the 
standardized Automated Anatomic Labeling (AAL) volume 
of interest template. For the one participant without an MRI, 
the AAL template was applied to the PET data after it was 
normalized (there was no MRI co-registration). A positive 
florbetapir-PET scan was defined by a cortical composite 
SUVR score of 1.10 or greater (centiloid values > 24.3), cor-
responding to the presence of at least moderately frequent 
neuritic amyloid-β plaques in near end-of-life persons who 
agreed to brain donation prior to death [45].

The use of flortaucipir in this study was carried out 
through an Investigational New Drug (IND #131,391) from 
the U.S. FDA. All participants underwent flortaucipir PET 
scans after 370 MBq bolus injection (10 mCi). Five par-
ticipants had dynamically acquired PET scans after 80 min 
post-injection for at least 20 min and one participant’s flo-
rtaucipir scan ended at 90 min after injection. Tracer doses 
were requested through Avid Radiopharmaceuticals (Phila-
delphia, PA, USA). Imaging calibration and quality control 
procedures were completed for all sites prior to study enroll-
ment. Additional quality control including assessment for 
motion artifacts and ensuring that corrections were applied 
for randoms and scatter fraction was conducted on each 
scan by Invicro. The flortaucipir-PET scans were processed 
using a PET unified pipeline  (PUP; https:// github. com/ 
ysu001/ PUP) [46, 47]. For the five participants who had 
completed an MRI, the method included scanner harmoni-
zation filtering to reach a common 8-mm resolution [48], 
between-frame motion correction, frame summation, PET-
to-MRI co-registration, and regional SUVR extraction based 
on the FreeSurfer generated anatomical regions of interest 
(ROIs) with bilateral cerebellar cortex as the initial refer-
ence region. FreeSurfer-processed T1-weighted MRI was 
spatially normalized using the Statistical Parametric Map-
ping (SPM) software, and the resulting warping fields were 
applied to the co-registered PET data to bring the PET into 
the MNI template space. For the one participant missing 
MRI data (case 3), the flortaucipir-PET data went through 
the first steps of PUP, scanner harmonization, motion cor-
rection, and summation. The summed flortaucipir-PET data 
were then transformed to the template space using a separate 
PET-only pipeline with a pre-established flortaucipir tem-
plate from the whole cohort. Note that we did not apply a 
PET-only pipeline to all cases as co-registration of MRI is 
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Table 1  Sample characteristics

Specific ages are not provided to protect confidentiality. Lower scores for the MoCA represent worse global cognitive status, whereas higher 
scores on the FAQ are representative of greater functional impairment
ARTAG  aging-related tau astrogliopathy, CTE chronic traumatic encephalopathy, FAQ Functional Activities Questionnaire, p-tau hyper-phospho-
rylated tau, MoCA Montreal Cognitive Assessment, SUVR standard uptake value ratio

Case 1
(no CTE)

Case 2
(no CTE)

Case 3
(CTE stage III)

Case 4
(CTE stage III)

Case 5
(CTE stage III)

Case 6
(CTE stage IV)

Demographic and athletic 
characteristics
  Age 45–49 45–49 60–64 60–64 65–69 70–74
  PET to death 

(months)
25 25 17 10 4 41

  Sex Male Male Male Male Male Male
  Racial identity White White White White White White
  Level of play College College NFL College NFL NFL
  Years of play 10 11 19 11 20 24

Clinical and genetic 
status
  Traumatic encepha-

lopathy syndrome 
(TES)

No Yes No Yes Yes Yes

    TES-cognitive 
impairment

No No No Yes No Yes

    TES-neurobehavio-
ral dysregulation

No Yes No Yes Yes Yes

    TES-dementia No No No Mild dementia No No
    Level of certainty 

for CTE pathology
N/A Suggestive N/A Probable Suggestive Possible

  FAQ-Informant 0 1 0 13 5 5
  FAQ-Participant 0 0 0 13 0 0
  MoCA score 21 26 27 20 28 23
  APOE status ε2 / ε3 ε3 / ε3 Missing ε3 / ε3 ε3 / ε3 ε3 / ε4

Florbetapir PET
  SUVR 0.97 0.94 1.00 0.93 Not done 1.08
  Interpretation Negative Negative Negative Negative Not done Negative

Neuropathological 
diagnosis
  CTE Absent Absent Present Present Present Present
  CTE stage N/A N/A III III III IV
  Alzheimer’s disease Absent Absent Absent Absent Absent Absent
  Lewy body disease Transitional (limbic) Absent Absent Absent Absent Absent
  Frontotemporal lobar 

degeneration
Absent Absent Absent Absent Absent Absent

  Motor neuron disease Absent Absent Absent Present Absent Absent
  ARTAG Absent Absent Absent Absent Absent Absent
  TDP-43 in frontal 

cortex/MTL
Absent Absent Mild (frontal) Mild (frontal) Mild (frontal, hip-

pocampus, entorhi-
nal)

Mild (entorhinal)

CERAD neuritic amyloid 
plaque score

0 0 0 0 0 0

Diffuse Amyloid Plaque 
Score

0 Sparse 0 0 0 Sparse

Thal phase 0 1 0 0 0 1
Braak stage 0 0 IV I IV III
Cause of death Cardiovascular Cancer Cancer Motor neuron disease Cancer Head/neck trauma 

from fall
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optimal when available. PET-to-PET template registration 
was carefully checked for the one participant without MRI, 
and there were no issues with registration.

Regions-of-interest (ROIs) were defined in MNI template 
space and were a priori selected based on their involvement 
in CTE [6–8], previous findings on flortaucipir distribution 
in living participants at risk for CTE [27, 29, 30], to mirror 
the neuropathological protocol described below, and/or are 
consistent with ROIs examined in flortaucipir-PET-patho-
logical studies of AD [42]. Although the neuropathologi-
cal protocol guided selection of the flortaucipir-PET ROIs, 
PET, and autopsy ROIs were not stereotactically matched, 
this is discussed as a limitation of the study. SUVRs from 
ROIs were re-normalized and derived using the cerebellum 
crus 1 as the final reference ROI. Note that p-tau can be 
found in the dentate nucleus of the cerebellum, but has not 
been reported in the cerebellum crus [8]. ROIs included the 
dorsolateral frontal cortex (DLFC), orbital frontal cortex 
(OFC), superior temporal cortex (STC), inferior parietal 
cortex (IPC), entorhinal cortex (EC), amygdala, hippocam-
pus, and thalamus. Note that off-target flortaucipir binding 
has been described in the hippocampus due to spill-in effect 
from choroid plexus binding [49]. Off-target flortaucipir 
binding is also common in the thalamus [27, 30, 50]. Inter-
pretation of associations for these regions are made with 
caution. Most of these regions are from the Automated Ana-
tomical Labeling (AAL3) atlas [51]. The DLFC was defined 
in the Brodmann atlas provided by MRIcron and the EC was 
from the Mayo Clinic Adult Lifespan Template and Atlas 
(MCALT) [52]. Mean SUVRs were computed to form corti-
cal (DLFC, OFC, ST, IP) and limbic (CA1-CA4, EC, amyg-
dala) composites to be consistent with past research [42] and 
to reduce the number of analyses performed. SUVRs from 
the thalamic ROI were examined separately.

Neuropathological evaluation

Neuropathological evaluations were performed by study 
neuropathologists and done blinded to clinical data. Neuro-
pathological analyses and results are presented at a clinical-
pathological consensus conference where at least one and 
typically two other study neuropathologists are present. 
Discrepancies or disagreements are resolved, and consensus 
is made for the final diagnoses. Three study neuropatholo-
gists (TS, BH, AM) evaluated the cases of the present study 
(TS, n = 3; BH, n = 1; AM, n = 2). Pathological processing 
and evaluation were conducted using published methodol-
ogy [53, 54]. Brain weight and macroscopic features were 
recorded during initial processing. Twenty-two sections of 
paraffin-embedded tissue were stained for Luxol fast blue/
hematoxylin and eosin (LHE), Bielschowsky’s silver, p-tau 
(AT8), alpha-synuclein, amyloid-beta (Aβ), and phosphoryl-
ated TDP-43 (pTDP-43) using methods described elsewhere 

[55]. Established criteria were used for the neuropathologi-
cal diagnosis of neurodegenerative diseases [56–64]. The 
neuropathological diagnosis of CTE was made using criteria 
defined at two National Institute of Neurological Disorders 
and Stroke (NINDS) and National Institute of Biomedical 
Imaging and Bioengineering (NIBIB) sponsored consensus 
conferences [6, 7]. A CTE diagnosis required the presence 
of at least one pathognomonic perivascular neuronal p-tau 
lesion (astrocytic perivascular p-tau lesions were consid-
ered non-diagnostic in the absence of neuronal lesions) [6, 
8, 13, 65]. CTE p-tau neuropathology was classified into 
four stages (stage IV being most severe) using the McKee 
staging criteria [8, 66]. Stage III and IV CTE are defined by 
diagnostic p-tau pathology in the cortex, with diffuse p-tau 
pathology extending into the medial temporal lobes, includ-
ing the hippocampus, amygdala, and entorhinal cortex, dien-
cephalon, and increased involvement of the brainstem. P-tau 
pathology is more widespread in stage IV compared to stage 
III CTE, often with neuronal loss and astrocytosis, and p-tau 
pathology involving the basis pontis and dentate nucleus of 
the cerebellum. Medial temporal lobe p-tau pathology in 
stage III and IV CTE is distinguished from primary age-
related tauopathy (PART) by the predominant involvement 
of the CA4 and CA2 hippocampal subfields,  clustered, 
patchy p-tau pathology in the amygdala, and striking superfi-
cial p-tau pathology in the entorhinal cortex, with prominent 
dotlike neurites [67].

Severity of regional p-tau was also rated using semi-
quantitative scales (0 = none, 3 = severe). These scales were 
used to facilitate description of regional p-tau severity and 
not as primary outcomes. The three study neuropathologists 
have been shown to have excellent inter-rater reliability for 
CTE stage and the semi-quantitative ratings scales of p-tau 
severity (intra-rater reliability was not examined) [8].

Slides were digitized at × 20 magnification using an AT 
Turbo scanner (Leica Biosystems) and visualized with 
Aperio ImageScope (Leica Biosystem). The density of total 
AT8 staining was quantitatively measured in the DLFC, 
OFC, STC, IPC, EC, amygdala, hippocampus subfields CA1, 
CA2/CA3, and CA4, and the thalamus. These ROIs were 
selected for reasons mentioned previously (see “Imaging 
acquisition and analysis” section). Images of sampled histol-
ogy regions have been shown elsewhere [7]. Slide scanning 
methods have been described elsewhere [8, 68]. The gray 
matter was highlighted from the pia to the boundary between 
the white and gray matter. Leica’s image analysis and auto-
mated counting software (Aperio positive pixel algorithm, 
version 9; Leica Biosystems) was calibrated for positive 
staining to detect AT8-immunoreactivity within the ROI. 
Counts were normalized to the area measured and presented 
as density of positively stained pixels within the analyzed 
region (positive pixels/mm2). For cortical regions, p-tau den-
sity was measured at the depth of the cortical sulcus (defined 
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as the bottom third of two connecting gyri). As was done for 
the flortaucipir-PET ROIs, mean cortical (DLF, OFC, ST, 
IP) and limbic (CA1-CA4, EC, amygdala) composites were 
computed. The thalamus was examined separately.

Participant characteristics

Antemortem data were acquired through the participants’ 
involvement in the DIAGNOSE CTE Research Project. 
Semi-structured interviews were performed, supplemented 
by online questionnaires, to collect data on demographics 
(e.g., age, education, race, and ethnicity); clinical, athletic, 
military, and TBI history; and other variables not relevant 
to the present study. The Montreal Cognitive Assessment 
(MoCA)[69] and Functional Activities Questionnaire (FAQ)
[70] were used to clinically characterize the current sample, 
along with TES diagnostic status [15]. An aliquot of whole 
blood collected at the time of the baseline blood draw was 
used for APOE genotyping [43].

Statistical analyses

Flortaucipir SUVR cutoffs for tau positivity in CTE do not 
exist and the sample size is insufficient to conduct the appro-
priate analyses to determine potential SUVR cutoff values 
in CTE. Qualitative assessments of flortaucipir-PET SUVRs 
and associated maps and p-tau aggregation at autopsy were 
performed. Spearman rho (ρ) correlation analyses tested the 
associations between flortaucipir SUVR and postmortem 
AT8 pathology for the mean cortical and limbic compos-
ites, as well as the thalamus. Post hoc analyses examined 
the individual regions that comprised the cortical and lim-
bic composites. A p value less than 0.05 defined statisti-
cal significance. P values were false discovery rate (FDR) 
adjusted for the three primary analyses (i.e., cortical, limbic, 
thalamus). P values were not adjusted for the post hoc anal-
yses that examined the individual regions comprising the 
composites. Importantly, the minimal detectable Spearman 
ρ coefficient is 0.91 based on an alpha of 0.05 and a sample 
size of six and 80% power. Therefore, given the small sample 
size and limited power, emphasis is placed on interpreta-
tion of effect sizes and based on the following guidelines: 
0.0–0.19 very weak, 0.20–0.39 weak, 0.40–0.59 moderate, 
0.60–0.79 strong, and 0.80–1.0 very strong [71].

Results

Participant characteristics

Participant characteristics are shown in Table 1. Partici-
pants in the sample were all men who self-identified as 
white. They included three former NFL players and three 

former college football players. On average, they were 59.00 
(SD = 9.32) years of age and their PET scans were acquired 
20.33 (SD = 13.08) months before their death. There were 
moderate to strong associations between age (at time of PET 
scan) and flortaucipir SUVRs and p-tau density at autopsy 
for the cortical composite (flortaucipir: ρ = 0.43, p = 0.40; 
p-density: ρ = 0.83, p = 0.04), limbic composite (flortaucipir: 
ρ = 0.71, p = 0.11; p-tau density: ρ = 0.66, p = 0.16), and the 
thalamic region (flortaucipir: ρ = 0.89, p = 0.02; p-tau den-
sity: ρ = 0.89, p = 0.02). Associations with PMI were gen-
erally weak or moderate: cortical composite (flortaucipir: 
ρ =  − 0.29, p = 0.58; p-tau density: ρ =  − 0.32, p = 0.54), 
limbic composite (flortaucipir: ρ =  − 0.64, p = 0.17; p-tau 
density: ρ =  − 0.23, p = 0.66), and thalamus (flortaucipir: 
ρ =  − 0.52, p = 0.29; p-tau density: ρ =  − 0.55, p = 0.26).

Clinical status

Montreal Cognitive Assessment (MoCA) scores ranged from 
20 to 28 and four had a score of 26 or lower. Four of the six 
participants met NINDS criteria for TES [15]. Of those with 
TES, one met criteria for “probable CTE” level of certainty, 
one met criteria for “possible CTE,” and two met criteria for 
“suggestive of CTE.” Of these four TES cases, two had TES 
cognitive impairment [15] with one having mild dementia 
(this participant had TES-probable CTE). The other three 
TES cases had minimal functional impairments. All TES 
cases also had neurobehavioral dysregulation. There were 
two who were not diagnosed with TES (cases 1 and 3) 
because they did not have a core clinical feature required 
for a TES diagnosis. Although both had cognitive concerns, 
they did not have neuropsychological impairment on tests of 
episodic memory or executive dysfunction. Neurobehavioral 
dysregulation was also not sufficiently present.

Neuropathological findings

Cases 1 and 2 did not meet neuropathological diagnostic 
criteria for CTE. Case 1 was neuropathologically diagnosed 
with limbic transitional Lewy body disease and case 2 had 
no neurodegenerative disease diagnosis. The remaining four 
cases had CTE (cases 3–6). Cases 3–5 had stage III CTE and 
case 6 had stage IV CTE (Fig. 1). Of the four CTE cases, one 
had motor neuron disease (case 4). None of the other CTE 
cases had co-morbid neurodegenerative disease diagnoses 
(e.g., AD, FTLD). All cases had a Braak score greater than 
0. However, neuritic amyloid plaques were absent for all 
cases (CERAD = 0). Sparse diffuse amyloid plaques were 
present for two (cases 2 and 6) and absent in the other cases.

The two non-CTE cases (cases 1 and 2; both former col-
lege players) had the lowest overall burden of p-tau. None 
to minimal p-tau pathology was present across the cortical, 
limbic, and thalamic ROIs. Among the CTE cases, p-tau 
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density was greatest in limbic regions, followed by the cor-
tex. Among the cortical regions, p-tau density was greatest 
in the frontal cortices across all cases. There was mod-
erate to severe involvement of the DLFC and STC three 
cases, case 4 had sparse cortical p-tau pathology. Case 5 
also had moderate severity of p-tau of the OFC. Cases 5 
and 6 had moderate IPC involvement, but p-tau pathology 
was otherwise absent or mild in the IPC across the cases. 
All CTE cases had moderate to severe involvement of the 
hippocampus, EC, and amygdala (case 5 had mild p-tau 
severity in the amygdala). Thalamus was the least affected; 
three cases had mild p-tau and case 3 had moderate p-tau 
pathology. Case 6 (stage IV CTE) had widespread p-tau 
pathology with severe involvement of the substantia nigra 
and p-tau in the dentate nucleus of the cerebellum (unaf-
fected in the other CTE cases).

Florbetapir PET

The participants’ florbetapir SUVRs are shown in Table 1. 
Five participants underwent florbetapir-PET; the sixth par-
ticipant was scheduled, but there was a dose failure. All 
five PET scans were “amyloid-β negative,” consistent with 
CERAD absent-to-sparse neuritic amyloid-β plaques.

Flortaucipir uptake

Flortaucipir SUVRs for the cortical composite, limbic com-
posite, thalamic, and individual ROIs are shown in Table 2. 
Figure 2 shows flortaucipir SUVR maps for all six cases. 
Cases 5 and 6 had the highest SUVRs, followed by case 
3. The remaining three cases had comparable SUVRs with 
cases 1 and 2 generally having the lowest, aligning with the 

Fig. 1  Phosphorylated tau neu-
ropathology in the dorsolateral 
frontal cortex and hippocam-
pus of six deceased American 
football players. Representative 
images of hyperphosphorylated 
tau (AT8 antibody) staining 
from former American football 
players. Of the six cases, two 
individuals did not receive a 
diagnosis of CTE (cases 1 and 
2), three had CTE stage III 
(cases 3–5), and one had CTE 
stage IV (case 6). Of note, case 
4 had low cortical tau burden 
(i.e., cortical sparring) but 
had high burden in the medial 
temporal lobes. The first column 
depicts a low power overview of 
cortical regions (A,D,G,J,M,P) 
(scale bar = 3 mm). All cortical 
images came from the dorsolat-
eral frontal cortex except case 4, 
which came from the entorhinal 
cortex given it was a low corti-
cal burden case of CTE. The 
second column shows a high-
power view of perivascular tau 
pathology (B,E,H,K,N,Q) (scale 
bar = 200 µm). No perivascu-
lar tau was observed in cases 
1 and 2. The third column 
depicts the posterior hip-
pocampus (C,F,I,L,O,R) (scale 
bar = 3 mm)

441European Journal of Nuclear Medicine and Molecular Imaging (2023) 50:435–452



1 3

no CTE diagnosis and sparse p-tau at autopsy. However, 
there was overlap in SUVRs between one of the CTE cases 
(i.e., case 4) and the two non-CTE cases. There was a con-
sistent pattern of uptake for all cases. PET SUVRs were 
highest in limbic regions, particularly for the hippocampus, 
and in the thalamus. PET SUVRs were lowest in the corti-
cal regions with greatest binding for the OFC, followed by 
the STC. Flortaucipir SUVRs for the DLFC were relatively 
similar across the cases. SUVRs were generally lowest in the 
IPC for the CTE cases.

Correlations between flortaucipir PET and AT8 p‑tau 
measurements

Figures 3, 4, and 5 show flortaucipir-AT8 associations. 
Across all regions except for the thalamus, p-tau densi-
ties at autopsy had a large dynamic range whereas there 

was a restricted range for flortaucipir SUVRs. For the 
thalamus, the opposite pattern was present. As described 
next, discrepancies between SUVRs and p-tau density at 
autopsy existed. There was a strong association between 
flortaucipir SUVR and postmortem p-tau density in the 
prespecified cortical (ρ = 0.71, FDR p value = 0.11) and 
limbic composites (ρ = 0.77, FDR p value = 0.11). The 
thalamus had the lowest p-tau density at autopsy but 
among the highest flortaucipir SUVRs. There was a very 
strong association between flortaucipir SUVR and p-tau 
density in the thalamus (ρ = 0.83, FDR p value = 0.13). 
When restricting the sample to those who had autopsy-
confirmed CTE (n = 4), the flortaucipir–AT8 associations 
for the cortical composite were very strong (ρ = 1.00, 
p < 0.01). For the limbic composite, there was a moder-
ate association (ρ = 0.40, p = 0.60). There was a moderate 
association for the thalamus (ρ = 0.40, p = 0.60). Two of 

Table 2  Antemortem flortaucipir PET SUVRs and postmortem p-tau density

Cortical, frontal cortex, and limbic were mean composites that comprise these regions listed in the table. P-tau density was quantified using digi-
tally scanned slides at × 20 magnification on a Leica Aperio ImageScope
CTE chronic traumatic encephalopathy, p-tau hyper-phosphorylated tau, SUVR standard uptake value ratio

Case 1
(no CTE)

Case 2
(no CTE)

Case 3
(CTE stage III)

Case 4
(CTE stage III)

Case 5
(CTE stage III)

Case 6
(CTE stage IV)

Flortaucipir-PET SUVR
Cortical 1.10 1.15 1.14 1.09 1.27 1.25

  Frontal 1.10 1.14 1.17 1.08 1.33 1.27
    Dorsolateral frontal 1.04 1.05 1.08 1.00 1.23 1.10
    Orbital-frontal 1.16 1.22 1.26 1.16 1.43 1.44
  Superior temporal 1.11 1.17 1.15 1.18 1.25 1.37
  Inferior parietal 1.11 1.17 1.08 1.01 1.16 1.11

Limbic 1.18 1.27 1.30 1.23 1.55 1.69
  Entorhinal 1.14 1.29 1.17 1.15 1.49 1.35
  Amygdala 1.20 1.24 1.33 1.24 1.54 1.81
  Hippocampus 1.21 1.30 1.40 1.30 1.63 1.89

Thalamus 1.20 1.35 1.41 1.49 1.46 1.89
AT8 p-tau density, positive 

pixels  mm2

Cortical 175.55 490.26 9141.35 571.16 17,045.71 16,233.65
  Frontal 211.04 661.91 14,467.27 706.76 22,093.56 25,087.00
    Dorsolateral frontal 241.50 426.22 27,765.76 736.59 30,128.24 47,963.93
    Orbital-frontal 180.57 897.60 1168.77 676.93 14,058.87 2210.06
  Superior temporal 182.31 318.33 6479.81 677.36 6831.73 2971.11
  Inferior parietal 97.82 318.90 1151.05 193.77 17,164.00 11,789.51

Limbic 204.48 588.44 93,958.37 19,872.87 119,084.02 55,845.97
  Entorhinal 181.10 1130.51 73,516.37 17,824.09 180,358.90 78,658.41
  Amygdala 545.38 136.69 8059.85 3819.48 30,281.98 42,481.20
  Hippocampus 98.64 558.34 129,405.21 25,906.93 128,259.73 52,696.75
    CA1-Hippocampus 70.92 1172.90 210,210.79 18,072.52 103,603.49 92,860.40
    CA2/3-Hippocampus 92.14 206.55 146,305.70 49,197.60 172,928.96 51,960.08
    CA4-Hippocampus 132.85 295.57 31,699.15 10,450.67 108,246.75 13,269.76

Thalamus 157.61 348.82 1467.19 599.97 5185.09 9633.17
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the CTE cases had nearly identical thalamus flortaucipir 
SUVRs but discrepant p-tau density at autopsy, suggesting 
that the thalamic PET signal might be related to non-p-tau 
changes.

Post hoc: correlations between flortaucipir PET 
and AT8 p‑tau ROI measurements

There was a strong association between flortaucipir SUVR 
and postmortem p-tau density in the frontal composite 
(ρ = 0.77, p = 0.07). There were moderate associations for 
the STC (ρ = 0.54, p = 0.27) and IPC (ρ = 0.40, p = 0.40). 
For the STC, there were cases who had comparable 
SUVRs but discrepant p-tau density at autopsy (see cases 
4 and 5 vs. case 2, Table 2 and Fig. 2). Cases 3 and 6 
had the lowest and highest STC SUVRs among the CTE 
cases, respectively; however, this was not the case for 
p-tau density.

Of the limbic regions, there were very strong associations 
for the EC (ρ = 0.83, p = 0.04) and the amygdala (ρ = 0.83, 

p = 0.04). There was a strong association for the hippocam-
pus (ρ = 0.77, p = 0.07). The two non-CTE cases had over-
lapping SUVRs of limbic regions relative to CTE cases but 
had the lowest p-tau density. For example, there were iden-
tical SUVRs for the hippocampus for case 2 (no CTE) and 
case 4 (CTE), but these two cases had substantially different 
p-tau density in this region. As previously mentioned, there 
is known off-target binding in the hippocampus due to spill-
in effect from the choroid plexus.

Discussion

This study compared near end-of-life flortaucipir PET to 
postmortem CTE-related p-tau pathology (defined by den-
sity of total AT8 staining from digital slide scanning) in six 
former American football players, including four who were 
diagnosed neuropathologically with CTE (stages III–IV) and 
two who did not meet criteria for CTE. There were strong 
associations between antemortem PET and postmortem 

Fig. 2  Flortaucipir PET images 
of six deceased American foot-
ball players. Five participants 
had dynamically acquired PET 
scans after 80 min post-injec-
tion for at least 20 min and one 
participant’s flortaucipir scan 
ended at 90 min after injection. 
Voxel-wise SUVR values are 
represented relative to a cerebel-
lar reference region and scaled 
for a range of 0–2.0. The flor-
taucipir PET images are of two 
former American football play-
ers without autopsy-confirmed 
CTE (a, b), three who had CTE 
stage III at autopsy (c–e), and 
one who had CTE stage IV at 
autopsy (f)
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neuropathological measurements of p-tau pathology in the 
prespecified composite cortical ROI (including the frontal 
cortex), limbic ROI (including the amygdala, EC and hip-
pocampus), and thalamus. Although this limited case series 
does not include individuals with low stage CTE and does 
not clarify flortaucipir PET’s accuracy in the differential 
diagnosis of CTE (which is likely limited due to the mod-
est SUVRs and overlap between clinically characterized 
groups), it suggests that flortaucipir PET may be useful for 
detecting high stage CTE neuropathology. Importantly, it 
also remains unclear if the flortaucipir signal is specifically 
detecting p-tau pathology or other neuropathological pro-
cesses in CTE [72].

Mantyh et al. reported a non-significant and modest effect 
(ρ = 0.35) between antemortem flortaucipir-PET SUVRs and 
postmortem p-tau pathological burden in a single former 
NFL player who had autopsy-confirmed stage IV CTE [27]. 
Time from PET to death for that case was approximately 
52 months. In this larger sample, the average interval from 
PET to autopsy was approximately 20 months. The fronto-
temporal distribution of flortaucipir uptake in this sample is 
consistent with Mantyh et al.[27] and previous flortaucipir-
PET imaging studies among living individuals at high risk 
for CTE [29, 30]. This pattern of uptake mimics the cortical 
distribution of p-tau in CTE [8], including that observed in 

this sample. There was also a high concordance between 
flortaucipir uptake and cortical p-tau density, particularly for 
the frontal cortex. Associations for the STC and IPC were 
weaker and more variable, and CTE and non-CTE cases had 
overlapping SUVRs but discrepant p-tau density at autopsy. 
Some of this variability could have been driven by case 4 
who had minimal, yet diagnostic, cortical p-tau pathology.

CTE stages III and IV are characterized by p-tau pathol-
ogy in the hippocampus, EC, and amygdala [8]. Here, there 
was a modest association between flortaucipir and p-tau den-
sity for the limbic composite in those with CTE. Flortaucipir 
SUVRs were greatest in the hippocampus but had relatively 
modest association with hippocampal p-tau density. There 
were cases with similar SUVRs and different levels of p-tau 
in the hippocampus. Notably, CTE and non-CTE cases had 
identical SUVRs in the hippocampus but discordant p-tau 
density at autopsy. This pattern supports non-tau-related 
binding and raises concern for the diagnostic usefulness of 
flortaucipir to detect CTE p-tau pathology in the hippocam-
pus. Off-target flortaucipir binding has been described in 
the hippocampus due to spill-in effect from choroid plexus 
binding [49]. Off-target flortaucipir binding is also com-
mon in the thalamus and basal ganglia [27, 30, 50]. The 
thalamus had among the highest flortaucipir SUVRs and 
the lowest p-tau density at autopsy. Although there might 

Fig. 3  Associations between 
antemortem flortaucipir SUVRs 
and postmortem phosphorylated 
tau density. Cortical composite 
is the mean of the dorsolateral 
frontal cortex, orbital-frontal 
cortex, superior temporal 
cortex, and the inferior parietal 
cortex. Limbic composite is the 
mean of the entorhinal cortex, 
amygdala, and the hippocampus
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be off-target flortaucipir binding in the hippocampus and 
the thalamus, these regions are severely affected in high 
stage CTE[8] and can have molecular and neurodegenera-
tive changes from exposure to RHI [30, 73–77]. Although 
speculative, the high flortaucipir uptake in the hippocampus 
and thalamus might be capturing non-tau neuropathologi-
cal changes associated with CTE and/or exposure to RHI 
that co-localize with p-tau. Given that co-morbid neurode-
generative diseases were absent in the four CTE cases, the 
pathologies being captured could be non-specific neuro-
pathological changes associated with general neurodegen-
erative changes [50, 78–80]. Of note, elevated flortaucipir 
signal has been described in atrophic regions in patients with 
autopsy-proven, tau-negative neurodegeneration [72]. The 
known off-target flortaucipir binding in the hippocampus 
and thalamus limits interpretation of observed associations.

There were also associations between flortaucipir SUVR 
and p-tau density in the EC and amygdala. Of the limbic 
regions, off-target flortaucipir binding predominantly affects 
measurement of the hippocampus [49]. The EC and amyg-
dala are severely affected in high stage CTE [8]. ARTAG 
and PART are other tauopathies characterized by deposition 
of p-tau in the MTL that are nearly universal with increased 
age. While the distribution and nature of the limbic p-tau 
pathology was neuropathologically interpreted as CTE in 

the four cases, it is impossible to exclude contribution of 
PART to the limbic neurofibrillary pathology[67] and to 
the flortaucipir SUVRs. A review of the neuropathological 
distinctions between CTE, ARTAG, and PART is provided 
elsewhere [13].

Flortaucipir SUVRs in this sample were similar to previ-
ous studies in CTE[27, 29, 30] and modest and lower than 
those reported in AD [39, 81]. For example, in patients with 
AD dementia, flortaucipir SUVRs have been shown to be 
1.73 in the entorhinal cortex and 2.09 in the inferior tempo-
ral cortex [39]. (Note: direct comparison of SUVRs across 
studies can be difficult due to variations in reference region 
chosen.) In vivo studies also demonstrate small effect sizes 
for differences in flortaucipir SUVRs between participants 
at high risk for CTE and control groups [29, 30]. The flor-
taucipir SUVRs observed in CTE are more consistent with 
those in non-AD neurodegenerative diseases [38, 39, 72, 
81]. Flortaucipir was developed to bind to the 3R/4R tau 
isoforms in AD[31–33] and might have better binding affin-
ity to 3R tau [37, 38, 82]. Flortaucipir has limited specific 
binding to 4R isoforms of other tauopathies, such as pro-
gressive supranuclear palsy and corticobasal degeneration 
[39, 72, 82, 83]. Although CTE is a mixed 3R/4R tauopathy, 
the CTE tau isoforms might shift from 4 to 3R in later dis-
ease stages and binding affinity might vary by disease stage 

Fig. 4  Association between 
antemortem flortaucipir SUVRs 
and postmortem phosphorylated 
tau density in cortical regions 
of interest
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[9]. This could explain the increased concordance between 
antemortem flortaucipir and later stage p-tau density in this 
study. The molecular structure of p-tau in CTE is also dis-
tinct from AD and other tauopathies [10, 11]. In the context 
of modest binding affinity, the clinical meaning of the flo-
rtaucipir uptake and p-tau deposition in this sample is also 
unclear and there were discrepancies between diagnoses of 
TES, flortaucipir uptake, and CTE presence. This is the first 
clinicopathological correlation study with the 2021 TES 
research diagnostic criteria and there was misclassification 
of two cases. Due to the small sample size, we restricted 
our analyses to test the primary objectives of the study and 
thus did not formally test associations with clinical data, 
including TES diagnoses. However, flortaucipir and clinical 
associations will be tested using the larger DIAGNOSE CTE 
Research Project sample. Brain donation is also ongoing for 
this study and will allow for larger clinical-pathological cor-
relation studies in the future.

The FDA-approved flortaucipir (or TAUVID) to estimate 
density and distribution of aggregated tau NFTs in older 
adults with cognitive impairment being evaluated for AD. 
It is noteworthy that the single limitation of use included in 
the TAUVID FDA prescribing information states: “TAU-
VID is not indicated for use in the evaluation of patients for 
chronic traumatic encephalopathy (CTE).” While there are 

limitations of clinical utility of flortaucipir in CTE, it could 
still offer differential diagnostic information relevant to the 
presence of AD; this remains to be determined in larger sam-
ples with disease comparison groups. There is a need for the 
development of radiotracer compounds with high affinity to 
the specific tau isoforms of CTE that would detect p-tau in 
early disease stages (e.g., CTE stage I or II). This may prove 
challenging given that p-tau aggregates in early-stage CTE 
tend to be isolated and patchy epicenters that are located at 
the depths of cortical sulci. Second-generation PET radi-
otracers (e.g., MK-6240, PI-2620, APN-1607) with less 
off-target binding and/or possible 4R binding and improved 
pharmacokinetics are currently under investigation to deter-
mine their usefulness as a biomarker of CTE [84]. However, 
these were also developed to detect tau associated with AD 
and may therefore be less applicable to CTE.

The present findings have limitations. The sample size is 
small and therefore has limited statistical power, generaliz-
ability, and the ability to account for potential confounding 
factors. The small sample size also precluded the ability to 
test the diagnostic accuracy of flortaucipir PET in CTE; it is 
an important target for future larger PET-to-autopsy studies 
in CTE. The interval between PET and post mortem, as well 
as the different PET scanners used across sites, might have 
contributed to variability in correlation between SUVR and 

Fig. 5  Association between 
antemortem flortaucipir SUVRs 
and postmortem phosphorylated 
tau density in limbic regions of 
interest
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AT8. Partial volume correction was also not performed for 
reasons described and this might have influenced estimation 
of tau PET measurements, but it is likely to have been an 
underestimation. The sample was composed of only white 
men and inferences to other populations cannot be made. 
Off-target binding in the hippocampus might have been 
exacerbated if blacks or African Americans were included 
in the sample given flortaucipir SUVRs are higher in the 
choroid plexus (and perhaps in the vicinity of leptomenin-
ges) in blacks compared with whites due to off-target bind-
ing to melanin [49]. Attention to black or African American 
football players is important for future studies. PET imaging 
is costly, not reimbursed by health insurance, and not acces-
sible within low- or middle-income sectors, thereby limiting 
its clinical use. The neuropathological protocol guided the 
selection of PET ROIs that were chosen based on regions 
most affected in CTE. Because regions were not stereotacti-
cally matched, discrepancy in the precise location that were 
analyzed across the PET and neuropathology protocols 
might have affected the associations between flortaucipir 
SUVRs and p-tau density at autopsy. The sample did not 
include brain donors with low stage CTE. To fully under-
stand how the flortaucipir tracer behaves as a biomarker 
across the disease continuum, it will be important to conduct 
PET-to-autopsy studies among a larger sample of individuals 
who have CTE across the disease continuum. Finally, there 
was absence of brain donors with a history of RHI as well 
as disease comparison groups (e.g., AD).

Conclusions

Findings from this PET-to-autopsy case series of six 
deceased former American football players suggest that flo-
rtaucipir PET may be useful for detecting high stage CTE 
neuropathology. There remains a need to develop and vali-
date in vivo biomarkers that can detect the specific p-tau 
species of CTE across the disease continuum, including in 
early-stage disease.
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