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a b s t r a c t 

Multistep Human Density Prediction (MHDP) is an emerging challenge in urban mobility with lots of applications 
in several domains such as Smart Cities, Edge Computing and Epidemiology Modeling. The basic goal is to estimate 
the density of people gathered in a set of urban Regions of Interests (ROIs) or Points of Interests (POIs) in a 
forecast horizon of different granularities. Accordingly, this paper aims to contribute and go beyond the existing 
literature on human density prediction by proposing an innovative time series Deep Learning (DL) model and a 
geospatial feature preprocessing technique. Specifically, our research aim is to develop a highly-accurate MHDP 
model leveraging jointly the temporal and spatial components of mobility data. In the beginning, we compare 
29 baseline and state-of-the-art methods grouped into six categories and we find that the statistical time series 
and Deep Learning Encoders-Decoders (ED) that we propose are highly accurate outperforming the other models 
based on a real and a synthetic mobility dataset. Our model achieves an average of 28.88 Mean Absolute Error 
(MAE) and 87.58 Root Mean Squared Error (RMSE) with 200,000 pedestrians per day distributed in multiple 
regions of interest in a 30 minutes time-window at different granularities. In addition, the geospatial feature 
transformation increases 4% further the RMSE of the proposed model compared to the state of the art solutions. 
Hence, this work provides an efficient and at the same time general applicable MHDP model that can benefit the 
planning and decision-making of many major urban mobility applications. 
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. Introduction 

The modeling and prediction of human mobility is a topic of increas-
ng interest due to its applications in multiple domains of urban mobil-
ty, such as personalised recommender systems ( Zheng et al., 2018 ), ur-
an planning ( Du et al., 2020 ) and the design of smart cities ( Chen et al.,
019 ), just to mention a few. In particular, human mobility refers to
he movement of human beings (individuals as well as groups) in ur-
an areas in time periods that span from a few minutes to a few hours
 Barbosa et al., 2018 ). It is evident that modeling the human mobility,
rban and transport planners can identify movement behavior patterns
nd suggest corrective actions to improve the livable urban spaces. 
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∗ Corresponding author. 

E-mail addresses: ioannis.violos.1@ens.etsmtl.ca (J. Violos), ttheod@hua.gr (T. T
(A. Leivadeas), tserpes@hua.gr (K. Tserpes) . 

1 Conceptualisation, Methodology, Writing - Original Draft. 
2 Encoder Decoder Modeling, Self-attention Mechanism, Geospatial Transformation
3 Time Series Analysis, Machine Learning Prediction, Mobility Simulation. 
4 Edge Computing Contextualize. 
5 Smart City Contextualize. 

p  

a  

ttps://doi.org/10.1016/j.urbmob.2022.100022 
eceived 17 October 2021; Received in revised form 7 April 2022; Accepted 20 May
667-0917/© 2022 Published by Elsevier Ltd. This is an open access article under th
This generates an important opportunity for urban mobility and
lanning stakeholders by leveraging smart mobility data and analytics
o not only analyze how existing infrastructures facilitate the life of com-
unity members but also how to create a sustainable environment based

n the forecasted human mobility. Obviously, the core of the smart mo-
ility data analytic tools is the data related to the movement of the users
n an urban environment. Fortunately, nowadays humans, transport in-
rastructures, and even entire cities are equipped with sensors included
n mobile devices, GPS tracking tools and social media geotagging sys-
ems that generate continuously mobility data that reflect the every-day
ctivities of citizens. 

Following, these data should be carefully analyzed to extract the ap-
ropriate knowledge that will make relevant applications more efficient
nd more intelligent at the same time. To this end, the key theme of this
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aper is to design a data driven and machine learning model that pro-
esses the mobility data in order to provide timely and accurate insight
or an optimal decision making and what-if ( Arman et al., 2019 ) analysis
n the context of urban mobility. Specifically, the problem we address
s the Multistep Human Density Prediction (MHDP). This problem is
efined as the real time prediction of the distribution of moving enti-
ies into multiple Regions of Interest (ROIs) or Points of Interest (POI)
hrough different temporal granularities. In this context, moving entities
re individuals or human groups moving in an urban area, whereas ROIs
re locations which the moving entities frequently visit. The involved
rediction can be in a next-step or a multi-step granularity, according
o how far in the future the prediction should be made. 

Most of the current models are designed to provide single next-step
redictions. However, there are many contemporary applications that
equire predictions with different time granularities. For instance, three
ajor application categories that require multi-step ahead forecasting of

he amount of people gathered in multiple ROIs are the following: (a.)
he epidemic spreading modeling ( Balcan et al., 2010 ) which defines
he crowded ROIs and the time duration they will remain crowded. (b.)
he wireless networks ( Kapoor et al., 2017 ), especially in the context of
mart cities, where multiple users and sensor devices try to connect in
n access point creating network planning bottlenecks. (c.) Edge Com-
uting task offloading mechanisms ( Saeik et al., 2021 ) in which user
evices, e.g. Augmented Reality (AR) glasses in touristic attractions,
ffload their computational intensive workloads in nearby processing
odes at the edge of the network. By leveraging the sequential density
f users in different ROIs this can lead to a better planning of these
pplications both in a short and in a long-term time window. 

The above applications are only few of a vast range of applications
hat an MHDP can be used. Nonetheless, what is import to understand
s that to reap the benefits of the MHDP we need first to understand the
eople’s behavior. The mobility and the density of people/application-
sers into ROIs is characterised by the properties of periodicity and
elf-similarity making a model that analyzes and forecasts time series
 rational approach, since data are usually collected within equal time
ntervals. These data must include spatial and temporal information of
he mobility. Additionally, based on different use cases the models can
e enriched with exogenous information like the weather, the terrain
haracteristics, and various events that affect the mobility decisions of
eople. Nonetheless, in the particular research we focus only in the
patio-temporal data represented by timestamps and geo-locations fea-
ure vectors, which are structured in a time-series dataset (e.g. a person’s
osition every 30 minutes). 

For many years, the main approach for time series problems, such as
he problem at hand, was the statistical modeling and forecasting. Later,
achine Learning (ML) methods have been proposed as alternatives to

he statistical ones. Although, ML models are based on more complicated
nd advanced mathematical models, their accuracy is criticized to be
ften below than their statistical counterparts ( Makridakis et al., 2018 ).
or this reason, lately, the hype in forecasting prediction is around other
ypes of Artificial Intelligence (AI) techniques such as the Deep Learning
DL) and specifically the gated variations of Recurrent Neural Networks
RNN). 

The above techniques are not always performing the same for differ-
nt types of applications ( De Saa and Ranathunga, 2020; Yamak et al.,
019 ), signifying that there is a strong connection between the use-case
nd the most appropriate prediction model to be used. Accordingly, in
his paper, one of our research aims is to find the best prediction model
or any urban mobility use-case that can benefit from the MHDP mech-
nism. More precisely, our research is trying to answer which model
hould be incorporated into a MHDP mechanism in order to provide a
igh prediction accuracy for multiple ROIs in a sequence of time-steps.
ence, this motivated us to make extended experiments among statisti-
al, machine learning and deep learning models in a real dataset and a
ynthetic human mobility simulator in order to find which has the best
erformance for the multi-step forecasting of the human density. Our
2 
esearch reveals, that a technique of deep learning, the attention-based
ncoder-Decoder (ED) architecture, provides the best accuracy for the
obility prediction. 

Towards our path to design the most accurate predictive model for
he urban density prediction we have identified the four following major
esearch contributions: 

• We discuss how a data-driven methodology applies for the multi-step
forecasting of the number of people gathered in ROIs. 

• We make an extended experimental comparison in statistical, ma-
chine learning and deep learning time series approaches in order to
find the best performance model. 

• We propose the self-attention based Encoder-Decoders architecture
which surpasses the accuracy of the other methods in the literature.

• We propose a geospatial feature transformation that scales the den-
sity of people in a ROI based on the density of its neighborhood ROIs
weighted by the lengths of their borders. This data transformation
improves further the performance of the multi-step predictions. 

The rest of the paper is structured as follows: Section 2 provides a
hort overview of the MHDP in three popular use cases. Section 3 high-
ights the related work in multi-step forecasting of human density.
ection 4 explains how the mobility prediction can be modeled with
elf-attention based ED architecture and the geospatial feature transfor-
ation. Section 5 describes the experimental setup and the evaluation

esults of our proposed methods. Finally, Section 6 concludes the paper
nd suggests future directions. 

. Applications of multistep human density prediction 

Multistep human density prediction has applications in multiple do-
ains such as smart cities, edge computing, wireless networks and epi-
emiology modeling. The density prediction in a future time-window
ive us a comprehensive understanding of the moving entities in a
patio-temporal framework. Doing so, the dynamicity of the moving en-
ities can be reflected in the component of time and the component of
pace taking into consideration their correlation. The aggregation of the
redictions in next location and also the crowd flow prediction miss the
epth in the component of time while, the trajectory prediction of single
ntities misses their relations on the component of space. 

.1. Smart cities 

The domain of smart cities includes multiple fields of the informa-
ion and communication technology in order to improve the quality of
uman life, wellbeing, economic development and optimise the util-
ty of different resources and services. Mobility data in smart cities are
cquired by mobile devices, vehicles equipped with global positioning
ystem devices, smart cards (bank cards and transport cards), and em-
edded sensors. These data monitored by intelligent systems for traffic
anagement, traffic lighting control, tourism recommendation systems,

ivil protection experts, intelligent transportation and many more ser-
ices. Decisions can be real-time based on the dynamic changes of the
uman density. Every service has its own requirements in the time-steps
ranularity. For instance, traffic lighting systems need time steps of one
inute while intelligent transportation systems of ten minutes or more.
ven in these examples the time requirements change based on the scale
f geospatial regions and the context of the use cases. Specific use cases
n which the multistep density prediction can be leveraged by urban and
ransport planning are the transportation demand analysis over time
 Verma et al., 2021 ), the sustainable mobility planning ( Singh et al.,
022 ) and the bike-sharing services ( Arias-Molinares et al., 2021 ) 

.2. Edge computing 

Edge Computing is another emerging technology where mobility can
lay a vital role. Edge computing refers to adding the necessary compu-
ational and communication resources closer to the end-user at the edge
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f the network. This approach can allow fast data processing and real-
ime decision for mission critical applications. Accordingly, new and fu-
ure internet technologies, such as Internet of Things (IoT) and 5G and
eyond are and will be largely based on the Edge Computing concept.
n inherent part of these technologies is mobility. Hence, the adequate
rediction of user mobility can facilitate the resource allocation at the
dge, and the proactive planning of a relatively limited infrastructure.
dditionally, Edge computing is quite dynamic and distributed in its na-

ure due to the type of the applications it supports ( Dechouniotis et al.,
020 ). Specifically, when the application supports mobility, the com-
utational resources allocated to a user should follow its direction by
raversing the edge infrastructure close to the ROIs. At the same time,
he requirements of ultra reliable and low latency communications that
hese applications impose, make a necessity the high accurate prediction
f mobility models with different granularity of time-windows. 

.3. Epidemiology modeling 

Epidemic spreads depend on the human density as there is a signifi-
ant positive correlation of the likelihood of infection with the close hu-
ans interactions. The temporal and spatial dynamics of disease trans-
ission within a population can be modeled by a sequence of multi-
le time-steps of human density in ROIs. This provides a useful tool
o decision-makers who use non-pharmaceutical interventions policies
 Ilin et al., 2021 ), such as quarantines, perimeter closures and social
istancing. Specifically, infectious disease epidemiologists use models
ased on population size, population density, and travel distance. The
ravity and radiation models are the most commonly used ( Sallah et al.,
017 ). The gravity model is based on the assumption that the mobility
etween two locations has a positive correlation with the population size
nd a negative with the distance, whereas the radiation model assumes
hat the mobility depends on the population density. 

. Related work 

In this paper we address the human density prediction problem in
ultiple RoIs and multi-steps with a time-series dataset. Accordingly, in

his Section we first review and categorize pertinent prediction mech-
nisms proposed in the literature that could be used and adapted for
he human density prediction. Secondly, we present relevant works that
ave used mobility prediction mechanisms. Finally, we investigate the
esearch gaps of each of the prediction mechanism categories and we
eason the need of the proposed novel Self-attention based Encoder-
ecoder equipped with the geospatial density transformation mecha-
ism, that tackles the problem of human density prediction. 

.1. Time-series prediction mechanism 

1. Statistical methods ( Faghih et al., 2020 ) are based on the assump-
tion that the data are stationary, They may use one polynomial for
the Autoregression (AR), which regresses the variable on its own
past values, and the Moving Average (MA) polynomial which is a
linear combination of error terms occurring contemporaneously and
at various times in the past. The sum of these two polynomials gives
the ARMA model. In case the data are not stationary then ARIMA
model can be used. ARIMA is based on ARMA but also includes the
integration part which is a number of differences in the sequences
of data observations. 

2. Linear Regression (LR) ( Fernández-Delgado et al., 2019 ) is based on
the assumption that the output of the model is a linear function of the
input variables. Lasso, Ridge and Elastic Net (EN) are variations that
also assign a regularization penalty. Huber regression is a variation
robust in outliers, whereas Passive Aggressive Regression (PAR) is an
online regression approach. We also experiment with the Stochastic
Gradient Descent Regression (SGDR) which is an extension of the
3 
stochastic gradient descent classification to the regression case. Fi-
nally, Least-Angle Regression (LARS), the Random Sample Consen-
sus (RANSAC) and the Lasso model fit with the Least Angle Regres-
sion (LLARS). 

3. Machine Learning (ML) ( Xie et al., 2020 ) is a broad field, spanning
an entire family of different techniques. However, all these tech-
niques have the common principle that they automate the model
building from data without being explicitly programmed. From this
category we first examine the Support Vector Regression (SVMR),
which is based on drawing the maximum margin hyperplane in an n-
dimensional feature space. Following, we study the Regression Trees
(Extra, CART), which is based on tree structures combined with de-
cision rules. Finally, we evaluate the K-Nearest Neighbors (KNN) al-
gorithm, which is based on the average of the values of K Nearest
Neighbors of the testing instance. 

4. Ensemble ML ( Raj S. and M., 2021 ) are models that include multi-
ple weak predictors and aggregate their individual outputs in order
to improve their performance. They are mostly divided in the bag-
ging methods that decrease the variance error, such as Bagged Deci-
sion Trees (Bag) and Random Forest (RF), and the Boosting methods
that mostly decrease the bias error, such as Adaboost and Gradient
Boosting Machines (GBM). The Bagging methods include homoge-
neous weak predictors that learn independently and in parallel while
the predictors of the Boosting methods learn sequentially and adap-
tively. 

5. Deep Learning (DL) ( Luca et al., 2021 ) is a prominent subfield in
ML that includes Artificial Neural Networks (ANN) with different
types of hierarchical layers. In mobility modeling and prediction the
Feed-forward, Long Short-Term Memory (LSTM), Convolutional lay-
ers (CNN) and many variations and combinations of them have been
used successfully. Each of them captures the spatio-temporal depen-
dencies of the mobile entities through different representation for-
mulations. 

6. Encoder-Decoders (ED) ( Luca et al., 2021 ) are DL topologies with
one ANN that compress the input feature vector in a latent space
and one ANN to decode the latent vector to the output feature vector.
Various types of DL models have been used in the literature for the
encoder and decoder such as simple LSTM for both of them (LSTM-
ED), bidirectional and simple LSTM (BD-LSTM-ED), unidirectional
and bidirectional LSTM (Uni-BD LSTM ED, also named HB ED) and
CNN encoder and LSTM decoder (CNN-LSTM ED). Special emphasis
has been given to the ED that also include an attention mechanism
which mimics cognitive attention and solves the bottleneck problem
focusing on the most significant parts of the mobility features. A spe-
cific architecture of ED topology is the transformer (TRNF) with sig-
nificant results in sequence to sequence problems which also lately
adapted in mobility challenges. 

.2. Prediction mechanisms for mobility 

Regarding the use of some of the above techniques specifically for
he mobility prediction problem, only a few studies exist. For example,
 work that compares statistical time series with DL methods for multi-
tep crowd distribution ( Cecaj et al., 2020 ) has shown that generally
tatistical time series methods have better performance than simple DL
odels. But, an ED with a CNN for encoder and an LSTM for decoder

utperforms the other DL models and it has similar performance to that
f ARIMA. Comparing ED CNN-LSTM with ARIMA, we see that both
pproaches have advantages and limitations. The ARIMA has slightly
etter performance in the mean error metrics for most time-steps. In
ontrast, DL approaches reduce the maximum errors and they are more
obust to spikes and sudden changes in the sequential values. Other im-
ortant conclusions from this work are that there is a steady increase in
he forecasting errors when going from a few steps forecast to more steps
n the future. In addition, when the data sample size grows, DL methods
ignificantly improve their predictive performance. This work presents
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xperimentally that the ED has the potential to be the state-of-the-art
pproach for multi-step density prediction using only an off-the-shelf
D. Our work goes a step beyond by trying to understand theoretically
ow the ED topologies can be adapted to the mobility characteristics.
urthermore, we conduct research with different ED topologies that also
nclude the attention mechanism. 

Our work is also related to the WiFiMod ( Trivedi et al., 2021 ) model
hich uses an off-the-shelf TRNF taking into consideration long term
obility dependencies and multiple spatial scales. Even though this

tudy also makes density prediction, it differentiates from our work be-
ause it focuses only on indoor modeling. The authors explain that the
ndoor mobility modeling has major differences from outdoor mobility
ecause in a finer spatial scale, the mobility becomes more frequent,
he prediction space expands and there is a more complex sequential
eriodicity. 

Two important advances in time series forecasting that worth to be
nvestigated by the mobility researchers but do not match with our work
re the AR-NET ( Triebe et al., 2019 ) and the DeepAR ( Salinas et al.,
020 ). The AR-NET combines the best of traditional statistical models
nd neural networks using the stochastic gradient descent for the esti-
ation of the AR weights. AR-NET can deal efficiently with long-range
ependencies with fine granularity data. Nonetheless, as the authors
ention, AR-NET currently has been designed for one-step forecasting
hile they leave multi-cast forcasting as future work. The DeepAR is
ased on an autoregressive recurrent neural network model and has the
bility to learn a global model from multiple related historical time se-
ies. Its main advantage is that it provides probabilistic forecasts which
s a characteristic we do not require in density prediction. 

Recently, an Encoder-Decoder with Attention mechanism has been
sed in mobility prediction but for different challenges, such as the tra-
ectory prediction ( Zhou et al., 2019 ) and the prediction of users next
oI ( Gao et al., 2019 ). In addition, it is important to mention that the
ttention mechanism has different variations such as the (a.) Multi-
imensional Attention, (b.) Hierarchical Attention, (c.) Self Attention,
nd (d.) Memory-based Attention ( Hu, 2020 ) just to mention the most
opular. These variations can be used in different ways and have a dif-
erent role in the DL ED topologies. 

.3. Comparison of related works 

In all of the aforementioned works, related to mobility prediction,
nly a subset of the possible solutions from the 6 categories were used.
his paves the way for a research investigation and for an analysis op-
ortunity to examine which solution is the most appropriate for the
HDP. To the best of our knowledge, this is the first research endeavor

f such a holistic analysis that tries to expose the limitations and advan-
ages of the six categories in the context of urban mobility. 

Some of these limitations can be extracted by analyzing the main
unctional blocks of each method. For instance, the methods of the cat-
gories from 1 to 5 have the limitation that they are not designed to
rovide predictions jointly in the spatial and temporal component. In
ddition to that, the statistical methods (category 1) are based on the
tationarity assumption, which does not always characterise mobility
ata. LR models (category 2) include simplistic methods based on the
ssumption that the data have linear dependencies and can be repre-
ented using a linear model. Unfortunately, this assumption does not
lways characterise mobility data. The ML, ensemble methods and DL
categories 3, 4 and 5) can work with no-stationary and non-linear de-
endent data. However, their multi-output outcomes are limited to only
ne single step for the multiple ROIs or multi-step predictions for one
ingle ROI. ED models (category 6) can provide sufficiently multiple out-
ut predictions in a forecasting time window but they are intrinsically
esigned to process natural language data. From a first look, it seems
hat the ED models may be a promising solution for the MHDP, yet they
ave not been designed for the particular problem. In other words, this
eans that there is a research gap since the current ED models have
4 
he structure to provide multi-step predictions but they have not been
ailored for urban mobility data. 

Thus, the key theme of this paper is to address the Multistep Human
ensity Prediction problem, by comparing and evaluating the related
achine learning methodologies, while in the end proposing an inno-

ative Self-attention based Encoder-Decoder and a geospatial density
ransformation mechanism. The latter, is a secondary problem that we
ddress, namely, how to design an ED model to process efficiently urban
obility data in order to provide accurate density multi-step and multi
oIs predictions. It should be noted, however, that the novelty of this
pproach is not just the reuse of a state-of-the-art model in the urban
obility context but the optimization of the particular model through

he design of an innovative Attention based ED that leverages the spatial
nd temporal properties of urban mobility data. This proposed model,
s we will see in the experimental evaluation, surpasses the accuracy of
ll other methods. 

. Attention based encoder-decoder 

A geospatial area, in which people move, can be separated in a set
f POIs or ROIs ( Kuo et al., 2018 ). A POI is defined as a specific phys-
cal location that people find useful or interesting and visit with high
requency. A ROI in the geospatial domain is defined as a polygonal se-
ection in a 2D map that is important to be examined. The two terms,
or the purpose of our research, can be used interchangeably since in
oth of them a high density of people concentration can be noticed. 

Accordingly, in every POI/ROI people are concentrated and their
ensity is changing over time. The POIs/ROIs are characterized by
eospatial properties which affect the mobility and the flow of people
mong them. These factors make us to design a prediction model that
hould leverage: (a.) the geospatial properties among the POIs/ROIs,
b.) the number of people grouped in every POI/ROI and (c.) the time
hat is a key factor that shows how people density changes. Regarding
he factor (a.), we propose a geospatial density value transformation
hat scales the number of people grouped in a POI/ROI, the number of
eople grouped in its neighborhood POIs/ROIs and the length of the
orders between the ROIs. For the factor (b.), we empirically know that
he density of people has a self similarity property with temporal depen-
encies ( Trivedi et al., 2021 ) and can be predicted through a time series
pproach. Lastly, the time component (c.) can be leveraged through a
equence to sequence approach that takes as input a look back window
f 𝑛 previous values and provides 𝑚 sequential predictions in a future
ime window. 

As an example, Fig. 1 depicts an urban-area of interest, that we will
lso examine later in the experimental evaluation. We see that differ-
nt regions are characterized by polygonal borders and a representative
entroid. The density of people change over time and it is illustrated
ith different colors, according to the depicted heat bar. For each ROI
e predict the density of people given the number of people it has in the
 previous steps and the number of people in its neighboring regions.
he predictions are multistep meaning that the models provide forecasts
or the density in a sequence of 𝑚 steps. 

In the next subsections, we will firstly present the overview of the
odel and then we will focus on the technical details of our proposed
odel. 

.1. Model overview 

The strong part of our proposed model is the mapping ability be-
ween the input and output sequences. The relationships and the pre-
iction between the sequences is enhanced by the self-attention mecha-
ism, as explained later, that focuses on the most significant parts of the
emporal density dependencies. The attention mechanism learns which
atterns in the input sequences should be considered as relevant and
hich as background noise in order to predict the sequential density
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Fig. 1. Human density evolution over time. 

Fig. 2. The pipeline of human density prediction. 
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alues. However, first and foremost, we need to understand which are
he inputs and the outputs of our prediction model. 

In more detail, we use an end-to-end mobility prediction model that
egins from the sensoring of the geolocation data in constant intervals
nd ends up in the prediction of the human density distribution in a set
f POIs/ROIs as it is depicted in the Fig. 2 . The sensored mobility data, in
ts simplest form, are sequences of timestamps, latitude and longitude.
he mobile entities that they represent can be physical entities or mobile
evices. The output of the human density can be expressed either as a
calar number declaring the percentage of people in each POI or the real
mount of people. 

Furthermore, an additional characteristic of our model is that we
ssign the users to the nearest ROI and aggregate them in a single value
 that represents them. The processing of aggregated values of people’s
ensity has three benefits compared to the processing and prediction of
atches with individual geolocations. Firstly, it outputs smaller errors
ecause it does not aggregate the errors of all the individual predictions.
econdly, it is more computationally lightweight because it makes less
alculations. Finally, it preserves the privacy of individuals according to
he General Data Protection Regulation (EU 2016/679 (GDPR))- the EU
egulation law on data protection and privacy. 

After the sensoring step (i) and representation step (ii) of individu-
ls geolocations, which are also depicted in the Fig. 2 , the time series
re constructed by the ordered transformed density values of POIs/ROIs
tep (iii). Each POI/ROI has its own version of time series based on its
wn spatial properties (i.e. centroid distances and borders sizes) and
he temporal users’ mobility behaviors step (iv). As an example, users
ay have different mobility behaviors in regions with museums than

egions with open-air concerts. Each POI/ROI has its own univariate
rediction model with a self-attention based ED. As we will discuss in
he experimental evaluation, the univariate models with the geospatial
reprocessing have better performance than the multivariate models. At
he last step (v) we apply the inverse geospatial transformation in the
D outputs to take the real predicted density values. 

.2. Geospatial feature engineering 

As stated above, our input data are generated by sensoring devices,
uch as GPS tracking tools, which provide raw features of timestamps,
5 
ongitudes and latitudes. These raw mobility data contain latent knowl-
dge regarding the density of people. A feature engineering technique
sing geospatial domain knowledge can transform the raw data into a
ore suitable representation for the input of the ED model. The geospa-

ial feature representation (Geo) leverages the length of the region bor-
ers and the contextual human density information. 

In particular, we combine the representations of the various regions
n a single variable which can be digested by the univariate proposed
odel. Given that the current density state of a region could affect the

uture states of other regions, two main points should be properly con-
idered. The first point is to decide which of the other regions are af-
ected by considering (a.) the data based on the activity of people, (b.)
he actual size of the regions formulated and (c.) the established time-
teps. Additionally, it is safe to assume that during each time-step an
ndividual can traverse two regions at most. Thus, the state of a region
an only be affected by the states of its neighboring regions within the
ime-frame which is currently being examined. The second point is the
xtent at which the states of the neighboring regions are affected. The
ext state of a region depends on the current states of its neighboring re-
ions in accordance with the length of the borders they share. A longer
ommon border between two regions means that it is statistically more
ikely for people to cross it. 

In order to extract this inter-regional correlation it is essential to in-
orporate two additional mechanisms. The first mechanism is in charge
f the formulation of the variables in an 𝐼 𝑛𝑝𝑢𝑡 _ 𝑀 𝑎𝑡𝑟𝑖𝑥 , which contains
nformation regarding the states of all the regions. The backbone of
his mechanism is the implementation of the 𝑟 × 𝑟 weight matrix named
 𝑒𝑖𝑔ℎ𝑡 _ 𝑀𝑎𝑡𝑟𝑖𝑥 which contains representations of the 𝑟 regions, normal-

zed in a 0 − 0 . 5 zone. For instance, the first row of the 𝑊 𝑒𝑖𝑔ℎ𝑡 _ 𝑀𝑎𝑡𝑟𝑖𝑥

ill contain information regarding the borders that the region 𝑖 forms
ith the other regions. In the case of not neighboring regions between

wo ROIs, it will take the value 0. The declared border that a region
orms with its own is equal to the sum of the borders which are formu-
ated with the rest of the regions. In this way, the sum of the weights
f each row will be equal to 1, the elements of the main diagonal will
e equal to 0.5 and the rest of the weights of each row will have a
um which is equal to 0.5. Following, the states of all regions for each
ne of the 𝑚 specified time-steps are collected, thus creating a 𝑟 × 𝑚

 𝑒𝑖𝑔ℎ𝑡 _ 𝑀𝑎𝑡𝑟𝑖𝑥 . The two matrices are then multiplied with each other.
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Fig. 3. Self-attention encoder decoder. 
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ut of the 𝑟 rows of the resulting matrix only the one which corresponds
o our area of interest is going to be selected. The following equation de-
cribes the formulation of our model input. 

 𝑜𝑑𝑒𝑙 _ 𝐼 𝑛𝑝𝑢𝑡 [ 𝑖 ][ 𝑗] = 

∑𝑟 

𝑙=1 ( 𝐼𝑛𝑝𝑢𝑡 _ 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 _ 𝑀𝑎𝑡𝑟𝑖𝑥 [ 𝑖 ][ 𝑙] ⋅
 𝑒𝑖𝑔ℎ𝑡 _ 𝑀𝑎𝑡𝑟𝑖𝑥 [ 𝑗] ⋅ 𝑘 ) (1) 

here 𝑖 is the index of the input sequence, 𝑗 is the index of the area
f interest, and 𝑘 is an additional weight vector which was introduced
o enhance the efficiency of the model. In more detail, to guarantee
he generality of the Eq. (1) and to estimate the optimal significance
etween different ROIs and their neighbors, we multiply the resulting
ector with the 𝑘 vector, which is the updated weighted matrix. This
pdated matrix entails weights that correspond to the significance of
ach region in accordance to our area of interest. Much like before, the
lements of the 𝑘 should have a sum which is equal to 1. The values of
his vector can be formulated via processes such as Grid Searching. The
nal product is named 𝑀 𝑜𝑑𝑒𝑙 _ 𝐼 𝑛𝑝𝑢𝑡 ( Eq. 1 ) and it is consumed by the
roposed Self-attention based ED. 

The second mechanism is responsible for transforming the produced
rediction sequence back into a form which corresponds to only one
pecified region. In order to achieve this functionality every predic-
ion output is subjected to the transformation which is described in the
q. (2) . 

 𝑟𝑒𝑑𝑖𝑐 𝑡𝑖𝑜𝑛 _ 𝑆𝑝𝑒𝑐 𝑖𝑓 𝑖𝑐 [ 𝑖 ][ 𝑗] = 

1 
𝑘 
⋅ ( 𝑃 𝑟𝑒𝑑𝑖𝑐 𝑡𝑖𝑜𝑛 [ 𝑖 ][ 𝑗] + 𝐼 𝑛𝑝𝑢𝑡 _ 𝑀 𝑎𝑡𝑟𝑖𝑥 [ 𝑖 ][ 𝑗] ⋅ 𝑘 

 

∑𝑟 

𝑙=1 ( 𝐼𝑛𝑝𝑢𝑡 _ 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 _ 𝑀𝑎𝑡𝑟𝑖𝑥 [ 𝑖 ][ 𝑙] ⋅𝑊 𝑒𝑖𝑔ℎ𝑡 _ 𝑀𝑎𝑡𝑟𝑖𝑥 [ 𝑗])) 
(2) 

The Eqs. 1 and 2 are derived by the geometrical properties of the
OIs based on the assumption that more people can move between two
OIs through a longer border than a shorter one. 

.3. Sequence to sequence prediction 

As mentioned before, we treat the MHDP problem as a time series
roblem. For our study, the look-back window of a time series forms a
equence of previous human density values. The multi-step-ahead pre-
iction also constitutes a sequence of density values. This intrinsic struc-
ure of the input and output data, makes us to use a sequence to sequence
seq2seq) approach. 

Hence, we resort to Encoders-Decoders (ED) models that their struc-
ures allow us to follow this seq2seq approach. Specifically, (ED) with
NN is a prominent DL model that maps the input sequence to the out-
ut sequence. RNNs neurons send feedback signals to each other through
idden states and keep prior inputs in memory while they process the
urrent inputs and outputs. The training of long sequences in simple
NNs has the vanishing gradient problem, which can be addressed by

he gates of LSTM units. The gates regulate what information of the time
eries the model should learn, forget or remember. 

Fig. 3 illustrates the form of the encoder, which processes the sequen-
ial input values and encapsulates the temporal and spatial information
nto the context vector, also named thought vector. The encoder utilizes
 bidirectional and a unidirectional LSTM layer. The bidirectional layer
rovides one hidden state output for each time-step in an n-dimensional
pace form which is then utilized as input by the unidirectional layer.
he synergy between the heterogeneous layers is capable of exploiting
he temporal correlations in the look back-window leveraging past and
oth past and future information. This structural symmetry enables the
ecoder later on, to capture the sequential patterns in both directions. 

The context vector is the last hidden state of the Encoder and the
nput of the Decoder. It is calculated by the hidden and cell states of
he LSTM units. Its main role is to summarize the information of the in-
ut sequence in a fixed-length representation. This representation cap-
ures the similarity relations among the sequential density values and
t can work as the compressed information that the decoder will unfold
n order to predict the density values in the next steps of a POI/ROI.
6 
n addition, as it will be described in the next subsection we enhance
he information of the context vector using a self-attention mechanism.
his mechanism, focuses on the most informative patterns between the
ni-directional and the bidirectional layers. 

Regarding the decoder, it interprets the context vector and gener-
tes sequentially the output values. The decoder is also implemented by
tilizing a unidirectional and a bidirectional LSTM layer with the self-
ttention mechanism. In addition, there is an interpretation layer and
n output layer. The purpose of the fully connected interpretation layer
s to interpret each time-step in the decoder output sequence and send
he product to the output layer. We also wrap both the interpretation
nd the output layers inside a time-distributed wrapper. By doing so,
he output provided by the decoder will be processed by the same fully-
onnected and output layer. This results at enabling the wrapped layers
o be used for each time-step by the decoder. 

.4. Innovative encoder-decoder with attention mechanism 

In this part of the section, we present the final model of our proposed
echanism, which is the Hybrid Encoder-Decoder (HB ED) model. The
ncoder and the Decoder parts of the HB ED consist of Unidirectional
nd Bidirectional layers. In this particular architecture, we also utilized
wo Self-Attention (SATT) based layers alongside the recurrence-based
nes. The first one, which is present at the encoder, receives as input
he output of the bidirectional layer and its output will be utilized as
nput by the unidirectional layer. The second one, which is present at
he decoder, receives as input the output of the unidirectional layer and
ts output will be utilized as input by the Bidirectional layer. 

This final architecture, which is named SATT-HB-ED, is differenti-
ted from the existing ones because the Attention mechanism is incor-
orated inside the encoder and the decoder parts respectively. The de
acto use of the Attention mechanism is that it enables the decoder to
xamine the various states of the encoder and to provide an output by
electively focusing on specific elements from the sequence. At the same
ime, in this particular architecture, the Attention layer is utilized in a
anner which aims to enhance the ability of the Hybrid bidirectional-
nidirectional structures to encapsulate temporal dependencies. This en-
ancement manifests in the form of more robust encoding / decoding
apabilities when compared to various alternative options. 

In more details, the purpose of the incorporation of the Attention
echanism in the Encoding / Decoding process is to encourage the for-
ation of homogeneous representations. The level of similarity to its

ounterparts each of the intermediate products of the encoding / decod-
ng process holds, shall determine its impact on the overall encoding /
ecoding process. Since the Weight Vectors of the Attention mechanism
re trained alongside the rest of the network and not in an independent
anner, the same logical process is applicable in the opposite direction

s well. Therefore, the elements of the input sequence which are more
ignificant (in regards to affecting the output of the model) are more
ikely to be conceptually represented via the Encoding / Decoding pro-
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ess in a similar way. This process enables the important elements of
ach input sequence to be represented in a more stable manner. 

The Self-Attention mechanism, which is used in this particular archi-
ecture, is a variation of the Additive Attention mechanism ( Cheng et al.,
016 ). The Additive Attention mechanism was introduced in order to
rovide more efficient sequence-to-sequence modeling by aligning the
ecoder with the relevant input elements. The variation which is used in
his architecture implements the following process. The first recurrence-
ased layer produces the hidden states for each element of the input se-
uence. Following, the Alignment Scores between each element’s hidden
tate and the rest of the hidden states are calculated. Each Alignment
core corresponds to a specific element and is indicative of the similar-
ty between the Hidden State of this specific element 𝑖 and the Hidden
tates of the other elements 𝑗 of the input. The Alignment Score for each
air is calculated using the Eq. (3) . 

𝑐𝑜𝑟𝑒𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ( 𝑖, 𝑗) = 𝑊 𝑡 ⋅ 𝑡𝑎𝑛ℎ ( 𝑊 𝑖 ⋅𝐻 𝑖 + 𝑊 𝑖 ⋅𝐻 𝑗 ) (3)

here 𝐻 represents the Hidden State and 𝑊 the Trainable Weight Vec-
ors. 

In the above equation, the 𝑊 𝑖 ⋅𝐻 𝑗 vector consists of N times as many
olumns as the 𝑊 𝑖 ⋅𝐻 𝑖 vector, since it is derived by the Hidden States
f N elements of the input. Thus, the latter is added to each column of
he former. The resulted vector is then passed through a tanh activation
unction and multiplied with another trainable vector. This process en-
bles the Alignment Scores to be combined and represented in a single
ector. The Attention Scores are then produced by passing the Align-
ent Scores through a softmax layer. The softmax layer will force the

ector values to sum up to 1. By doing so, the importance of each time-
tep is properly encapsulated. Finally, the hidden states of the input are
ombined with their perspective Attention Scores in order to produce
he Context Vector. The Context Vector is ultimately consumed by the
econd recurrence-based layer. 

The proposed SATT-HB-ED is trained with the preprocessed data us-
ng the Adam optimizer, the backpropagation technique for the ED and
lso the Teacher Forcing technique for the Decoder. The Adam opti-
izer ( Kingma and Ba, 2017 ) involves a combination of Momentum

nd Root Mean Square Propagation (RMSP), where both the exponen-
ially weighted average and the exponential moving average of the past
radients are taken into consideration. The backpropagation technique
 Hecht-nielsen, 1992 ) is used to minimize the cost function which eval-
ates the performance of the model by adjusting the network’s weights
nd biases. The Teacher Forcing ( Williams and Zipser, 1989 ) technique
s a method that uses the ground truth from a prior time step as input,
nstead of model output from a prior time step. This is used to achieve
aster and more efficient training for recurrent neural network models. 

. Experimental evaluation 

The proposed methodology has been implemented and experimen-
ally evaluated in the Python 3 programming language using the li-
raries NumPy, pandas, Scikit-learn, SciPy, GeoPy, TensorFlow 2 and its
igher-level API Keras. The environment we used for the experiments is
 Jupyter notebook of the Google Colaboratory. In order to help other
cholars to replicate the same approach we provide the experiments’
ource code for any kind of reproduction in the second author’s GitHub
epository ( Theodoros, 2021 ). Our research includes experiments for
ultiple time steps and ROIs with the twenty nine different methods
escribed in Section 3 and the Attention based Encoder-Decoder pre-
ented in Section 4 . In this part of the paper, we provide the figures and
ables that summarize the most important outcomes. However, we have
lso uploaded the more detailed experimental outcomes in the GitHub
epository. 

For the evaluation of the proposed model we used two datasets. At
rst, we evaluated the performance of the SATT-HB-ED in a single-POI
ithout using the geospatial transformation. Doing so, we focus our ex-
eriments on the ability of the SATT-HB-ED for sequence to sequence
7 
rediction. Next, we carried out extended experiments using a mobil-
ty simulator in an area of multiple ROIs/POIs. In this case we took into
onsideration the geospatial and crowd flow characteristics of the exam-
ned area and the human mobility behavior respectively. In the second
et of experiments, we also used the proposed Geospatial transformation
Geo). In the Table. 1 we provide the data requirements for both data
ets. 

To evaluate the performance of our approach we use the Mean Ab-
olute Error (MAE) and Root Mean Squared Error (RMSE) metrics, since
hey are the most popular metrics to be used in time series forecasting
nd ML regression models ( Adhikari and Agrawal, 2013 ). MAE mea-
ures the average absolute deviation of forecasted values from original
nes and it shows the magnitude of overall error, which occurred due
o forecasting. The RMSE penalizes extreme errors occurring while fore-
asting. This emphasizes on the fact that the total forecast error is much
ore affected by large individual errors (i.e. large errors are much more

xpensive than small errors). For a good forecast, the obtained MAE and
MSE should be as small as possible. 

.1. Single-POI prediction outcomes and discussion 

For the comparison and evaluation in a Single-POI task, we used the
eal-world dataset Crowdedness at the Campus Gym ( Du et al., 2019 ).
his dataset includes measurements of the number of people located in
he campus gym of UC Berkeley. The measurements are taken every 10
inutes over more than one year and consists of more than 26,000 peo-
le counts. The reason we have selected this dataset is because going to
 gym is a daily life activity for many people in urban areas. Addition-
lly, with the current situation of the pandemic we have observed that
any Covid-19 outbreaks were associated with the attendance of peo-
le at a gym. In particular, the visitors can stay in the POI of the gym
or a significant amount of time, often more than one hour and there
s a fluctuated flow of people during the parts of the day. The MHDP
an provide the number of people crowded in the gym letting know the
thletes and the coaches when they should go. 

Many human out-of-home activities are characterized as stationary
rocesses or can be transformed into stationary process by a difference
ransformation. Stationary means that the statistical properties of a time
eries do not change over time and it is the main assumption to guaran-
ee the soundness of the model fit. We applied the Kwiatkowski-Phillips-
chmidt-Shin (KPSS) test ( Kwiatkowski et al., 1992 ) in the initial data
alues and it showed that the sequence values are not stationary. The
on-stationarity is also visual perceived in Fig. 4 , where we can see the
ensity mean value to change in different parts of time. We continued
ith the differencing of the time series in order to eliminate the trend
nd seasonality. The new transformed time series was stabilized and the
est showed that it is stationary. 

In this first experiment, we have applied the ARIMA, linear regres-
ion (LR), and KNNR models. Additionally, we examined the three types
f ED, namely, the LSTM ED, the Hybrid ED (HB ED) and the self-
ttention based Hybrid ED (SATT-HB-ED), which were described in
ections 2 and 4 respectively. The experimental outcomes are summa-
ized in Table 2 . The time-step was ten minutes and we predicted six
teps ahead in a time window of one hour. Making experiments with
ifferent time granularities and number of steps in the look back win-
ow and look ahead window we derived the same conclusions regarding
he applicability and performance of the methods. The multistep predic-
ion in the ARIMA, LR, and KNNR took place with the recursive strategy
hile, in the ED with the direct strategy ( Bontempi et al., 2013 ). The ED
odels have the intrinsic characteristic to provide multiple predictions
irectly by the output layer while the vanilla statistical, linear regres-
ion and machine learning models need multiple versions of the same
odel, one for each output. The latter approach increases the computa-

ional workload and we did not select it. For the sake of completeness,
e mention that there are time series models that provide multi-outputs
irectly. This is the vector autoregression ( Schimbinschi et al., 2017 )
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Table 1 

Data requirements. 

Duration(days) Time-step (min) Regions (number) People Counts 

Campus Gym 430 10 1 26,000 
Central Park 7 5 6 1,554,778 

Fig. 4. Timeplot and vizual checking of stationarity. Different time periods have different statistical properties. 

Table 2 

Single POI Evaluation in the Dataset Crowdedness at the UC Berkeley Cam- 
pus Gym. 

ARIMA LR KNNR LSTM ED HB ED SATT-HB-ED 

MAE 4.008 4.821 5.858 4.149 4.986 4.127 
RMSE 6.225 6.647 8.640 6.096 7.11 6.019 
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odel, but as we will see in the last experimental setup we selected the
nivariate because they had better performance. 

From the Table 2 we see that in terms of RMSE the SATT-HB-
D has the best performance and in terms of MAE it has the second
est performance. The ARIMA model has been optimized selecting the
p,d,q) values based on KPSS and Canova-Hansen tests ( Canova and
ansen, 1995 ). The ED parameters have been learnt with the Adam op-

imizer but we didn’t select the hyper-parameters i.e. number of layers,
eurons, activation functions, etc. with a tuner such as Bayesian opti-
ization or Hyperband. We just selected an ED topology based on our

xperience of previous time series tasks. This means that the ED perfor-
ance can be further improved using a hyper-parameter optimization
rocess. 

The ED models seem promising even if they have not been hyper-
uned. The outcomes confirm that the ED approaches can achieve good
erformance in human density prediction. The RMSE metrics show that
he SATT-HB-ED has the best performance in high-variability observa-
ions and when the sequential data have anomalous behaviors. Last but
ot least, it is obvious from the comparison of HB ED with SATT-HB-
D that the self-attention mechanism in the encoder and in the decoder
mproves the performance. 

The above results corroborate that SATT-HB-ED has the following
dvantages in MHDP modeling compared to the others methods: i) It ef-
ciently captures long-range dependencies and complex interactions. ii)

t detects and focuses on the most relevant previous time steps against
he target time-step. iii) It jointly leverages temporal dimensions (dif-
erent time steps of a sequence), spatial dimensions (different regions of
pace) and different feature values. These characteristics are also present
n the multi-ROIs experiments that follow. Specifically, in the following
ection, we will compare the performance of all the 6 categories men-
ioned in Section 2 and we will also apply the geospatial transformation.

.2. Multi-ROIs prediction outcomes and discussion 

For the evaluation and comparison of Geo SATT-HB-ED in multiple
OIs, we run a mobility simulation for seven days in the area of Central
8 
ark of New York. In every day of the simulation we examined approx-
mately 200,000 to 230,000 pedestrians that roam around or stay in
he same location. We partitioned the Central Park into six ROIs. We
dopted a time step of five minutes, a look-back window of six steps
nd a look-ahead window also with six steps. We split the dataset into
he training part with the first four days and the evaluation part with
he last three days. 

The Central Park covers a rectangular area of 3 . 41 𝑘𝑚 

2 with sides that
re 4 𝑘𝑚 in length and 0 . 8 𝑘𝑚 width. In our simulation we also took into
onsideration many building blocks that surround it. The Central park
as geospatial and smart city characteristics such as multiple attractions,
very day activities, events, concerts, tours, the Central Park Zoo, the 21
fficial playgrounds and 8 lakes and ponds. All these make it an ideal
rea for study and experiment of mobility models. The visitors stay or
alk through the central park, they remain, come in or go out in the
ifferent ROIs. The route of the visitors is affected by the geospatial
haracteristics of the terrain and the park attractions making some areas
ith low or zero concentration like the areas of lakes and some others
ith a high concentration like the Conservatory garden and the Rumsey
layfield. The lake of central park has also rowboats and gondolas but
e limited this research only to pedestrians. 

The area is partitioned into ROIs based on the Voronoi diagram and
he k centroids generated by the k-means clustering algorithm ( Du et al.,
999 ). Firstly, the k-means algorithm is applied in the training dataset
n order to cluster all the recorded pedestrian geolocations. The clusters
re created with the objective to minimize the intra-cluster distances
f the pedestrians’ geolocations and maximize the inter-cluster distance
f the clusters centroids. Doing so, we have centroids with latitude and
ongitude being shaped coherently and by well separating the groups
f pedestrians. Following, using the geolocations of the centroids and
he Euclidean distance we draw the borders of the Voronoi diagrams
s illustrated in Fig. 1 . Each Voronoi cell defines the region of the cor-
esponding ROI. The reason we follow this approach in order to select
he ROIs instead of using predefined ROIs, is that the new Edge com-
uting and wireless network infrastructures cover areas with this type
f geospatial and number of connected users criteria ( Chowdhury and
e, 2021 ). 

The trajectories of the pedestrians are generated with the software
ackage named Simulation of Urban MObility (SUMO) ( Lopez et al.,
018 ). SUMO is a highly portable, microscopic and continuous traffic
imulation for handling large mobility networks. It has multiple types
f transportations including pedestrians and comes with a large set of
ools for different mobility scenarios creation. The simulation offers
any realistic properties of the pedestrian mobility such as pedestrian-



J. Violos, T. Theodoropoulos, A.-C. Maroudis et al. Journal of Urban Mobility 2 (2022) 100022 

Fig. 5. Density of People (left) and mobility percentages among ROIs (right) in 
Central Park NYC. 
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edestrian interactions when they are close, reasonable walking speeds
nd movement behavior. 

Pedestrians interactions also include features such as the collision
voidance. In order to achieve this, the SUMO divides the lateral width
f a lane into discrete stripes of fixed width, adding to the pedestrians
he ability to overcome obstacles or slower pedestrians by moving to
nother adjacent stripe and proceeding. More complicated movement
ules apply when moving on a walking area, where pedestrian paths
ross in multiple directions. In that case, pedestrians follow a prede-
ermined trajectory calculated at the beginning of the simulation. It is
nally important to note that each pedestrian involves a list of rides,
tops and walks. Rides are not implemented in our case, because no ve-
icles were included in the simulation. Stops correspond to non-traffic
elated activities such as working or shopping, while walks model trips
aken by foot. 

The ROIs cover different areas, number of people and mobility pat-
erns. The size of the ROIs is constant in our experiments, defined by the
oronoi diagram and can be depicted in the Fig. 1 . The distribution of
eople in the ROIs for three different timestamps is also depicted with
ifferent colors in Fig. 1 . The total amount of people in the ROIs during
he first four days of the simulation is depicted in the left of the Fig. 5 .
he chords in the right of the Fig. 5 represent the percentage of people
hat move from ROI- 𝑖 to ROI- 𝑗 during five minutes. These five minutes
re selected randomly and it is obvious that the chord diagram changes
ver time. Every different use case and area of interest has different mo-
ility patterns and statistical properties. Yet, this analysis is important
n order to conceptually understand the challenges of the heterogeneity
nd dynamicity that a mobility model should tackle. 

We compared the performance of the Geo SATT-HB-ED with the
aseline and state-of-the-art models mentioned in the related work. We
pplied both the direct and recursive methods in order to develop the
ultistep forecasting as we did in the Section 5.1 . The outcomes in terms

f MAE and RMSE are summarized in Fig. 6 . We see that the models
re mostly grouped together based on the category they belong to. ML
nd linear regression models seem to have the worst performance with
he highest MAE/RMSE. Next, ensemble methods and DL models follow
ith a significant improvement in the performance. Time series mod-

ls and ED have the best performance. An unexpected outcome was the
ad performance of Transformers (TRNF), since it is mentioned as the
tate-of-the-art method for many sequential problems. We made an er-
or analysis and searched in the literature to reason the TRNF outcomes.
he results of the error analysis can be explained by ( Fan et al., 2021 )
ho say that TRNF have inability to track long sequences, do not have
ccess to higher level representations and cannot maintain a belief state.
n contrast, SATT-HB-ED does not have these limitations. The long se-
uences can be tracked by the bidirectional and unidirectional LSTM
ayers and the belief state can be maintained in the encoder and the
ecoder. 

Fig. 7 depicts that the Geo SATT-HB-ED has better performance com-
ared to ARIMA in every ROI. We see that the ROI-1 and ROI-5 in
oth models have significantly lower accuracy than the other ROIs. This
eans that the historical data of the ROI-2, ROI-3, ROI-4 and ROI-6 are

ufficient to train the prediction model compared to ROI-1 and ROI-5. In
9 
he error analysis, we saw the phenomenon that similar input patterns
re mapped to different output sequences which also have high variabil-
ty. This phenomenon was more intense in ROI-1 and ROI-5. The SATT-
B-ED can capture these mobility patterns better than ARIMA using a
on-linear approach and giving the proper attention into the important
arts of the long sequences. 

In Fig. 6 we also see the performance of the geospatial scaling Geo
ATT-HB-ED compared with not scaling SATT-HB-ED. We see a signifi-
ant improvement in the RMSE and a slight deterioration in MAE. The
eospatial transformation compress the information of the number of
eople in every ROI and the geospatial properties among the ROIs in
ne value. In case we disentangle these pieces of information and pro-
ess them as different sequences of features we have a multivariate fore-
asting model. The related scientific literature contains many instances
hich showcased that the utilization of multiple features instead of a

ingle one is beneficial to the model’s efficiency to properly forecast
uture states. In the use case which is currently being examined, the
pplication of multivariate forecasting would enable the model to si-
ultaneously consume information related to all of the 6 regions. This

s achieved via the use of a 6 × 6 matrix as the input sequence. Each
olumn corresponds to a specific region and each row corresponds to a
pecific time-step. The output sequence is identical to the one produced
y the univariate model. 

In order to test the viability of a multivariate forecasting approach,
e modified the SATT-HB-ED model in a manner which allowed it to

everage inputs from various regions. Table 3 shows these results and
rove that the univariate approach is superior to the multivariate one
oth in terms of RMSE and MAE. This is due to the fact that the mobility-
ased correlations, which are formed between the various regions, are
ot strong enough to overcome the advanced complexity of the multi-
ariate approach. This advanced complexity derives from the fact that
he multivariate model has to digest a greater amount of information in
rder to form contextual relationships between the input and the output
equence. 

In both experiments of Single-POI prediction and Multi-ROIs pre-
iction we have seen a significant improvement in the accuracy using
he SATT-HB-ED compared with the six categories of prediction models
escribed in the related work. This happens because ED captures the
ong-range dependencies and complex interactions among the different
ime-steps of the data. Finally, the proposed geospatial feature represen-
ation improves further the accuracy leveraging the geometric proper-
ies of the areas of interest. Regarding the limitations of the proposed
odel, ED requires a significant amount of historical data. In addition

he training process is computationally heavy, requiring the appropriate
umber of resources and training time. 

. Conclusion and future work 

In this paper we have studied several multistep prediction mech-
nisms for the distribution of people in POIs/ROIs in an urban envi-
onment. We have seen that existing models cannot jointly process the
eospatial and temporal properties of this challenging problem and can-
ot attain high accuracy. To this end, we tried to conceptualize what
ffects the density of people in a look ahead window and proposed a
ew ED-based mechanism called SATT-HB-ED. The experimental results
ith two different datasets confirm the applicability of our proposed ap-
roach. 

Hence, transport planners and other related stakeholders can have
he most accurate model regarding the density of people distributed in
n urban area using the Geo SATT-HB-ED. Additionally, we believe that
D models can sufficiently capture long-range time dependencies and
omplex interactions among mobile entities, which constitute major mo-
ility challenges. In addition, the modeling of physical characteristics
f a mobility task using data transformation techniques can further im-
rove the accuracy. 
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Fig. 6. Experimental results in terms of MAE 
& RMSE. 

Fig. 7. ARIMA vs. Geo SATT-HB-ED. 

Table 3 

Comparison multivariate with univariate SATT-HB-ED. 

ROI-1 ROI-2 ROI-3 ROI-4 ROI-5 ROI-6 

Multi- variate MAE 143.145 90.573 103.262 179.017 179.839 53.088 
RMSE 277.001 119.649 124.315 225.338 316.104 76.303 

Uni- variate MAE 47.486 25.189 21.245 24.628 40.373 18.771 
RMSE 225.55 40.814 38.306 40.619 182.387 31.195 
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Our future work includes to adapt the proposed methodology in spe-
ific use cases and include additional covariants like parallel time series
hat have cross-correlation and semantic information of the ROIs. We
elieve that by modeling exogenous information we can find patterns
rom different knowledge domains that reason the mobility behavior of
eople. These patterns can be time dependent or time independent. This
rings the challenge of how we can combine time series and batch data
n a unified forecasting model. Lastly, we believe that the geospatial and
obility properties can be efficiently represented with graphs. Thus, in

ur future work we aim to also examine the graph neural networks for
obility prediction. 
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