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Abstract: This study presents a novel and thorough approach to comprehending and simulat-
ing the DRX process while hot compressing steel. To achieve this goal, we studied the high-
temperature deformation behavior of a medium-carbon steel through hot compression testing on a
Gleeble-3800 thermomechanical simulator over a broad range of strains, strain rates, and temperatures.
We also employed an artificial neural network (ANN) to model the thermo-visco-plastic behavior with
a flow law. The precision of quantifying the DRX volume fraction is dependent on critical conditions,
which are essential for both analytical model evaluation and numerical implementation in finite ele-
ment software. This study proposes a second ANN, serving as a universal approximator, to fit the data
required for DRX critical condition calculations, whereas the Johnson–Mehl–Avrami–Kohnogorov
(JMAK) model served as an analytical tool to estimate the DRX volume fraction, which underwent val-
idation through experimental measurements. A numerical implementation of the JMAK model was
conducted in ABAQUS software and compared against experimental data by means of microstruc-
ture analysis. The comparison revealed a strong correlation between the simulation and experiment.
The study investigated the impact of temperature, strain, and strain rate on DRX evolution.
The findings showed that DRX increases with rising temperature and strain but decreases with
increasing strain rate.

Keywords: artificial neural network; constitutive flow law; Gleeble simulator; dynamic recrystallization;
finite element analysis

1. Introduction

Dynamic recrystallization is a process observed in specific materials, mainly metals and
alloys, as they undergo the process of plastic deformation. It is a phenomenon frequently
seen in hot working operations, including hot rolling, hot forging, and hot extrusion.
When a metal or alloy undergoes significant plastic deformation at high temperatures, its
existing grain structure is disrupted. During the deformation process, new, smaller grains
are formed, which is referred to as dynamic recrystallization (DRX). DRX differs from static
recrystallization (SRX), which takes place when there is no deformation applied on the
material. The amount of energy stored in the metal due to plastic deformation is the driving
force behind the DRX process. Typically, the newly formed grains are much smaller than
the original grains of the undeformed material. Their growth is accelerated by the stored
energy and high temperatures. DRX provides several benefits in the hot forming process by
refining the grain size and enhancing the mechanical properties of the material, including
strength and toughness [1,2].
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As the occurrence of DRX softens the material, the deformation loads during hot de-
formation must be adjusted from one pass to another to have a more accurate prediction of
DRX. Therefore, understanding the critical conditions for dynamic recrystallization (DRX) is
important for modeling industrial processes. However, the extent of DRX is influenced by
factors such as material composition, deformation temperature, strain rate, and strain. By
optimizing the parameters, engineers can attain the desired microstructures and mechan-
ical properties in the final product. Various experimental techniques have been proposed
by researchers to establish DRX’s critical conditions, such as metallographic analysis [3].
However, this technique requires extensive sampling before and after reaching the critical
deformation point at which the material experiences recovery and recrystallization processes,
resulting in the formation of new grains and a decrease in the average grain size. Addi-
tionally, the cooling phase sometimes entails phase changes (depending on the material’s
type) from the hot working temperature, which alter the deformed structure, rendering the
metallographic analysis complex. Hence, simpler techniques such as the development of
analytical models are required to determine DRX initiation. In this regard, multiple studies
have been carried out aiming to analytically identify the initiation of DRX. For instance, Yan
Peng et al. [4] determined the critical strain and critical stress for DRX’s initiation based on
the method proposed by Najafizadeh and Jonas [5] to establish a DRX kinetic model for
hot-rolled conditions based on the relationship between the characteristic parameters of DRX
and the temperature and strain rate. This approach defines the critical stress required for the
initiation of DRX during deformation. According to Gottstein et al. [6], the critical strain for
initiating DRX can also be predicted based on a work hardening model of dislocation density.
The onset of dynamic recrystallization (DRX) may be identified through the inflection point
in the strain hardening rate θ(σ) = ∂σ

∂ε , where σ is the stress and ε is the strain.
The DRX phenomenon, based on the inflection point, was first studied by Ryan

and McQueen [7–9]. They observed the appearance of an inflection point on the θ(σ)
curve before the peak stress σp and attributed the beginning of DRX and the critical
conditions to this point. Later, Poliak and Jonas [10–13] confirmed the hypothesis of DRX,
describing the inflection point by demonstrating that it is associated with thermodynamic
energy released during dislocation movements; the combination of the current dislocations
with the previous one leads to DRX’s initiation. Najafizadeh and Jonas [5] simplified
Poliak and Jonas’ thermodynamic model using an analytical technique to determine the
critical conditions for initiating DRX. Their widely used approach relies on a third-degree
polynomial to describe the curve θ(σ) and the second derivative to identify the critical
stress σc and strain εc. Once calculated, the critical conditions serve as input data for the
Johnson–Mehl–Avrami–Kolmogorov (JMAK) model [14]. This model is commonly used
to estimate the volume fraction of dynamic recrystallization, Xdrx, during hot working.
Li et al. [15] investigated the DRX properties of micro-alloyed plastic molding steel by using
the Avrami kinetics model equation and the Estrin and Mecking mathematical model [16,17]
to determine the Avrami equation coefficients.

Zhang et al. [18] investigated the DRX behaviors of a medium-carbon alloy (Cr-Ni-Mo
steel) using the Avrami kinetics model equation. They qualitatively characterized the
alloy’s metallurgical properties based on variations in the Zener–Hollomon parameter.
Cho et al. [19] and Razali et al. [20] used a well-established model to predict the mi-
crostructure evolution of a Mn alloy with a focus on DRX and grain growth phenomena.
Their results showed consistency with multiple compression tests. Wan et al. [21] em-
ployed the same equation to predict the microstructure evolution of TiAl-based alloys
during hot compression. Li et al. [22] validated the reliability of the Avrami kinetics model
equation when testing the compression of Inconel 718 bolts. Cui et al. [23] analyzed DRX
by applying the Avrami kinetics model equation and discovered that the β-solidifying
TiAl alloy usually started evolving at triple-joint boundaries before affecting the lamellae.
Recently, Chen et al. [24] conducted a finite element analysis of DRX based on GCr15 (52100
steel) microstructure analysis and found that temperature and strain rate have a significant
impact on DRX initiation.
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The precision of the critical DRX conditions is closely linked to the method of obtaining
the curve θ(σ). Using experimental raw data directly does not yield functional curves;
thus, smoothing the σ(ε) curve as much as possible or approximating it with a polynomial
function that can reproduce the curve and deducing the θ(σ) curve from it is commonly
used. The drawback of both of these methods is that they do not always ensure a satisfactory
smoothing of the curve σ(ε). Nevertheless, the universal approximator capability of
artificial neural networks (ANN) has demonstrated effectiveness in various domains, such
as predicting the flow behavior of materials, as in our previous work Tize Mha et al. [25] and
many other works. Then, the predictions of σ(ε) are used as inputs for the θ(σ) prediction.
Hence, this study offers a replacement of the two smoothing methods with an ANN
approach to estimate the critical conditions for DRX.

2. Materials and Experiments

The experimental tests used in this work are identical to those previously published by
Tize Mha et al. [25]. For additional information, readers can refer to the publications by our
research group [26]. Nonetheless, we will outline the key aspects necessary to understand
the suggested methodology.

2.1. Experimental Procedure and Compression Test Results

The material used for this study is a medium-carbon steel with the chemical composi-
tion presented in Table 1.

Table 1. Chemical composition of medium-carbon steel. Fe = balance.

Element C Mn Mo Si Ni Cr Cu

Wt % 0.30 0.89 0.52 0.34 0.68 1.86 0.17

As detailed in Tize Mha et al. [25] and reported in Figure 1, hot compression tests were
conducted on cylinders with an initial diameter of φ = 10 mm and a height of h = 15 mm
using a Gleeble-3800 thermomechanical simulator.

Figure 1. Schematic diagram of the experimental process on the Gleeble-3800 thermomechanical simulator.

The tests were conducted at 5 temperature levels (ranging from 1050 to 1250 ◦C) and
6 strain rates (ranging from 0.001 to 5 s−1). The imposed displacement was set to d = 9 mm,
resulting in a reduction of 60% of the initial height. To reduce friction during testing, thin
tantalum sheets were used as a lubricant on the contact surface of the anvils and specimens.
In order to remove thermal gradients, the samples were heated at a speed of 2 ◦C/s until
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they reached a temperature of 1260 ◦C, then held at that temperature for 5 min. They
were subsequently cooled down to the test temperature at a speed of 1 ◦C/s and left at a
consistent temperature for 1 min prior to being formed. During compression, the sample
temperature was maintained at a constant level through the machine’s thermal control
system. Subsequently, the structure was frozen at a fast pace in order to preserve the
microstructure for future analysis.

The raw stress–strain data were exported from the Gleeble thermomechanical sim-
ulator as true stress and true strain, and the set of 30 flow stress curves σ versus strain ε
obtained from compression tests for each test condition is reported in Figure 2. All stress–
strain data are composed of 701 equidistant strain values from ε = 0.0 to ε = 0.7 in
0.001 increments.

Figure 2. Stress–strain curves of medium-carbon alloy extracted from the Gleeble device for
5 temperatures (T) and 6 strain rates ( .

ε).

The flow stress (σ) increases as the strain rate ( .
ε) rises but decreases as the temperature

(T) increases. Notably, the strain also affects the flow stress. At the lowest strain rates,
the flow stress increases up to σp as the strain approaches a value of about εp = 0.2 to
0.3. Then, it decreases to maintain a relatively constant value throughout the entire test.
Conversely, at strain rates above 1 s−1, the flow stress increases steadily throughout the test.
The nominal rise in stress observed at low strain rates with large strain values is attributed
to friction between the sample and anvil during testing, as noted by Galos et al. [27].
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Furthermore, this frictional effect becomes more apparent as lubrication reduces over
time, as reported in Tize Mha et al. [25].

The initial increase in stress seen during deformation up to ε = 0.1 is believed to be
due to work hardening (WH). Between ε = 0.1 and 0.2, the flow stress indicates a steady
decrease as the stress level rises until a peak or inflection point is attained. This peak sug-
gests that thermal softening is now the predominant influence, overtaking work hardening.
At this stage, the stress–strain curve displays three distinct patterns as strain increases.
The first pattern is a gradual decrease to a steady state with DRV/DRX softening, which is
observed at all deformation temperatures and strain rates ranging from .

ε = 0.001 to 0.1 s−1,
except at 1050 ◦C and 1100 ◦C. The second pattern is higher stress levels without significant
softening and work hardening at 1050 ◦C and 1100 ◦C with a strain rate of 0.1 s−1. The last
pattern is a continuous increase with significant work hardening observed for all deformation
temperatures and a strain rate above 1 s−1. This indicates that DRX softening happens at
high temperatures and low strain rates, and the rate of softening due to DRX slows down at
higher strain rates and lower temperatures due to higher work hardening rates. The result is
that both the peak stress σp and the onset of steady-state flow occur at higher strain levels.
The decrease in stress detected across all temperatures and strain rates of .

ε = 0.001− 5.0 s−1

is attributed to the event of dynamic recrystallization (DRX).

2.2. Identification of DRX Model’s Parameters

In this subsection we will determine the critical deformation required to initiate recrys-
tallization. Ryan and McQueen [7–9] were the pioneers in investigating this phenomenon.
Observing the appearance of an inflection point on the curve θ(σ) = ∂σ

∂ε before the peak
stress σp, the start of DRX was attributed to this inflection point and, therefore, the critical
values of the strain (εc) and stress (σc), respectively. Later, Poliak and Jonas [10–13] demon-
strated that this inflection point is associated with a release of thermodynamic free energy
during dislocation motion, supporting the DRX hypothesis. Najafizadeh and Jonas [5]
developed an analytical technique to determine the critical conditions for DRX initiation,
simplifying the thermodynamic model of Poliak and Jonas. Their widely used approach
adopts a 3rd degree polynomial to describe the curve θ(σ), enabling the identification of
critical stress and strain (σc and εc) through the second derivative.

As previously stated, critical values for DRX initiation are determined by identifying the
inflection point on the θ(σ) curve between ε = 0 and εc. One challenge is calculating the
derivative of stress versus strain values numerically, as compression test data exhibit oscillations,
as depicted in Figure 2. It is not feasible to compute the derivative θ(σ) = ∂σ

∂ε directly.
To overcome this difficulty, certain authors propose smoothing out the empirical data

(perhaps through the utilization of the Excel solver [5]) or discovering an analytical function
(such as a polynomial with a relatively high degree) through a minimization algorithm.
However, depending on the degree of the polynomial, for the same stress–strain curve, mul-
tiple solutions may be obtained. This results in multiple possible forms for the θ(σ) function.

2.2.1. ANN-Based Filtering Model’s Architecture

To improve the results obtained through the process of identifying critical values,
we suggest employing the universal approximator capability of artificial neural networks.
This can be done by characterizing each strain-hardening curve using an ANN with just
one input (strain) and one output (stress). In this type of network, each layer of neurons is
linked to the preceding and subsequent layers through weighted connections. Any hidden
layer k, containing n neurons, takes a weighted sum of the outputs

−→̂
y of the immediately

preceding layer (k− 1) containing m neurons, given by the following equation:

y(k)i =
m

∑
j=1

w(k)
ij ŷ(k−1)

j + b(k)i , (1)
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where y(k)i is the entry of the ith neuron of layer k, ŷ(k−1)
j is the output of the jth neuron of

layer (k− 1), w(k)
ij is the associated weight parameter between the ith neuron of layer k and

the jth neuron of layer (k− 1), and b(k)i is the associated bias of the ith neuron of layer k.
Those weights wij and bias bi, for each layer, are the training parameters of the ANN, which
we have to adjust during the training procedure. For the proposed model, we selected the
Sigmoid activation function, so that each neuron in the hidden layer k provided an output
value ŷ from the input value y of the same neuron defined by Equation (1) according to the
following equation:

ŷ =
1

1 + e−y (2)

No activation function was used for the output neuron of the ANN, as is typically
omitted in regression applications. The chosen architecture for our application consists
of two hidden layers, one with 7 neurons and the other with 5 neurons, as illustrated in
Figure 3. To calculate the number of internal parameters Nint in the model, where n and
m represent the number of neurons in the first and second hidden layers, respectively,
the following formula may be used: Nint = m(2 + n) + 2n + 1.

Thus, for a 7-5 network, Nint = 60.

Hidden layer 1 Hidden layer 2Entry layer Output layer

Figure 3. Two-hidden-layer artificial neural network architecture with 1 input neuron (green) and 1
output neuron (red).

The Python program used for training the neural network was created with the dedi-
cated Python library, Tensorflow [28]. The training phase employed the Adaptive Moment
Estimation (ADAM) optimizer [29]. The training was conducted using 50,000 epochs of the
experimental dataset. It took approximately 15 min to train the ANN model and obtain the
converged parameters on a Dell XPS-13 7390 laptop running Ubuntu 22.04 LTS 64-bit with
16 GB of RAM and an Intel 4-core i7-10510U processor.

2.2.2. ANN-Based Filtering Model’s Application

Since the dynamic recrystallization phenomenon only occurs for strain rates between
0.001 s−1 and 1.0 s−1, we used only the first 20 stress–strain curves to identify the critical
DRX parameters. Each of these 20 curves consisted of 701 pairs of strain–stress values
and was independently processed by a neural network, resulting in the identification of
20 networks. As an example, Figure 4 displays the stress–strain curve experimental values
for .

ε = 0.001 s−1 and T = 1050 ◦C (in blue) and the neural network results identified from
these data (in red).
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Figure 4. Filtering of the stress–strain data using the ANN for .
ε = 0.001 s−1 and T = 1050 ◦C.

A models’ accuracy and predictive ability are typically evaluated using specific coeffi-
cients, such as the mean absolute relative error (EMAR), as defined by the following equation:

EMAR(%) =
1
N

N

∑
i=1

∣∣∣∣∣σ
p
i − σe

i
σe

i

∣∣∣∣∣× 100, (3)

and the root-mean-squared error (ERMS), as defined by the following equation:

ERMS(MPa) =

√√√√ 1
N

N

∑
i=1

(
σ

p
i − σe

i

)2
, (4)

where σe
i is the experimental value, σ

p
i is the value of the stress σ predicted using the

given model, and N is the total number of data points used to compute those coefficients.
For the proposed ANN filter, ERMS = 0.093 MPa and EMAR = 0.231%, while using
a 11th order polynomial fit of the experimental data leads to ERMS = 0.120 MPa and
EMAR = 0.275%.

It is evident that using the ANN model to depict the σ(ε) curve is superior to using
an 11th-order polynomial fit, as demonstrated by the lower estimated error. Thus, this
architecture of the ANN model is used for all subsequent curves, resulting in the deduction
of the hardening curves, which illustrates the stress change rate relative to the strain ( ∂σ

∂ε ).
An illustration of computing the hardening curve θ(σ) for a single temperature is displayed
in Figure 5. The blue line represents the direct calculation of the derivative of the raw stress
versus strain, whereas the red line represents the derivative of the stress filtered by the
neural network versus strain. An overview of the remaining temperatures can be found in
Figure 6. The identical process applies to all 20 stress–strain curves. These curves deliver
essential data regarding the critical stresses and strains required for predicting DRX in the
subsequent analysis.
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Figure 5. Computation of the hardening curve θ(σ) from the stress–strain data using the ANN for
.
ε = 0.001 s−1 and T = 1050 ◦C.

Figure 6. Work hardening computation for one strain rate and five temperatures.

2.2.3. Evaluation of the Critical Conditions

As described previously, dynamic recrystallization only occurs when a particular
critical condition is met. The identification of these critical conditions is a difficult task that
calls for the creation of models that can compute the corresponding critical stress and strain.
Consequently, the Poliak and Jonas [10–13] method, which is currently well-regarded, will
be used in this investigation. The method uses a third-degree polynomial function to
describe the θ(σ) and ln θ(ε) curves reported in Figure 6 for .

ε = 0.001 s−1. The objective is
to locate the inflection points connected to the critical stress σc and critical strain εc, as well
as to extract the peak stress σp and peak strain εp from those curves.

The determination of critical values is carried out in two consecutive steps for each of
the curves. Firstly, based on the definition of the θ(σ) curve as depicted in Figure 6, we use
the polyfit method from the numpy library to determine the optimal values of the constants
ai for a third-degree polynomial function p(σ) approximating θ(σ):

p(σ) = a0σ3 + a1σ2 + a2σ + a3 (5)
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Secondly, the inflection point σc can be obtained from the second derivative of
p(σ) with:

d2 p(σ)
dσ2 = 0 =⇒ σc = −a1/3a0 (6)

Similarly, the critical strain (εc) is calculated by defining a third-degree polynomial
function q(σ) approximating the ln θ(ε) curve as depicted in Figure 6:

q(ε) = b0ε3 + b1ε2 + b2ε + b3 (7)

This later gives the critical strain εc from εc = −b1/3b0. Applying the identical method
to the first four strain rates and all temperatures, Table 2 summarizes the critical stress and
strain, peak stress, and peak strain. Once the critical DRX conditions are established, they
can be used as input to determine the DRX volume fraction, which will be discussed in the
following section.

Table 2. Critical conditions based on the proposed approach.
.
ε (s−1) T (◦C) εp σp (MPa) εc σc (MPa)

1050 0.178 37.862 0.083 33.050
1100 0.143 29.770 0.067 25.648

0.001 1150 0.124 23.330 0.051 19.116
1200 0.102 19.373 0.039 16.244
1250 0.084 13.883 0.035 11.302

1050 0.281 57.915 0.131 51.602
1100 0.228 46.107 0.108 40.495

0.01 1150 0.195 38.249 0.086 33.435
1200 0.172 30.991 0.076 26.718
1250 0.139 24.739 0.051 20.004

1050 0.571 91.413 0.244 83.814
1100 0.430 72.662 0.194 65.259

0.1 1150 0.344 57.774 0.160 51.723
1200 0.299 48.473 0.136 42.386
1250 0.259 40.195 0.119 35.277

1050 0.700 127.17 0.577 116.10
1100 0.700 106.61 0.329 94.510

1 1150 0.700 89.525 0.268 89.067
1200 0.700 72.270 0.178 57.929
1250 0.393 59.992 0.112 54.066

2.3. Evaluation of the DRX Model’s Parameters

The DRX process commences at a critical deformation, as previously noted.
The degree of recrystallization can be determined through experimental means. For a
visual representation of microstructure evolution during DRX, the interested reader can
refer to Chen et al. [30].

The flow stress curve of the material is influenced by the rate of work hardening,
which in turn is affected by dislocations within the free grains. The predicted volume
fraction of the dynamic recrystallization (Xp

drx) is estimated using the Avrami model [14],
commonly known as the JMAK model, expressed by the following equation:

Xp
drx = 1− exp

[
−k
(

ε− εc

εp

)nk
]

, (8)
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with εc and εp as the critical and peak strain, respectively. k and nk are the model’s
parameters, and the experimental equivalence of this volume fraction of DRX is given by

Xe
drx =

σp − σ

σp − σs
(9)

where σp and σs are the peak stress and the steady stress after the peak stress, respectively.
The steady stress is considered the minimum value after the peak stress. It is possible to
establish a dependency relationship between these specific stresses and strains and the
Zener–Hollomon [31] parameter Z =

.
ε exp

(
Q
RT

)
, (where Q is the effective activation energy

parameter Q = 437.4 kJ/mol and R is the universal gas constant R = 8.314 J/mol/K),
according to the following equation reported by other researchers such as [32–34] for
similar steel compositions and deformation conditions:

εc = AcZnc

εp = ApZnp

σc = BcZmc

σp = BpZmp

σs = BsZms ,

(10)

with the parameters Ac, Ap, nc, np, Bc, Bp, Bs, mc, mp, and ms, which are the specific
strains and stresses’ dependency on the Zener–Hollomon parameter, whose identification
is described hereafter. The procedure for determining the value of Q is detailed in [25].

The JMAK model’s parameter identification involves two main steps, starting with
determining the 10 coefficients A, n, B, and m. Secondly, those coefficients are inte-
grated into Equation (10) to be used in Equations (8) and (9). To calculate these pa-
rameters, the curve_fit method of the scipy library is employed through a Python code.
These parameter identifications use the critical strains and stresses computed in the pre-
ceding sections as input data. The curve-fitting method seeks to obtain optimal values for
the coefficients by iteratively adjusting them to minimize the gap between predicted and
actual critical strains and stresses. This optimization process entails experimenting with
different combinations of coefficients and assessing their appropriateness for the provided
data. The curve-fitting technique fine-tunes coefficients until it attains the most accurate
match between the model’s forecasts and the experimental data.

Once the calculation of the constants that define the dependency of the Zener–Hollomon
parameter is completed, an optimization technique can be employed to deduce the JMAK
model parameters while minimizing the error between the predicted recrystallization Xp

drx
and the experimental value Xe

drx. Table 3 displays the dependency of both the Zener–
Hollomon parameters and the JMAK model’s parameters.

Table 3. JMAK model and Zener–Hollomon dependency parameters.

Ac Ap Bc Bp Bs nc

4.4268× 10−5 29.85× 10−5 0.0720627 0.103141 10265.8 0.235832

np mc mp ms k nk

0.203678 0.188236 0.181822 −0.19708 0.48632 3.36531

The critical conditions calculated by the Poliak method are used to provide the curves
of Xdrx(ε) in Figure 7, where a comparison between the experimental and predicted values
is made for the strain rate .

ε = 0.001 s−1 and three temperatures (1050 ◦C, 1150 ◦C and
1250 ◦C).
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Figure 7. DRX experimental data (dots) and JMAK model-based prediction (plain lines).

Figure 8 shows a micrograph of the sample for .
ε = 0.001 s−1, T = 1050 ◦C, and ε = 0.55.

From this, we determined the location of one experimental point in Figure 7 (the red one
for ε = 0.55). The same approach using different temperatures and strains was used to
obtain the other experimental points reported in Figure 7.

Figure 8. Micrograph of the sample for .
ε = 0.001 s−1, T = 1050 ◦C, and ε = 0.55.

The curves illustrate the changes in the predicted volume fractions of DRX with plastic
strain, and it is evident that the proportion of DRX is strongly affected by strain, tem-
perature, and strain rate values. The DRX kinetics exhibit an S-shaped curve, with the
DRX volume fraction gradually increasing with strain. At a constant temperature and
strain, the DRX volume fraction increases with decreasing strain rate. Conversely, at a fixed
strain rate and strain, the DRX volume fraction increases with rising temperature. The
difference between the predicted and experimental volume fractions of DRX is insignificant,
confirming the suitability of the proposed approach for DRX prediction in the studied
superalloy under various forming conditions. The reduction in DRX with increasing strain
rate can be attributed to the sensitivity of the volume fraction of dynamic recrystallization
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to the forming temperature and strain rate. Dynamic recrystallization is prone to occur at
high forming temperatures and low strain rates due to increased grain boundary mobility.
However, because of the limited mobility of grain boundaries, the rate of dynamic recrys-
tallization is slow at low forming temperatures and high strain rates. The validation of
the model used in the study, as evidenced by the correlation between experimental and
predicted results, supports the subsequent use of these findings in the simulation section.

3. Numerical Simulation of the Compression

In this section, we will focus on numerically validating the previously performed iden-
tification of dynamic recrystallization. This requires establishing a constitutive law capable
of accurately predicting the material’s plastic deformation. In our previous publication
(Tize Mha et al. [25]), we conducted a comparison between analytical constitutive laws and
a neural network-based approach. The results revealed an artificial neural network model
as the most appropriate option for this material. As a result, this section has two main
focuses: first, a summary of the ANN-based constitutive law identification, as previously
presented; and second, the incorporation of this identified ANN model with the JMAK
model to predict dynamic recrystallization behavior.

3.1. Identification of the ANN Constitutive Law

In general terms, flow stress σ is a non-linear function of the strain ε, increasing with the
strain rate .

ε but decreasing with increasing temperature T. This model can be described as
an elastoplastic model that takes into consideration the influence of temperature and strain
rate. This type of behavior generally leads to Johnson–Cook [35], Zerilli–Armstrong [36],
Hansel–Spittel [37], PTM [25], or Arrhenius [38] flow law type. Depending on the nature of
the stress–strain relationship, modeling with one or another of these models can take into
account the actual behavior of the material at certain strain rates.

As stated in the research conducted by Tize Mha et al. [25], the Johnson–Cook, Zerilli–
Armstrong, or Hansel–Spittel models provide an estimate of material behavior at strain
rates exceeding 1 s−1, but they neglect the softening due to DRX that is evident on ex-
perimental curves for strain rates below 1 s−1, as presented in Figure 2. Indeed, at the
lowest strain rates, the flow stress σ increases with strain ε until it reaches a value of
roughly ε = 0.2 to 0.3. Afterward, it decreases, maintaining a relatively constant value
until the end of the compression test. The Arrhenius model is the only one that can some-
what explain this softening at low strain rates. As proposed by Pantalé et al. [26] and
Tize Mha et al. [25], an effective alternative is to use a flow law defined by an artificial
neural network trained directly on experimental data from compression tests. Properly
defining the hyper-parameters of this neural network, such as the number of hidden layers,
number of neurons, and activation functions, enables us to obtain a flow law that accurately
replicates the data acquired from compression tests.

According to the method proposed by Pantalé et al. [26], we have developed a two-
hidden-layer artificial neural network-based flow law in Tize Mha et al. [25]. Figure 9
shows the general structure of this ANN. The input layer of the ANN consists of three
neurons that correspond to the model inputs, which are ε, .

ε, and T. The output layer of the
ANN contains one neuron representing σ, while there are two hidden layers. All details
regarding the artificial neural network, experimental data setup, and training method are
detailed in the paper proposed by Pantalé et al. [26].

We again used the Tensorflow library to develop the training program and employed
the ADAM optimizer for the training phase. The training database, as described in
Section 2.1, contains 21,030 quadruples (we have 701× 30 quadruples because ε ∈ [0, 0.7]
with an increment of 0.001, so we have 701 values and 30 data curves) of values for strain
(ε), strain rate ( .

ε), temperature (T), and stress (σ).
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Figure 9. Two-hidden-layer artificial neural network architecture with 3 inputs neurons (green) and 1
output neuron (red).

We selected six different networks, named 3-n-m-1, where n represents the number
of neurons in the first hidden layer and m indicates the number of neurons in the second
hidden layer, to demonstrate the significance of choosing the appropriate number of
neurons in these two layers.

The training was conducted based on 5000 epochs of the experimental dataset. It took
40 min to train the ANN model and obtain the converged parameters on a Dell XPS-13
7390 laptop running Ubuntu 22.04 LTS 64-bit operating system with 16 GB of RAM and an
Intel 4-core i7-10510U processor.

Figure 10 shows the evolution of the training error, defined by the log10 of the inter-
nal ERMS, during the training phase. Table 4 summarizes the final values of this criterion,
as well as the final values of the EMAR and the ERMS for all six neural network configurations.
Based on these results, the 3-15-7-1 network was chosen for further investigation.
This network exhibited the most efficient convergence and achieved the lowest final error
values of EMAR = 0.62% and ERMS = 0.38 MPa while also maintaining a reasonable number
of internal parameters (Nint = 180). The global performance of the model is illustrated in
Figure 11.

Figure 10. Evolution of the convergence of the models during the training procedure for the
6 proposed network architectures.
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Table 4. Architecture and accuracy coefficients for all the proposed networks.

Coefficients 3-7-5-1 3-9-4-1 3-9-5-1 3-9-7-1 3-13-7-1 3-15-7-1

Nint 74 81 92 114 158 180

log10(ERMS) −2.40 −2.42 −2.38 −2.45 −2.50 −2.58
EMAR(%) 1.13 1.05 1.08 0.91 0.75 0.62
ERMS(MPa) 0.59 0.57 0.65 0.55 0.46 0.38

Figure 11. Comparison between the experimental (dots) and predicted (lines) flow stresses σ by the
3-15-7-1 ANN model.

This model will serve as the material flow equation for the numerical simulations
discussed in Section 3.2. Once the neural network was trained and a stable solution was
obtained, it was re-implemented as a Fortran 77 VUHARD subroutine to calculate the
material flow stress in the Abaqus FEM code. The details of the procedure and complete
equation set required to calculate the flow stress σ and the three derivatives of the flow
stress with respect to ε, .

ε, and T can be found in [26].

3.2. Dynamic Recrystallization Simulation

To evaluate the effectiveness of the DRX model presented earlier, we propose a
numerical simulation of a compression test in this section. Our simulation concerns a
medium-carbon P20 iron alloy, the same material used for the model’s identification.
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An axisymmetric finite element (FE) model of hot cylinder compression with a height of
h = 15 mm and a diameter of φ = 10 mm was used, as shown in Figure 12. The assumed fric-
tion coefficient at the material/die interface was µ = 0.2 [39,40]. The mesh was composed
of 986 (17× 58) CAX4R elements (4-node axisymmetric bi-linear quadrilateral elements
with reduced integration and hourglass control). Abaqus/Implicit was used to run the FE
model simulation because of the long time needed to simulate a low strain rate compression.
A displacement of 60%, 45%, 30% and 15% of the total height was imposed on the upper
part of the cylinder along the vertical axis of the specimen during compression. The upper
and the lower parts of the specimen can slip in the radial direction according to the friction
coefficient and the contact conditions. The axial displacement (uz) of the upper part was
imposed with a fixed velocity, while the axial displacement of the lower part remained
fixed during the simulation. The simulation evaluated the impact of reducing the cylinder
height on the effects of strain rate and temperature. Conclusions were drawn based on this
analysis. The simulation considered three temperatures (1050 ◦C, 1150 ◦C, and 1250 ◦C)
and four strain rates (0.001 s−1, 0.01 s−1, 0.1 s−1, and 1.0 s−1).

Figure 12. Numerical FE model for the simulation of the compression test.

3.2.1. Temperature and Strain Rate Effects

Temperature and strain rate are critical factors that influence dynamic recrystallization
in materials, particularly metals and alloys. This process leads to the formation of new
grains within the material. Higher temperatures and lower strain rates typically result in
increased nucleation rates and faster growth rates of new grains during dynamic recrystal-
lization. Conversely, lower temperatures and higher strain rates can lead to incomplete
dynamic recrystallization. At high temperatures, the increased mobility of both atoms and
dislocations facilitates the formation of fresh grain boundaries and promotes the growth of
new grains, resulting in a more refined and isotropic grain structure. In addition, higher
temperatures can raise the proportion of recrystallized material, with the enhanced dis-
location mobility contributing to new grain creation. Consequently, this may result in a
substantial change in the microstructure and the mechanical properties of the material. Fig-
ures 13 and 14 display the simulated results of the DRX fraction of P20 steel under different
deformation conditions. Figure 13 shows that as the temperature increases, the extent of
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dynamic recrystallization widens. The gradual increase in the dynamic recrystallization
fraction in the center is noticeable, spreading outward. This expansion is a result of higher
thermal activation and increased atomic diffusion at higher temperatures, which makes
the material more vulnerable to dynamic recrystallization. The dynamic recrystallization
degree (Xp

drx) unequivocally grows with the increase in temperature and reduction. At 45%
and 60% reduction, the Xp

drx of P20 steel attained 100% in the center of the specimen at all
the initial sample temperatures. Indeed, the plastic deformation of a material is accom-
panied by the creation of dislocations. These dislocations represent a “storage of elastic
energy”. When the temperature is high enough, the dislocations become spontaneously
mobile and cause a reorganization of the crystal structure in two stages: restoration and
recrystallization. The nature of the phases remains unchanged (those that are thermody-
namically stable), and the atoms retain the same lattice. However, the grain boundaries
and the orientation of the crystallites undergo changes.

(Avg: 75%)
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Figure 13. Xp
drx values at a fixed strain rate of .

ε = 0.01 s−1 for different reductions and initial
temperatures T0.
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Figure 14. Xp
drx values at a fixed T0 = 1150 ◦C for different reductions and strain rates.
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The temperature at which these phenomena occur depends on the rate of deformation.
The amount of elastic energy stored by a material increases with the degree of deformation,
initiating restoration and recrystallization at a lower temperature. As shown in Figure 14,
escalating strain rates result in a decrease in the extent of recrystallization due to reduced
dynamic recrystallization magnitude. This result is due to the faster strain rate, which
increases the critical strain and decreases the chance of internal dynamic recrystallization
in the material.

3.2.2. Comparison with Some Experiments

In this section, we will compare experimental and simulation data by observing the
dynamic recrystallization percentage of selected regions. Figure 15 shows a comparison
between experimental data and simulation data for a test conducted at a temperature of
1150 ◦C with a strain rate of .

ε = 0.1 s−1. Four zones were chosen to observe the percentage
of recrystallization, ranging from 5% to 100%. The 5% corresponds to the dead zone,
representing the contact area between the sample and die experiencing friction effects.
In contrast, 100% corresponds to the value observed at the center of the sample, where
deformation is the highest. The temperature is elevated at the center of the sample, leading
to a significant accumulation of energy. Conversely, at the edges of the sample, a relatively
complete recrystallization is observed. This is because the temperature during deformation
shifts from the center towards the upper and lower regions of the piece (due to the fact that
the anvils are cooled), allowing recrystallization to occur. Microscopic observations of each
zone show large grains (Figure 15d) in the dead zone, while small grains (Figure 15a) are
observed in the center of the sample, resulting from complete recrystallization.

(Avg: 75%)
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Figure 15. Experimental and numerical Xp
drx values for T0 = 1150 ◦C and strain rate .

ε = 0.1 s−1.

Figure 16 shows a comparison of the numerical results for a strain rate .
ε = 0.001 s−1,

an initial temperature T = 1050 ◦C, and a reduction of 45% (i.e., ε = 0.55) and its com-
parison with the microstructure obtained experimentally for the same conditions after an
interrupted test with the same reduction level. It can be seen later that there is a correspon-
dence between the fully recrystallized area in the center of the sample (the red zone in the
numerical simulation) and the corresponding zone where the microstructure has changed
in the center of the sample, promoting a labrys (a double-edged) axe shape. As can be
clearly seen on the micrograph, recrystallization is not complete in the areas of contact
with the upper and lower anvils, where the numerical value of Xp

drx is less than 5% and
the microstructure enhances very large grains. We can also see on the microstructure that
recrystallization is not complete along the periphery of the cylinder, where the numerical
value of Xp

drx is in the range of 75 to 90%.
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(Avg: 75%)
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Figure 16. Comparison of the micrography and numerical Xp
drx values for T0 = 1050 ◦C, strain rate

.
ε = 0.001 s−1, and 45% reduction (ε = 0.55).

4. Conclusions

In this study, we used the abilities of the ANN technique to deeply comprehend the
dynamic recrystallization process and its adaptations in varying conditions. Through the
fusion of ANN modeling, fundamental material models, simulation software, and experi-
mental confirmation, a comprehensive framework has been created that greatly enhances
the materials science and engineering fields. Initially, we successfully used an ANN model
to efficiently filter flow stress curves, which enabled us to predict critical conditions using
the Poliak model. This allowed us to accurately anticipate the conditions at which the DRX
process begins, providing a valuable tool for predicting material behavior under specific
deformation scenarios.

We used the predicted critical conditions as input into the JMAK model, resulting in
the successful prediction of the volume fraction of DRX and providing valuable insights into
the kinetics and mechanisms controlling recrystallization. This incorporation establishes
a connection between theoretical models and practical phenomena, ultimately leading
to a more deep comprehension of the complex processes occurring during deformation.
Taking our investigation further, we integrated the JMAK model into the widely used
ABAQUS software to simulate the evolution of DRX during hot compression tests.
This allowed us to capture the process’s response to varying conditions without bias.
By comparing our simulation results with experimental data and using microstructure
analysis, we have validated the accuracy of our simulations and confirmed the effectiveness
of our predictive models.

It is noteworthy that although our research represents a significant milestone, it also
presents opportunities for future exploration. Further enhancing the accuracy and applica-
bility of our predictions can be achieved by fine-tuning our model, expanding our dataset,
and refining the integration process. Moreover, the successful connection of theory, simu-
lation, and experimentation offers a sturdy structure for addressing challenging material
behavior issues in industries ranging from manufacturing to aerospace or other applications.
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