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ABSTRACT In this paper, we devise a deep SARSA reinforcement learning (DSRL) user scheduling
algorithm for a base station (BS) that uses a high-altitude platform station (HAPS) as a backup to serve
multiple users in a wireless cellular network. Considering a realistic scenario, we assume that only the
outdated channel state information (CSI) of the terrestrial base station (TBS) is available in our defined
user scheduling problem. We model this user scheduling problem using a Markov decision process (MDP)
framework, aiming to maximize the sum-rate while minimizing the number of active antennas at the
HAPS. Our performance analysis shows that the sum-rate obtained with our proposed DSRL algorithm
is close to the optimal sum-rate achieved with an exhaustive search method. We also develop a heuristic
optimization method to solve the user scheduling problem at the BS. We show that for a scenario where
perfect CSI is not available, our proposed DSRL algorithm outperforms the heuristic optimization method.

INDEX TERMS HAPS, deep reinforcement learning, user scheduling, Markov decision process.

I. INTRODUCTION

TERRESTRIAL base stations (TBSs) can no longer keep
up with the growing data demand due to the rapid

developments of new applications, such as virtual reality,
smart healthcare, and intelligent transportation systems. To
overcome this issue, non-terrestrial base stations (NTBSs),
such as unmanned aerial vehicles (UAVs) and high-altitude
platform stations (HAPSs) can be used as backup transmitters
in the next generation of wireless communications. There
are extensive studies on the applications and challenges
associated with UAVs [1], [2] and HAPSs [3], [4] in wireless
communications. For instance, HAPSs can be used as an
alternative in emergencies where the TBS is not available [5].
Also, it can be used to increase the coverage area for mobile
users [6] and to serve IoT users in different applications [7].
It is worth mentioning that HAPSs benefit from better
uplink communication, quasi-stationary locations, less path
loss attenuation, and lower latency than satellites. Also,
HAPSs have a significant advantage over UAVs in terms of
longer battery life. Thus, HAPSs are great candidates to be
used as backup BSs to compensate users with low received
SINR/SNR at TBSs [8].

In this context, several works have considered the resource
allocation problems in non-terrestrial networks, e.g., the
authors in [9] study beamforming techniques to mitigate
interference between a HAPS and a terrestrial network.
Assuming the coexistence of both TBSs and NTBSs,
users should be associated with the proper access network
to enhance the system data rate. Consequently, many
works study user scheduling in integrated terrestrial and
non-terrestrial networks (between NTBSs and terrestrial
cells) to integrate NTBSs into existing terrestrial wireless
networks [8], [10], [11]. In [11], the resource allocation
problem in a vertical heterogeneous network (VHeNet) is
studied to maximize the downlink throughput of ground
users. The authors solve the problem in two stages: a
short-term stage and a long-term stage. Access link asso-
ciation, backhaul link association, and power allocation are
performed in the short-term stage while assuming a fixed
location for the HAPS. First, the access and backhaul link
association are optimized assuming a fixed power allocation.
Then, the power allocation is solved using Taylor expansion.
In the long-term stage, the shrink-and-realign method is used
to determine the location of the HAPS.
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All mentioned works use mathematical models that are
computationally costly for systems with a large number of
users and/or a large number of antennas at the BS/HAPS.
Moreover, these methods cannot deal with network uncer-
tainties. Below, we present the recent works that tackle the
mentioned issues for solving resource allocation problems
with reinforcement learning (RL)/deep RL (DRL) tech-
niques.

II. RELATED WORKS
RL/DRL methods have been used in different communica-
tion network applications to solve the resource allocation
problem [12], [13], [14], [15]. More specifically, several
works have studied user/BS association using DRL in
non-terrestrial networks. The authors in [16] study the
transmission of information between two TBSs via a number
of satellites and one HAPS. They use DRL for satellite
association and to determine the location of the HAPS which
maximizes the end-to-end rate. In [17], the authors apply
DRL for multi-user access in non-terrestrial networks to
maximize the sum-rate with minimum handoff requirements.
Further, the authors perform user association to maximize
the total throughput of the network while avoiding frequent
handoffs resulting from the mobility of airborne vehicles.
The authors of [18] studied the DRL-based user association
in a VHetNet with an emphasize on the role of satellites.
In [19], the authors study minimizing the age of information
(AoI) in an intelligent transportation system (ITS) where
UAVs collect the produced information by sensors on the
vehicles to provide up-to-date data. To do so, the authors
use DRL to optimize the UAVs’ trajectory and schedule
the sensor selection to minimize the AoI of the collected
data. In a similar work [20], the authors use DRL to
optimize the UAVs’ trajectory and node selection to collect
data. The main purpose in [20] is to minimize the AoI of
information collected while accounting for constraints on
the nodes’ battery level. Similarly, the authors in [21] apply
RL to minimize the AoI of the collected information from
IoT sensors by determining the UAVs’ trajectory and node
selection.
Although instructive, the mentioned works do not consider

the user scheduling problem in integrated terrestrial and non-
terrestrial networks. In [19], [20], [21], there is no TBS and
only UAVs perform user scheduling in order to minimize
the AoI of the network. The authors do not consider TBSs
or how NTBSs and TBSs can cooperate. Moreover, in [17],
the authors only study the effect of user association between
different airborne vehicles and do not assume any TBSs.
Therefore, the authors do not investigate the effect of user
association between a TBS and an NTBS to maximize
the sum-rate of the network. In the coexistence of both
a TBS and a HAPS, some users who experience a poor
channel quality should be associated with the HAPS to
receive a higher rate. On the other hand, due to the high
distance between the HAPS from ground users, compared
to the TBS, serving all users via HAPS is not optimal

because the users that experience good channel conditions
can receive higher rates from the TBS. Furthermore, given
the limitations in the power supply and the number of
antennas in HAPS, there is a limitation on the number
of users that can be associated with HAPS. Moreover,
adding an extra layer to the wireless network complicates
network management. As a result, managing the inter-
layer CSI sharing overhead is the first step in making it
easier to integrate HAPS into existing terrestrial networks.
Secondly, the proposed resource allocation methods should
not impose a higher computational complexity compared
with the currently used methods in terrestrial networks.
Consequently, an efficient user scheduling policy should be
implemented to maximize the network sum-rate while taking
into account the limitations imposed by HAPS.
In our previous work [22], we utilized Deep Q-learning

(DQL) to perform user association between a TBS and a
HAPS. Though we showed promising results, it is notewor-
thy that the global channel state information (CSI) was used
in [22]. Moreover, the agent’s performance under imperfect
CSI was not satisfactory compared to its performance under
perfect CSI. Here, we redesign the state space and propose
a novel algorithm that performs well under both perfect and
imperfect CSI. Furthermore, we cut the overhead resulting
from inter-layer CSI sharing.

III. CONTRIBUTIONS
In this study, considering a user association problem between
a TBS and a HAPS where only outdated CSI is available,
we use DRL to design a method to maximize the downlink
sum-rate of available users in a wireless multi-input multi-
output (MIMO) network. More specifically, here, our agent,
i.e., the TBS, performs both user association and HAPS
antenna selection at each time slot. To avoid sharing
information between the HAPS and the TBS, our DRL
agent only uses the CSI of the channels between the TBS
antennas and the available users to make a decision. It is
worth mentioning that, in contrast to current mathematical
optimization algorithms that require full CSI knowledge
of both the NTBS and TBS, in this work, the agent can
make decisions based on the obtained channel coefficients
of the link between its antennas and the allocated users only.
Moreover, to further reduce the overhead in the network,
we assume only the CSI of the served users by the TBS at
the previous time slot will be updated, and thus the CSI of
the remaining users (served by the HAPS at the previous
time slot) remains unchanged. Meaning that the agent makes
decisions by using outdated TBS’s CSI.
Considering the challenges posed by the outdated CSI

from TBS and the unknown CSI from HAPS, two significant
issues arise for the DRL agent. The first issue is the
tendency to overestimate Q-values during the learning
phase due to incomplete information. The second challenge
involves the need for extensive exploration to develop an
optimal policy. To address these issues, we introduce an
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on-policy DRL method employing the state-action-reward-
state-action (SARSA) algorithm. This approach, which we
term deep SARSA Reinforcement Learning (DSRL), effec-
tively manages the outlined problems. Importantly, DSRL
achieves this without increasing computational complexity,
especially when compared to traditional DQL methods.
Further, we develop a heuristic optimization-based user
scheduling algorithm for the sake of comparison and show
that under the perfect CSI case, our proposed DSRL
approach performs roughly as well as the used heuristic
method. For the imperfect CSI scenario, our proposed
DSRL method outperforms both convex optimization and
methods of optimization with uncertainty bounds. It is noted
that the global CSI is required for the heuristic method
used.
The main contributions of this work are summarized as

follows:

• Our study focuses on optimizing user scheduling
between a TBS and a HAPS to enhance the network’s
sum-rate, considering time-varying channels with fac-
tors like geometric attenuation, Doppler frequency,
and shadow fading. We also emphasize minimiz-
ing circuit power consumption at the HAPS through
efficient antenna selection, thereby defining a joint
problem of HAPS antenna selection and user scheduling
maximization.

• We employ a DSRL approach for solving our
optimization problem, which avoids overestimation of
Q-values and functions efficiently under imperfect CSI.
The state space in our model is formulated to normalize
channels between users and TBS, ensuring consistent
agent performance even as channel estimation noise
varies.

• A key feature of our method is that the DSRL agent
relies only on the CSI of the channels between the TBS
antennas and the available users for decision-making,
thereby eliminating the need for information exchange
between the HAPS and the TBS. This contrasts with
traditional mathematical optimization algorithms that
require complete CSI knowledge of both the NTBS
and TBS. Furthermore, to reduce network overhead, our
system updates only the CSI of users served by the TBS
in the previous time slot, leaving the CSI of users served
by the HAPS unchanged. This approach is thoroughly
tested through extensive simulations, demonstrating its
robustness and scalability when compared to other
methods such as exhaustive search, optimization-based
scheduling, DQL, and random selection.

• Furthermore, to provide a more realistic and compre-
hensive evaluation, our study includes scenarios with
imperfect CSI. In these scenarios, our DSRL method
outperforms traditional convex optimization and convex
optimization with uncertainty bounds methods as shown
in our comparative analysis. This highlights the stabil-
ity and effectiveness of our approach in maintaining

FIGURE 1. System model illustration.

performance consistency, despite the varying accuracy
of CSI data.

The rest of the paper is organized as follows. The system
model, problem formulation, and objective function of our
study are illustrated in Section IV, Section V, and Section VI,
respectively. Our two-stage proposed DSRL user scheduling
algorithm is explained in Section VIII, and the heuristic
optimization-based user scheduling algorithm is developed in
Section IX. The simulation results are presented in Section X.
Finally, the conclusion is provided in Section XI.
Notations: The upper-case boldfaced letters and lower-case

boldfaced letters are used to represent matrices and vectors,
respectively; the notation (·)T is used to show the transpose
of a vector/matrix; diag(s) creates a diagonal matrix with
its diagonal entries being the elements of the vector s. The
Calligraphic fonts (e.g., A) are used to signify sets, and the
cardinality of a set A, is denoted as |A|. The notation E{·}
identifies the mathematical expectation; [·]u extracts the u-th
row of a matrix. The || · || is used for the Frobenius norm.

IV. SYSTEM MODEL
We consider a cellular system model where a HAPS,
equipped with a uniform linear antenna array with N
antennas, is considered to backup a TBS in the downlink
data transmission. As shown in Figure 1, considering a TBS
with M antennas in the center of a cell, we denote U as
the total number of single-antenna users that demand data.
Here, we assume that the system is slotted by T time slots,
where t = 1, 2, . . . ,T , and it operates in time division duplex
(TDD) mode. At each time slot t, the TBS uses the obtained
CSI to select a subset of users to be served and assigns
the remaining users to be served by the HAPS. Our main
goal here is to devise a user scheduling algorithm that can
maximize the sum-rate of the system.
In the considered system, we assume that the HAPS is

equipped with smart antennas to provide a high quality of
service (QoS) with a minimum circuit power consumption.
More specifically, at each time slot t, the number of active
antennas depends on the number of scheduled users to be
served by the HAPS at that time slot. We define Zt as a set
that contains the indices of the active antennas. Note that,
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|Zt| is less than or equal to the N available antennas at the
HAPS (i.e., |Zt| ≤ N). In the sequel, we provide the problem
formulation and objective function of the considered user
allocation problem.
Remark 1: In this paper, we operate under the assumption

that the back-hauling links within the network are estab-
lished. This condition facilitates the transmission of control
signals from TBS to both HAPS and the satellite. This
widely considered assumption aligns with prior works in the
literature [11], [23].

V. PROBLEM FORMULATION
To formulate the system model, we define U as a set
that contains all available users in the cell, where U =
{u1, u2, . . . , uU}. Assuming that the TBS is located in the
center of the cell, we denote Kt and K′t as the sets that
contain the users scheduled to be served by the TBS and
the HAPS, respectively, at time slot t. Note that, Kt and
K′t are complementary sets (i.e., Kt ∩K′t = 0). Considering
time-varying channels, we use Ht � [h1,t,h2,t, . . . ,hU,t]T

as the channel matrix between the TBS and all available
users. Here, hu,t = [hui,�]Mi=1 is an M × 1 vector of the
channel coefficients between the u-th user and the TBS
antennas, for u = 1, 2, . . . ,U. To define the channel matrix
between the HAPS antennas and the users, we use Gt �
[g1,t, g2,t, . . . , gU,t]T , where gu,t = [guj,�]Nj=1 is an N × 1
vector of the channel coefficients between the u-th user and
the HAPS antennas, for u = 1, 2, . . . ,U. For given Kt, K′t,
and Zt, we define Ĥt � [hu,t]u∈Kt and Ĝt � [guj,t] j∈Zt

u∈K′t
as

the submatrixes of Ht and Gt that are the channels between
the TBS and the HAPS and their assigned users, respectively.
At time slot t, considering the u-th user that is scheduled

to be served by the TBS (i.e., u ∈ Kt) which is surrounded
by L cells (each cell with a TBS) in a cellular system, we
denote the received signal yu,t as

yu,t = hHu,t wu,t su,t +
∑

u′∈K�,t,u′ �=u
hHu,t wu′,t su′,t

︸ ︷︷ ︸
intra-cell interference

+
L∑

�=1

∑

u′∈K�,t,u′ �=u

(
h�u,t
)H

w�u′,t s
�
u′,t

︸ ︷︷ ︸
inter-cell interference

+nu,t, (1)

where su,t is the unit-energy transmitted signal to the u-th
user by the TBS, nu,t ∼ CN (0, σ 2

n ) denotes the noise
with average power σ 2

n , and wu,t ∈ C
M×1 is the precoding

vector. Furthermore, to formulate the inter-cell interference
we use h�u,t, w

�
u′,t, and s�u′,t to denote the channel between

the u-th user and the �-th neighboring TBS antennas, the
corresponding precoding vector, and its transmitted signal,
respectively. Note that we can rewrite yu,t in (1) as

yu,t = hHu,t wu,t su,t +
∑

u′∈K�,t,u′ �=u
hHu,t wu′,t su′,t

︸ ︷︷ ︸
intra-cell interference

+n̂u,t, (2)

here n̂u,t ∼ CN (0, σ̂ 2
n ) is the total received noised at the

u-th user served by the TBS, where

σ̂ 2
n = σ 2

n +
L∑

�=1

∑

u′∈K�,t,u′ �=u
E

{
|
(
h�u,t
)H

w�u′,t|2
}
. (3)

We use Zero-forcing beamforming (ZFB) to cancel the intra-
cell interference. Note that the TBS is equipped with a
massive number of antennas, and therefore we can assume
that ZFB can fully cancel out the intra-cell interference.
Thus, considering that Wt = [wu,t]u∈Kt is the percoding
ZFB matrix, we can write

Wt = W̃tμt = Ĥ�,t
(
ĤH
t Ĥt

)−1
μt, (4)

where μt ∈ C
|Kt|×|Kt| is a diagonal matrix that allows us to

determine the power constraint in our problem formulation,
such that E{tr{WtWH

t }} = P. We can obtain the u-th entry
of μt as

μu,t =
[
μt
]
uu =

√
P|Kt|−1

[ ‖w̃u,t‖2
]−1

, (5)

where w̃u,t is the u-th row of the precoding matrix, obtained
as w̃u,t = [W̃t]u = [Ĥt(ĤH

t Ĥt)
−1]u.

Given the above formulation, we denote γu(Kt) as the
signal to interference noise ratio (SINR) at the u-th user that
is served by the TBS (i.e., u ∈ Kt) and write

γu(Kt) = |hu,twu,t|2
σ̂ 2
n

, for u ∈ Kt. (6)

Given (6), we can write the obtained t-th time slots’s sum-
rate for all users served by the TBS as

R(Kt) =
∑

u∈Kt

log2(1+ γu(Kt)). (7)

In this section, we aim to find the sum-rate of the users
served by the HAPS at time slot t. To do so, considering that
n′u,t ∼ CN (0, σ ′n2

) denotes the noise average power σ ′n
2, we

write the SINR at the u-th user that is served by the HAPS
(i.e., u ∈ K′t) as

γ ′u
(Zt,K′t

) = |ĝu,tw
′
u,t|2

σ ′2n
, for u ∈ K′t. (8)

where, ĝu,t is the u-th row of Ĝt and w′u,t = [W′t]u =
[Ĝt(ĜH

t Ĝt)
−1]u is the u-th user’s ZFB precoding vector. To

guarantee that HAPS can eliminate the intra-cell interference,
we limit the number of assigned users to the HAPS to the
number of available antennas N (i.e., |K′t| ≤ N). Now, we
write the sum-rate of the users served by the HAPS at time
slot t as

R′
(Zt,K′t

) =
∑

u∈K′t
log2

(
1+ γ ′u

(Zt,K′t
))
. (9)

In the next section, we define the objective function of our
user scheduling optimization problem under the constraint
of minimum circuit power consumption at the HAPS.
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VI. OBJECTIVE FUNCTION
At time slot t, the TBS uses the obtained CSI from the uplink
training phase to make a decision to cluster the users into
two groups to be served by the TBS and the HAPS. More
specifically, the TBS uses the estimated channel coefficients
to select a subset of users to serve and assigns the remaining
ones to the HAPS. To formulate the user scheduling decision,
we define an action vector at = [au,t]Uu=1, where for u =
1, 2, . . . ,U, au,t = 1 if the u-th user is assigned to be served
by the HAPS, otherwise au,t = 0, i.e., meaning that the TBS
serves the u-th user. Thus, we can obtain Kt and K′t, from
at as

Kt =
{
u |au,t = 0, for u = 1, 2, . . . ,U

}
,

K′t =
{
u |au,t = 1, for u = 1, 2, . . . ,U

}
. (10)

Since the number of assigned users to the HAPS is upper
bounded by N, we can write at ∈ {a|1Ta ≤ N}.
The main goal here is to find the optimal Kt and K′t

that maximize the sum-rate of the system while a minimum
power consumption is required at the HAPS. To ease the
notation, we drop the time index and write our optimization
problem as

arg min
Z

(
arg max

K,K′
R̂
(K,K′,Z)

)
(11)

s.t. K
⋂

K′ = 0 and K
⋃

K′ = U

|K′| ≤ N
|Z| ≤ N

where R̂(K,K′,Z) = R′(Z,K′)+R(K) is the total sum-rate.
Using (10), for given a, we can obtain K, and K′.

Thus, R̂(K,K′,Z) and R̂(a,Z) can be used interchange-
ably. Our defined optimization problem in (11) can be
viewed as a joint antenna selection and user scheduling
problem, which is known to be NP-hard. Specifically, in
our problem, the TBS is not aware of the HAPS’s CSI.
To simplify the problem, we assume the same line of sight
(LOS) channels among the antennas at the HAPS due to its
high altitude (distance from the users), and thus the antenna
selection here only refers to the number of selected antennas
at each time slot. In this case, to completely eliminate
the intra-cell interference, at each time slot, we consider
the number of active antennas at the HAPS is equal to the
number of assigned users to be served by the HAPS (i.e.,
|Zt| = |K′t|). This assumption guarantees that the HAPS
provides a high quality of service (QoS) to the assigned
users.1 Therefore, we can rewrite the optimization problem
in (11) as

argmax
a

R̂(a,Z) (12)

s.t. |Z| = 1Ta

1. To guarantee that zero-forcing beamforming (ZFB) can fully cancel
out the intra-cell interference, the number of active antennas at the HAPS
should be more than or equal to the number of serving users.

a = [au]Uu=1, au ∈ {0, 1}.
1Ta ≤ N

In the next section, we propose a DSRL approach to solve
our optimization problem.

VII. MDP FORMULATION
In this section, we first define MDP tuples and then formulate
our user scheduling problem using an MDP framework. The
below components are used to define an MDP problem:

(S,A,T,R(s, a), π(·)) (13)

where S is the state space set that contains all possible states;
the action space denoted as A is a set of all possible actions;
T is the state transition probabilities; R(s, a) is the reward
function when action a ∈ A is taken at state s; and π(·)
stands for policy.
We now formulate our user scheduling problem as an

MDP problem.

A. STATE SPACE
Considering the state space S , the state vector st ∈ S at time
slot t is defined as

st =
[
h′t
σh′ t

, at−1

]
(14)

where at−1 is the action vector executed at time slot t − 1,
h′t = [h′1,t h′2,t · · · h′U,t] is the outdated terrestrial CSI,
and σh′ t is the standard deviation of h′t. Thus, following
the action decision described in the previous section that
au,t−1 = 0 means the u-th user is assigned to the TBS, the
outdated CSI can be defined as below

h′u,t =
{ ‖hu,t‖2, if au,t−1 = 0
h′u,t−1, if au,t−1 = 1

(15)

where h′u,0 = ‖hu,0‖2. In other words, the outdated terrestrial
CSI h′u,t is only updated if the TBS serves the user u at
time slot t − 1. We divide h′t by its standard deviation to
normalize our outdated terrestrial CSI, which helps our agent
maintain its performance under imperfect CSI. Moreover,
by providing our agent with the previous action vector, our
agent understands whether the available CSI is updated or
not. In addition, as stated in [24], under incomplete state
space, i.e., the unknown HAPS’s CSI in our case, integrating
the action into the state space improves the performance of
the DRL agent. It is noted that the agent needs to explore
more during the training phase to learn the variation pattern
of terrestrial CSI. Furthermore, deciding based on outdated
CSI while the non-terrestrial CSI is unknown makes the
agent overestimate some of the Q-values. To overcome these
issues, we resort to DSRL, which, as we show, is comparable
to the exhaustive search method.
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B. ACTION SPACE
The action space, denoted as A, is a set of all possible
actions. For our optimization problem, the action consists of
scheduling users to be served by the TBS or the HAPS and
selecting a subset of antennas at the HAPS at each time slot.
For ease of problem notation, let us break down the action
of our joint antenna selection and user scheduling problem
into two separate actions: the user scheduling action and the
antenna selection action at the HAPS. Note that the decisions
for both actions are made at the TBS.
We first denote the user scheduling set that contains

all possible U × 1 user scheduling vectors as A. The i-
th possible user scheduling vector is denoted as ai =
[a1,i a2,i . . . aU,i]T , where au,i = 1 means that the u-th
user is scheduled to be served by the HAPS at i-th possible
vector. Otherwise, au,i = 0. Note that at most, N users can
be scheduled to be served by the HAPS at each time slot.
Based on these limitations, the action space for all possible
user scheduling vectors can be written as

A =
{
ai | 1Tai ≤ N

}
. (16)

We then denote Ã as the set that contains all possible
antenna selection vectors at the HAPS. We define the j-th
possible antenna selection action as an N×1 vector denoted
as ãj = [ã1,j ã2,j . . . ãN,j]T , where ãn,j ∈ {0, 1}, for
n = 1, 2, . . . ,N. Here, ãn,j = 1 means that the n-th antenna
at the HAPS is selected to participate in the data exchange
at time slot t, otherwise ãn,j = 0. Note that in our problem
formulation, we assume that the number of active antennas
at the HAPS is equal to the number of assigned users to
be served by the HAPS. Moreover, because we assume the
same LoS component of the channel links between the users
and the HAPS’s antennas is approximately the same, for
simplicity, antenna selection can be simplified to find the
optimal number of active antennas at each time slot. More
specifically, at each time slot t, we can use at to find the
number of assigned users to be served by the HAPS (i.e.,
1Tat) and obtain ãt as

ãn,t =
{

1, if n ∈ {1, 2, . . . , 1Tat
}

0, otherwise
(17)

Hence, in the sequel, the action vector only refers to the
user scheduling vector at, as we can easily use (17) to obtain
the antenna selection vector ãt, at each time slot t.

C. REWARD FUNCTION
The function R(s, a) represents the immediate reward

function for taking action a. Note that at each time slot, the
u-th element of the state is the channel gain between the
u-th user and the TBS antennas at that time slot, for u =
1, 2, . . . ,U. We can write the immediate reward function as

R(s, a) =
∑

u∈K
log2(1+ γu(K))+

∑

u∈K′
log2

(
1+ γ ′u

(Z,K′)).

(18)

where, Kt and K′t are the user scheduling sets, which can
be obtained from (10); γu(K) and γ ′u(Z,K′) are SINR for
the TBS and the HAPS, respectively. Moreover, we use (17)
to obtain the antenna selection vector at the HAPS (i.e., ã)
and its corresponding antenna selection set Z .
Remark 2: In our MDP problem formulation, HAPs’s

circuit power consumption is not included in the reward
function as it is already factored into the definition of the
action.

D. POLICY
The Policy π(·) maps the state to the action. For a given
policy and state s ∈ S , we can obtain the corresponding
action as a = π(s).

So far, we formulated our user scheduling problem as an
MDP framework to find the optimal policy that solves the
maximization problem in (12). The optimal policy can be
defined as follows:

π∗(s) = argmaxa Q(s, a) (19)

where Q(s, a) is the state-action value function for s ∈ S
and a ∈ A. At time slot t, we can obtain the state-action
value function as:

Q(s, a) = E

[ ∞∑

t=0

�tR(st, at) | s0, a0

]
(20)

where �t ∈ [0, 1] is a discount factor that shows the
trade-off between immediate and future rewards. In the
DQL algorithm, a deep neural network (DNN) is used to
approximate the Q-function. We denote θ as the weights
of the DNN such that, for a given s ∈ S which is the
input of the DNN, the Q-function denoted as Q(s, a |
θ) is returned as the output. Given the highly dynamic
environment resulting from time-varying channels, outdated
TBS’s CSI, and incomplete information due to unknown
HAPS’s CSI, solving the optimization problem (12) is a
challenging issue. As we will show, the conventional DQL
method learns a suboptimal policy due to the overestimation
of Q-values and a lack of exploration. To overcome these
issues, we propose a DSRL method that manages to reach
optimal policy without introducing additional computational
complexity compared to the DQL method.

VIII. DSRL USER SCHEDULING ALGORITHM
A. BACKGROUND
While the DQL method has gained a lot of popularity for
wireless communication problems, it has some limitations in
coping with problems that need more exploration and where
the state space consists of incomplete information. At each
state, the DQL agent updates its Q-values by employing the
next state-action value function. Although the next state ŝ is
known, the DQL agent is unaware of the next action â. Thus,
the DQL agent always takes the greedy action and chooses
the best successor action based on its current knowledge,
which is not always optimal and can be misleading in our
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case. Based on this, the weights of the DNN are updated
using the following loss function:

L(θ) = E

[
(y− Q(s, a | θ))2

]
(21)

where θ denotes the DNN’s weights, and y is defined as:

y = R(s, a)+ γ max
a∈A

Q
(
ŝ, a | θ) (22)

where ŝ is the next state and maxa∈A Q(ŝ, a | θ) is the
estimate of the next Q-function. The DQL method is an
off-policy DRL method that updates its policy based on
the maximum Q-value of the next state (22), regardless of
the action taken in the environment. In other words, the
behaviour policy (the policy used for selecting actions) and
the target policy (the policy used for learning) are different.
Consequently, in our case, where only the outdated TBS’s
CSI is given and the HAPS’s CSI is unknown, using the
maximum operation in (22) leads to an overestimation of
Q-values since the maximum Q-value may not always be
optimal due to insufficient information. Furthermore, since
the CSI of previously served users is only known by the
agent (15), more exploration is needed during the training
phase to ensure that the agent can get an overview of the
instantaneous CSI of each user. However, the incomplete
state space in our problem means that the agent has limited
information about some state-action pairs, and since the
exploration is only based on the behaviour policy, the agent
may not sufficiently explore the less visited states.
To overcome the above-mentioned issues, we resort to the

on-policy method called SARSA, which uses the same policy
for executing actions and updating its policy. To enable our
agent to profit from the advantages of DNN, we use the
approach proposed in [25]. In contrast to DQL, here, the
agent updates the Q-values based on the actions that are
really taken in the environment. As a result, the loss function
in DSRL is modified as

L(θ) = E

[
(y− Q(s, a | θ))2

]
(23)

where θ denotes the DNN’s weights, and y is defined as:

y = R(s, a)+ γQ(ŝ, â | θ) (24)

where â is the next action executed in the environment by the
agent. Thus, the DSRL agent avoids the bias resulting from
the maximum operation, which has a considerable impact
in our case. Moreover, using the same policy for executing
actions and updating the DNN naturally encourages the
agent to explore more. Finally, updating the DNN using the
observed SARSA transition makes the agent decide more
carefully, which, as we will show later, improves the agent’s
performance under imperfect CSI.
To solve our problem using DSRL, we first model the

actual environment of our system model using an MDP
framework defined in Section VII. Then, we call each wire-
less network configuration an episode, where each episode
demonstrates a wireless network with various users’ locations
and their corresponding channel coefficients. Considering

that each episode consists of L time slots (t = 1, 2, . . . ,L),
starting from an initial state s0, the environment receives
the executed action at, returns the reward value R(st, at),
and moves to the new state st+1. To benefit from offline
training and at the same time make real-time decisions, our
learning process consists of two phases: an offline training
phase and an online testing phase. In the training phase, we
train our DSRL agent to learn the optimal policy using the
generated data from a variety of simulated environments.
Note that the data’s correlation increases the probability
of DRL divergence in online training. To decorrelate the
data, we use a buffer denoted as D to store the tuple
(st, at,R(st, at), st+1, at+1, dL), where dL = 1 if t = L,
otherwise dL = 0. Furthermore, we use a shuffled random
mini-batch of data to update the DNN’s weights. Due to
the non-linear activation functions in DNN, the similarity
between y and Q(s, a | θ) in (23) can lead to instability in
the training phase. This is due to the fact that small changes
in Q-values can lead to significant changes in the agent’s
policy [26]. In DQL, to tackle this issue, we use a target
network. The target network is a delayed copy of the main
network, which is used to estimate Q(st+1, at+1 | θ̃), where
θ̃ denotes the weights of the target network.
Following the provided explanations, equations (23)

and (24) are modified as:

L(θ) = E(s,a,R(s.a),ŝ,â)∼D
[
(y− Q(s, a | θ))2

]
(25)

where D is the buffer, θ is DNN’s weights, and y is
defined as:

y = R(s, a)+ (1− dL)× γQ
(
ŝ, â | θ̃

)
(26)

where dL determines the last time slot. Then, in the testing
phase, we use the trained agent to take real-time actions
from the obtained state information at each time slot.
In the sequel, we elaborate on our proposed DSRL user

scheduling algorithm.

B. OUR PROPOSED DSRL METHOD
To define the environment of our system model, we assume a
TBS, located in the center of a cell with radios r, that serves a
subset of U available users and schedules the remaining ones
to be served by the HAPS. Let us denote σ 2

h,u as the variance
of the channel between the u-th user and the antennas at the
TBS. Here, to model user u’s variance, we use the path loss
model

σ 2
h,u(dB) = 10 log10 ρ − 25 log10 du − ψdB, (27)

where the path loss exponent is 2.5, du is the distance
between the u-th user and the TBS, ρ is the path loss
constant, and ψdB is a Gaussian random variable with
mean zero and variance σ 2

ψdB
. At each episode, for a

given distribution of the users’ location, we generate du
for u = 1, 2, . . . ,U. Using (27), we can obtain σ 2

h,u =
σ 2
h,uIM×1. Here, we assume that the channel vector hu,t ∼
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CN (0M×1, σ
2
h,u) evolves according to the first-order Gauss-

Markov channel model as

hu,t � ξuhu,t−1 +
√

1− ξ2
u zu,t, for u = 1, . . . ,U. (28)

The independent and identically distributed (i.i.d.) innovation
sequence zu,t ∼ CN (0M×1, σ

2
h,u) is independent of the

channel vector hu,t, for u = 1, . . . ,U. Moreover, ξu ∈ [0, 1]
is the fading correlation coefficient corresponding to the u-th
user. Note that the value of ξu depends on the maximum
Doppler frequency [27]. More specifically, for users with no
movements (i.e., a static channel model), ξu = 1 holds true,
and ξu = 0 presents the channel model with i.i.d. channels
over t. At each time slot t, considering that the TBS is the
agent making the user scheduling decision, the state is the
channel gain vector between the users and the TBS, obtained
as st = [|hu,t|2]Uu=1. We assume that all users have the same
LoS component denoted as gLoS. Moreover, we use the first-
order Gauss-Markov channel to model the small variations
in channel links due to users’ movements, reflections, etc.
Thus, we can write

gu,t � gLoS + ξugu,t−1 +
√

1− ξ2
u z
′
u,t, u = 1, . . . ,U. (29)

where gLoS = (gLoS)IN×1, gu,t ∼ CN (0N×1, σ
′2
h,u), and

z′u,t ∼ CN (0N×1, σ
′2
h,u). Here, σ ′2

h,u = σ ′2h,u IN×1 where σ ′2h,u
is the channel variance between the u-th user and HAPS
antennas, which can be obtained from (27). The rest of this
section explains the training and testing procedures.
Training Procedure: Algorithm 1 illustrates the steps of the

training process in our proposed user scheduling framework.
In the first step, we initialize the buffer and define the main
and target networks. To do so, we construct a DNN with
weights θ for the main network and initialize its weights
with random values. We also define the target network with
the same weights θ̃ = θ and construct it as the main network,
i.e., with the same number of layers and neurons per layer.
Since the path loss in (27) varies according to the users’
location, to prevent our DSRL agent from overfitting on a
specific network configuration, we reset the environment,
initialize s0 at the start of each episode, and train our agent
for Iepisode episodes to ensure it can adapt to different large
scale fading values in the test phase. To dynamically control
the exploration probability during the training procedure,
we update the probability of exploration εi at the start of
each episode where i ∈ {1, 2, . . . , Iepisode}. In this context,
starting from ε1 = 1, we decrease the value of εi step by
step during the first I′ episodes. After that, we explore the
environment with a constant probability εfinal that denotes
the final probability of exploration. Then, before starting the
episode, the agent executes the action at where t = 0. This
is necessary because we need to update the agent’s policy
with â in (25).

At the i-th episode, based on the ε-greedy exploration
strategy, in each time slot t, we choose a random action with
a probability of εi. Otherwise, with a probability 1− εi, the
state st+1 is inputted to the DNN, and we choose the action

Algorithm 1: Training Algorithm of the Proposed DSRL
Framework
Input: learning frequency η, target update frequency
η′, saving model frequency η′′, maximum number of
episodes Iepisode, maximum number of time slots L,
number of users U, number of HAPS antenna N,
number of TBS antenna M, users’ locations, probability
of exploration at the i-th episode εi, final probability of
exploration εfinal, final episode of updating probability
of exploration I′;

1 Initialize buffer D, weights of the main network θ with
random values, and wights of the target network θ̃ = θ

2 for i ∈ 1 to Iepisode do
3 Generate du, for u = 1, 2, . . . ,U and reset

environment using (27)
4 t = 0
5 Initialize st

6 Update εi: εi =
{

1− 1−εfinal
I′ if 1 < i < I′

εfinal I′ < i < Iepisode
7 at ← arg maxa Q(st, at | θ)
8 Execute action at, move to the new state st+1, and

observe the reward value R(st, at) using (18)
9 for t ∈ 0 to L− 1 do
10 Select a random action with a probability of εi

otherwise:
11 at+1 ← arg maxa Q(st+1, at+1 | θ)
12 Execute action at+1, move to the new state

st+2, and observe the reward value R(st+1, at+1)

using (18)
13 Store (st, at,R(st, at), st+1, at+1, dL) in D
14 if t % η= 0 then
15 Sample mini-batch of data from D
16 Update DNN’s weights using equation (25)
17 if t % η′ = 0 then
18 Update target network: θ̃ ← θ

19 if i % η′′ = 0 then
20 Save the learned model

Output: Learned DSRL model Q(s, a | θ)

with the highest Q-value, i.e., at+1 = arg maxa Q(st, at | θ)
where at+1 is the next action â in (25). Afterward, the action
at+1 is executed, the environment moves to the next state
st+2, and the reward value R(st+1, at+1) form (18) is obtained
by the DSRL agent. In the next step, we store the SARSA
transition (st, at,R(st, at), st+1, at+1, dL) in the buffer.

To update the DSRL agent’s policy, we sample a mini-
batch of information from the buffer every η time slots. Then,
we compute the loss function in (21) and apply the ADAM
optimizer to update the DNN’s weights θ . As mentioned
in Section VIII-A, we keep a delayed copy of our main
network to ensure the stability of our DNN during the
training process. Therefore, for every η′ time slot, where
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η′ > η, we copy the main network to the target network and
replace θ̃ by θ . To use our model for real-time decisions
during the test phase, we save our main network every η

′′

episode. We upload this model during the test phase and
evaluate the performance of our DSRL agent. In the sequel,
we explain the test phase for our proposed DSRL algorithm.
Testing procedure: In the test phase, we first upload the

trained DSRL model, which is established in the TBS. Here,
the TBS uses the trained DNN to determine the best user
scheduling action, i.e., whether users should be served by
the TBS or HAPS. To evaluate the performance of our
agent over different path loss values, we run our agent for
Iepisode episodes and reset the environment at the start of
each episode, i.e., distribute users to compute σ 2

h,u using (27).
After that, s0 = [‖hu,0‖2]Uu=1 is initialized, where hu,0 ∈
CN (0M×1, σ

2
h,u).

In each time slot t, state st is computed as st = [‖hu,t‖2]Uu=1
and fed to the established DNN in the TBS. Then, the
DNN returns the Q-values and the action with the highest
state-action value such that at = arg maxa Q(st, at | θ). The
obtained action assigns a subset of users to be served by
the HAPS and the remaining ones are served by the TBS.
We use (18) to obtain the reward value R(st, at). Afterward,
the time-varying channels evolve based on (28). Algorithm 2
shows a detailed description of our testing process.

IX. HEURISTIC OPTIMIZATION FOR USER SCHEDULING
In this section, we propose a heuristic optimization algorithm
to find the best user scheduling action that maximizes
the sum-rate of the system. To formulate our optimization
problem, let us define diagonal user selection matrices for
the TBS and the HAPS as �t = diag(1U×1 − at) and
�′t = diag(at), respectively. In addition, we define an N×N
diagonal antenna selection matrix at the HAPS, denoted as
�′′t = diag(ãt). Now, we can write

Ft = �tHt, and F′t = �′tGt�
′′
t (30)

where Ft and F′t are the channel matrices between the
TBS and the HAPS and their corresponding served users,

Algorithm 2: Testing Algorithm of the Proposed DQL
Framework
Input: trained DSRL model Q(s, a | θ), maximum
number of episodes Iepisode, maximum number of time
slots L, number of users U, number of HAPS antenna
N, number of TBS antenna M, users’ locations,
channel matrix Ht � [h1,t,h2,t, · · · ,hU,t]T ;

1 Upload trained DQL model Q(s, a | θ) in the TBS
2 for i ∈ 1 to Iepisode do
3 Generate du, for u = 1, 2, . . . ,U and reset

environment using (27)
4 Initialize s0 =

[‖hu,0‖2
]U
u=1 where

hu,0 = CN (0M×1, σ
2
h,u)

5 for t ∈ 1 to L do

6 st =
[‖hu,t‖2

]U
u=1

7 at ← arg maxa Q(st, at | θ)
8 Extract users’ received rate and obtain R(st, at)

using (18)
9 Obtain Ht+1 using (28)

Output: Executed actions a and their associated reward
values R(s, a)

respectively, and we can write

Ft = B
[

Ĥt

0(U−|Kt|)×M

]
= BH̃t

F′t = B′
[
Ĝt 0U×(N−|Zt|)

0(U−|Kt|)×M

]
= B′G̃t (31)

Here, B and B′ are permutation matrices (i.e., BHB = IM).
Thus, we can write

FHt Ft = H̃H
t B

HBH̃t = H̃H
t H̃t = ĤH

t Ĥt.

F′t
HF′t = G̃H

t B
′HB′G̃t = G̃H

t G̃t = ĜH
t Ĝt. (32)

We use (32) to write the sum-rate of our system in (33),
shown at the bottom of the page, where P and P′ denoted
the total power at the TBS and the HAPS, respectively.

R̆
(
�t,�

′
t,�
′′
t

) = log2

(
det

(
IM + P

|Kt|σ̂ 2
n
ĤH
t Ĥt

) )
+ log2

(
det

(
I|Zt| +

P′

|K′t|σ ′2n
ĜH
t Ĝt

) )

= log2

(
det

(
IM + P

|Kt|σ̂ 2
n
FHt Ft

) )
+ log2

(
det

(
IN + P′

|K′t|σ ′2n
F′Ht F′t

) )

= log2

⎛

⎜⎝det

⎛

⎜⎝IM + P

|Kt|σ̂ 2
n
HH
t �

H
t �t︸ ︷︷ ︸
=�t

Ht

⎞

⎟⎠

⎞

⎟⎠+ log2

⎛

⎜⎝det

⎛

⎜⎝IN + P′

|K′t|σ ′2n
�′′Ht GH

t �
′H
t �
′
t︸ ︷︷ ︸

=�′t

Gt�
′′
t

⎞

⎟⎠

⎞

⎟⎠

= log2

(
det

(
IU + P

|Kt|σ̂ 2
n
�tHtHH

t

) )
+ log2

⎛

⎜⎜⎝det

⎛

⎜⎜⎝IN +
P′

|K′t|σ ′2n
�′′Ht GH

t︸ ︷︷ ︸
� CHt

�′Ht �′t︸ ︷︷ ︸
=�′t

Gt�
′′
t︸ ︷︷ ︸

� Ct

⎞

⎟⎟⎠

⎞

⎟⎟⎠. (33)
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Considering that C is a U×N matrix and using the following
properties

det
(
IN + CH

t �
′
tCt

)
= det

(
IU +�′tCtCH

t

)
(34)

where Ct = Gt�
′′
t and CtCH

t = Gt�
′′
t �
′′H
t︸ ︷︷ ︸

=�′′t

GH
t , we rewrite

the sum-rate as

R̆
(
�t,�

′
t,�
′′
t

)

= log2

(
det

(
IU + P

|Kt|σ̂ 2
n
�tHtHH

t

) )

+ log2

(
det

(
IU + P′

|K′t|σ ′2n
�′tGt�

′′
t G

H
t

) )
. (35)

Given the fact that F(X) = log2(det(X)) is concave in
the entries of X and that the sum of concave functions is
a concave function, we propose the use of interior-point
algorithms [28] to solve (35). However, in our scenario,
the entries of �t,�

′
t, and �

′′
t are binary values, and thus

the selection problem is NP-hard. To overcome this issue,
we propose to relax the binary values of the selection
matrices. More specifically, the u-th diagonal entry of
the TBS user selection matrix �t, denoted as �uu,t is
�uu,t = 1 − au,t, meaning that �uu,t ∈ {0, 1}. To relax
our selection constraints, we allow �uu,t ∈ [0, 1] and
�′uu,t ∈ [0, 1]. To account for the limitation imposed on
the number of scheduled users to the HAPS, we add the
constraint trace(�′t) = N to our optimization problem.
Moreover, to further simplify our optimization problem,
we assume �′′nn,t = 1, for n = 1, 2, . . . ,N (i.e., no
antenna selection at the HAPS), and thus, �′tGt�

′′
t G

H
t =

�′tGtGH
t .

For each time slot t, we can write our maximization
problem as

max log2

(
det

(
IU + P

|Kt|σ̂ 2
n
�tHtHH

t

) )

+ log2

(
det

(
IU + P′

|K′t|σ ′2n
�′tGtGH

t

) )
(36)

s.t. 0 ≤ �uu,t ≤ 1, for u = 1, 2, . . . ,U

0 ≤ �′uu,t ≤ 1, for u = 1, 2, . . . ,U

trace(�t) = U− N

trace
(
�′t
) = N

The Interior-point algorithm can be used to solve the above
equation. Then, the indices corresponding to (U−N) largest
values of �uu,t are selected as the indices of the users that
are assigned to be served by the TBS and the rest of N
indices (that are equivalent to indices of the N largest values
of �′uu,t) are the indices of the users that are selected to be
served by the HAPS.
The Interior-point algorithm can be used to solve (36). We

now propose a heuristic user scheduling algorithm, written
in Algorithm 3. At each time slot t, the users’ channel
links between the TBS and the HAPS (i.e., Ht and Gt,

Algorithm 3: Heuristic Optimization User Selection
Algorithm

1 Initialization: Number of users U, number of HAPS
antennas N, number of TBS antennas M, total TBS
transmit power P, and total HAPS transmit power P′.
Input: Ht and Gt

1. Solve (32) to obtain �t and �′t.
2 2. Sort the diagonal entries of �′t.
3 3. Obtain the entries of the action vector at as

au,t =
{

1, if �′uu,t is among N highest entries of �′t
0, otherwise

(37)

4 4. Use (10) to obtain Kt and K′t.
5 5. Obtain Ĥt � [hu,t]u∈Kt and Ĝt � [gu,t]u∈K′t and their
corresponding beamforming matrices Wt and W′t,
respectively.

6 6. Set Zt = {1, 2, . . . ,N} and use (7) and (9) to obtain
R(Kt) and R′(Zt,K′t), respectively.
Output: Sum-rate R̂(Kt,K′t,Z) = R′(Zt,K′t)+ R(Kt)

respectively) are inputted to the algorithm of our algorithm.
By first solving (36), we obtain �t and �′t. Note that �′t
is a diagonal user selection matrix for the HAPS. Thus, by
sorting the diagonal elements of �′t, the u-th element of
the action vector at is equal to 1 (i.e., au,t = 1) if it is
among the first N highest values in the sorted �′t entries.
Otherwise, au,t = 0. Given the obtained action vector at, we
use (10) to obtain Kt and K′t, which correspond to the sets
of users assigned to the TBS and the HAPS, respectively.
Then, by finding Ĥt � [hu,t]u∈Kt and Ĝt � [gu,t]u∈K′t
and their corresponding beamforming matrices Wt and W′t,
respectively, the sum-rate of the system can be measured. It
is noted that we only perform user scheduling and assume
that all the HAPS’s antennas are active at each time slot,
meaning that Zt = {1, 2, . . . ,N}. Using (7) and (9), we can
obtain R(Kt) and R′(Zt,K′t), respectively. At each time slot
t, the output of Algorithm 3 is the total sum-rate of the
system R̂(Kt,K′t,Z) = R′(Zt,K′t)+ R(Kt).

X. SIMULATION RESULTS
In this section, we present our simulation results to
demonstrate the performance of our proposed DSRL user
scheduling method and its advantages over traditional convex
optimization algorithms.

A. SIMULATION CONFIGURATION
We consider a TBS with M = 16 antennas at the center
of a cell with a radius of 3 km, a HAPS with N = 2
antennas, and U = 6 single-antenna users that are distributed
uniformly in the cell. The TBS power supply is set to 10 dB
(i.e., P = 10 dB) and 5 dB for HAPS’s supply power (i.e.,
P′ = 5 dB). Furthermore, we use Jake’s model [29] to obtain
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TABLE 1. Training parameters of our environment.

TABLE 2. DNN training setting and input parameters in Algorithm 1.

ξu for u = 1, 2, . . . ,U, such that ξu = J0(2π fdTs). Here,
J0(·) is the zero-order Bessel function, fd is the maximum
Doppler frequency, and Ts is the maximum time interval
between adjacent instants. Here, we assume Ts = 20 ms
and fd = 10 Hz [30]. We use (27), where du is the distance
between the u-th user and the TBS, and the path loss
constant, ρ, is chosen such that at the boundary of our
cell, σ 2

h,u/σ̂
2
n = −5 dB holds true. Table 1 summarises the

environment parameters during the training of our DSRL
method (Algorithm 1).
We implement a DNN with four layers as the main

network: an input layer of dimension 2 × U, an output
layer of size |A|, and two hidden layers with 256, and
512 neurons, respectively. We use the Rectified Linear Unit
(ReLU) activation function for the input and hidden layers
and the linear activation function for the output layer. We
adopt an ADAM optimizer with a learning rate of α =
0.001 and use a sequence of information with a mini-batch
size of sixty four to train our DNN. All DSRL implemen-
tations, i.e., DNN and the ADAM optimizer, are performed
using PyTorch. Moreover, we solve the relaxed convex
optimization problem using the cvxp library in Python.
We train our DSRL agent for Iepisode = 10000 episodes,
where each episode contains L = 100 time slots. During
the first I′ = 1000 episodes, we decrease the exploration
probability εi step by step, as mentioned in Algorithm 1, and
we continue with a constant exploration probability εfinal =
0.1 for the rest of the training process. The DNN training
setup and input parameters in Algorithm 1 are tabulated in
Table 2.

To demonstrate the convergence of our DSRL agent, we
plot the evaluation of the loss function in (21) during the
training procedure. Figure 2 illustrates the average value of
the loss function at each episode. As can be seen from this
figure, our DSRL agent successfully converges and manages
to learn the optimal policy.
In the next section, we use the trained DSRL agent

to evaluate the performance of our proposed Algorithm 2,
which is capable of making real-time decisions.

FIGURE 2. Evaluation of the loss value for the DQN agent.

B. PERFECT CSI SCENARIO
In this subsection, we investigate the impact of different
network configurations on the performance of our proposed
DSRL user scheduling framework when perfect CSI is
available. We compare the results of our DSRL algorithm
with four different methods: an exhaustive search (ES)
method, the proposed heuristic optimization in Algorithm 3
(the CO method), the DQL method, and a random selection
method. Here, in the ES method, we explore all possible
actions (i.e., all possible user scheduling actions in the action
space a ∈ A) at each time slot t and choose the one that leads
to the highest reward value R(s, a), meaning that the result
of the exhaustive search is the upper-bound sum-rate.2 In the
CO method, the instantaneous full CSI of the HAPS and TBS
is required for user scheduling decisions at each time slot.
These requirements are incompatible with our assumption,
and thus we only show this method as a benchmark. For
the random selection approach, we randomly select one of
the possible actions a ∈ A at each time slot, meaning that
it demonstrates the lower-bound sum-rate. The presented
results in this section are averaged over 100 Monte-Carlo
results.
Considering parameters in Table 1, Fig. 3 illustrates the

averaged sum-rate for different σ̂ 2
n values, where σ̂ 2

n rep-
resents both inter-cell and intra-cell interference. As can
be seen from this figure, the performance gap between
the DSRL and ES methods is approximately 0.3 bit-per-
channel-use (bcu), and the gap between the DSRL and
the random selection is approximately 5.5 bcu, where our
proposed DSRL method maintains its performance over
different values of σ̂ 2

n . Moreover, we can see that the DSRL
method yields an improved performance compared to the
DQL method (approximately 0.5 bcu advantage), while both
have similar computational complexities.

2. It is noted that the ES method is not practical for real-time decision
making as it has to search among all possible actions. Meanwhile, the
channels evolve, and the provided CSI becomes outdated. Thus, we only
use ES as a comparison method that provides upper-bound.
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FIGURE 3. Averaged sum-rate versus σ̂ 2
n values.

FIGURE 4. Average sum-rate for different numbers of users U.

To further investigate the robustness of the DSRL agent
in different scenarios, we also study the effect of the user
density. In Fig. 4, we plot the averaged sum-rate versus
the number of available users U, for U ∈ {6, 7, 8, 9}. The
provided results show that by increasing U, the averaged
sum-rate increases for all the methods. The average sum-rate
gap between the ES method and our proposed DSRL method
is 0.3 (bcu). In addition, the performance of the DSRL is 0.5
(bcu) higher than that of the DQL method when increasing
the number of users; the performance gap between other
methods and the DSRL approach remains unchanged. This
demonstrates the stability of our proposed method against
changes in the number of users.
We also compare the averaged sum-rate of our proposed

method versus the number of antennas at the HAPS N in
Fig. 5, for M = 16 and U = 9. It is noted that N = 0
means that all the users are served by the BS (i.e., there
is only one possible action at each time slot). As shown in
Fig. 5, increasing the number of antennas at the HAPS can
significantly enhance the averaged sum-rate of the system
for all the methods. Adding more antennas (N) increases

FIGURE 5. Average sum-rate for different numbers of HAPS’s antennas N at the
HAPS.

the performance gap between the ES method and DSRL;
however, we expected this result due to the fact that, in the
DSRL method, decisions are made only based on TBS CSI.
Thus, increasing the HAPS antennas is equivalent to more
unknown information for decision-making compared to the
CO method, which uses full CSI. This shows that in our
proposed DSRL method, by slightly sacrificing performance,
we can cut the overhead of the network in half by avoiding
sharing information between HAPS and TBS. From this
figure, we can also see that the gap between ES selection
and the DQL method increases more noticeably compared
to the performance gap between ES and the DSRL method.
This is due to the fact that the DSRL method is an on-policy
DRL method, which prevents our agent from overestimating
the Q-values, which has a negative impact on our problem.
So far, we mainly focused on comparisons between our

DSRL algorithm and other methods by evaluating their
performance for different parameters. However, we assumed
that perfect CSI is available, which is not always possible
in practice. Thus, we next define a real scenario in which
channel estimation errors are considered in the performance
analysis.

C. IMPERFECT CSI SCENARIO
In this section, we evaluate the performance of our proposed
user scheduling algorithm under imperfect CSI. To do so, we
define h̆u,t ∈ CN (0M×1, εh,u1M×1) as the channel estimation
error between the u-th user and the BS antennas. Thus, for
u = 1, 2, . . . ,U, we can write hu,t = ḧu,t + h̆u,t, where ḧu,t
is the estimated channel vector between the u-th user and
the BS antennas. Note that ḧu,t and h̆u,t are i.i.d.

For further investigation, we add a method to our imperfect
CSI comparisons used in [31] that uses uncertainty bounds
to solve the convex optimization problem under imperfect
CSI. We denote this method as convex optimization with
uncertainty bound (COUB). Here, the agent is trained
considering perfect CSI (i.e., εh = 0) in Algorithm 1 and

12 VOLUME 5, 2024



FIGURE 6. Average sum-rate for different channel estimation error εh values.

then tested assuming different values of εh. More specifically,
in Algorithm 2 and Algorithm 3, the input data is the
estimated channel vectors Ḧt = [ḧu,t]Uu=1. However, the
averaged sum-rate of the system at each time slot is obtained
according to the actual data rate (using the true channel
matrix Ht = [hu,t]Uu=1).

The results are presented in Fig. 6. As shown in the
figure, for small estimation errors, the averaged sum-
rate for the COUB method is up to 0.6 dB higher than
that of our method. However, for higher εh (more than
0.5), our proposed method outperforms other mathematical
optimization approaches. Hence, in a realistic case where
perfect CSI is not available, CO cannot provide the optimal
solution. In addition, for εh higher than 0.4, the COUB
method cannot tolerate it, and the averaged sum-rate drops
significantly. Note that in the COUB method, full HAPS
CSI and TBS CSI are required. In contrast, our proposed
DSRL algorithm is shown to be a promising solution that
can perform well in worst-case scenarios.
Remark 3: The good performance of the DSRL agent

under imperfect CSI is due to the fact that we accurately
designed the state vector. In our previous work [22], the
DQL agent only received the global CSI (i.e., the CSI of
the TBS and the CSI of the HAPS) directly. Although it
outperformed the CO method with imperfect CSI, it dropped
for large noise values. To solve this issue, we normalize
the CSI values to their standard deviation to improve the
performance of our proposed DSRL agent under imperfect
CSI.

D. COMPUTATIONAL COMPLEXITY
The computational complexity of the DSRL depends on the
DNN, which is used as the main network, where the
computational complexity of any DNN depends on its
architecture. In other words, the total number of neu-
rons affects the computational complexity of the DNN.
Consequently, for our DNN with an input size of 2 × |U|,
output size of |A|, and hidden layers with dimensions

W1, and W2, the computational complexity is computed as
O(|U|W1 + |A|W2 + W1W2). Therefore, for the parameters
in Table 1 and Table 2, the computational complexity of
our DSRL method is approximately O(|A|3.199). For U =
9 and the same values of M and N, the computational
complexity of the DSRL method is about O(|A|2.51). In other
words, as our network grows, using DSRL becomes more
beneficial. The computational complexity of our proposed
optimization-based user scheduling approach in Algorithm 3
is O(|A|3.5) [28]. However, it is noted that, after training,
no learning and backpropagation is needed in Algorithm 2
for real-time decision-making. In contrast, the optimization-
based user scheduling method has to run at each time slot.

E. DISCUSSION
For traditional optimization-based user scheduling methods,
such as our proposed method in Algorithm 3, knowledge
of perfect CSI is essential to guarantee a reliable result.
In addition, both channel links between users-TBS and
users-HAPS are required to solve the optimization problem.
Furthermore, at each time slot, an optimization problem
needs to be solved to obtain the best user scheduling action
for that time slot as the channels constantly evolve. To
overcome these challenges, in this paper, we propose a DRL
user scheduling method that can provide a high performance
and reliable results under imperfect CSI between the users
and the TBS (no channel links information between users
and the HAPS is required).

XI. CONCLUSION
In this paper, considering a cellular system, we studied
the user scheduling problem between a TBS and a HAPS
with the main goal of maximizing the sum-rate with
a minimum power consumption at the HAPS. In this
context, we assumed that only the TBS’s previous time
slot CSI is available for user scheduling at the current
time slot. Considering the above assumption, we formulate
our optimization problem using an MDP framework and
proposed a DSRL user scheduling algorithm. We also
developed a heuristics optimization method for the sake
of comparison. Moreover, the exhaustive search method
and random selection were introduced in the simulation
results to show the upper-bound and lower-bound sum-rates,
respectively. The provided results validate our claims about
the near-optimality, stability, and scalability of our proposed
DSRL algorithm. We also showed that in the presence
of channel estimation errors, the heuristic optimization
method can fail, leading to results similar to random
selection scheme. Meanwhile, our proposed DSRL user
scheduling algorithm was shown to outperform the heuristics
optimization method and maintain a reliable performance.
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