
DC Power Transported by Two Infinite Parallel Wires
Marc Boulé
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This paper presents the calculation of the electrical power transported by the electromagnetic fields
of two parallel wires carrying opposite DC currents. The Poynting vector is developed in bipolar
coordinates and symbolically integrated over different surfaces. For perfectly conducting wires, the
purely longitudinal power in the space surrounding the wires is shown to be equal to that which is
produced by the battery (and consumed by the load resistor). For resistive wires, the longitudinal
power transported by the fields is shown to diminish according to the distance traveled, and the loss
is proved to be equal to the power entering the wires via the fields at their surfaces.
This article may be downloaded for personal use only. Any other use requires prior permission of the author
and AIP Publishing. This article appeared in American Journal of Physics 92(1), pp. 14-22 (2024), and may
be found at https://doi.org/10.1119/5.0121399.

I. INTRODUCTION

Consider a battery connected to a load resistor via two
infinitely long cylindrical lossless conductors, as shown in
Fig. 1. The battery has a potential difference ∆V , and the
current in the circuit is I. The two conductors have opposite
charge polarities and current directions. The battery is deliv-
ering electrical power equal to I ∆V , which is absorbed and
converted to heat by the resistor. However, how exactly does
the electrical power travel from the battery to the resistor in
the circuit? The power is shown to be transferred through the
electromagnetic field surrounding the conductors1–4, as op-
posed to within them. Yet, the charges in the wires are still
required, since they guide the electromagnetic field toward the
resistor5.

The following two examples are often used in calculations
of the power flowing in the electromagnetic field outside of
two current-carrying perfect conductors:

Example 1: In the parallel plate DC transmission line6, the
electric and magnetic fields between the plates are uniform
orthogonal fields (when neglecting fringing effects), and the
electrical power P transported by these fields is proved to be
equal to I ∆V .

Example 2: For the coaxial cable, the same result is also es-
tablished relatively quickly given its simple symmetry3. The
fields are orthogonal as well, but decrease in 1/r away from
the center axis, where r is the distance to the center axis.

In these types of problems, it is possible to analyze the en-
ergy as contained in either the fields or the configuration of
charges, although in other situations such as general relativ-
ity and momentum conservation, the case for considering the
fields is much stronger3.

A pair of parallel wires (or wire pair) is arguably the most
ubiquitous form of electrical energy transportation. Although
a power I ∆V should also be expected to flow in the electro-
magnetic field of this particular two-conductor geometry, can
it be obtained analytically? When the wires are not perfect
conductors, how exactly does their resistance affect this power
flow?

Answers to the above questions are presented in this pa-
per, which is organized as follows: Sec. II lists the assump-

tions used in the problem’s description, Sec. III presents pre-
vious relevant work, Sec. IV contains a quick review of bipo-
lar cylindrical coordinates (simply called bipolar coordinates
hereafter), Secs. V and VI present the power flow calculations
for the perfectly conducting and resistive wire pair, respec-
tively.

II. ASSUMPTIONS

The two wires are linear, parallel, and considered to be in-
finitely long. The battery and load resistor are sufficiently
far away from the region of analysis such that any fringing
(or edge) effects are neglected in the z direction (see Fig. 1).
An infinite vacuum of permittivity ϵ0 and permeability µ0 sur-
rounds the wires.

When the wires are perfect electrical conductors, they are
lossless (i.e., no electrical resistance) and have no initial mag-
netic fields within them. This implies that (i) inside the wires,
the electric field is equal to zero, and the magnetic field re-
mains equal to zero; (ii) just outside of the wires, the electric
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FIG. 1. A battery delivering electrical power to a load resistor via
two cylindrical wires. The reference Cartesian coordinate system,
the current directions and the polarities are shown.
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FIG. 2. Cross sections of perfectly conducting thick wires of radii R, separated by a distance 2l center-to-center. The polarities (a) and current
directions (b) are visible. Also shown are the effective thin wires (at x = ±a) that create equivalent fields to those of the thick wires, outside of
the thick wires. All illustrations hereafter use R = 0.7 cm and a = 1.7 cm.

field is perpendicular to their surfaces and the magnetic field
is tangent to their surfaces; and (iii) currents and free charges
are located on the surfaces of the wires3,7,8.

When the wires have resistance (i.e., finite conductivity),
the current density is uniformly distributed in each wire’s
cross section, and the potential varies linearly in the z direc-
tion3,9. Any pinching10 or Hall effects are neglected, such that
the extremely small transverse electric field inside the wires is
neglected.

Resistive wires of infinite length imply a battery of infinite
electromotive force (emf). Although the context can be de-
scribed in this way (see problem IV.2 by Stratton11), it can
also be assumed that the wires are instead very long, such that
the battery has a finite emf.

III. RELATED WORK

The perfectly conducting wire pair has been extensively
studied. Using complex analysis, the complex potential of this
configuration can be established, whereby the electric scalar
potential corresponds to the real part of this complex func-
tion12. The wire pair is also seen as a transmission line, where
the electric scalar potential V and magnetic vector potential A
can be determined. These can be used to calculate the ca-
pacitance8,13 and the inductance of the wire pair7,8. Multi-
conductor cables and asymmetrical conductors have also been
explored14,15, along with shielded conductors16, but these will
not be considered here.

The electric equipotentials of a pair of perfectly conducting
and oppositely charged wires are circles (or cylinders in three
dimensions) but are not centered on the wires’ centers. They
are instead centered on the locations of two thin wires that
create an equivalent field outside of the actual thick wires. By
a similar reasoning, the magnetic vector potential of two thin
wires carrying opposite currents is shown to be constant over
the surfaces of the two thick wires. In both cases, the resulting
surface charge and surface current densities can be obtained
from the fields.

It can be established that the true centers (at x = ±l) and the
effective centers (at x = ±a) of the wires, shown in Fig. 2, are
related by

a2 = l2 − R2, (1)

where R is the radius of each wire7,8,13,17.

Haus and Melcher8 showed that the electric scalar and mag-
netic vector potentials outside and at the surfaces of the per-
fectly conducting wires are

V =
−λ

2πϵ0
ln


√

(x − a)2 + y2√
(x + a)2 + y2

 , (2)

A =
−µ0I
2π

ln


√

(x − a)2 + y2√
(x + a)2 + y2

 ẑ, (3)

where λ is the per unit length charge density of the wires. One
wire has a positive charge and the other has a negative charge,
as shown in Fig. 2.

The most suitable form of the electric potential for use in
this paper is actually the one obtained as a solution to problem
3.12 by Griffiths3, or derived from results in Refs. 17 and 18:

V =
∆V

4 cosh−1(l/R)
ln

(
(x + a)2 + y2

(x − a)2 + y2

)
, (4)

where the potentials of the wires are ±∆V/2.
Another team has studied the wire pair and reported sim-

ulation results for the power transported by opposite direct
currents in parallel conductors17. The electric potential is cal-
culated based on the Laplace equation along with the bound-
ary conditions of the electric potential on the wires. Although
the authors mention treating the case of perfect conductors,
the expression used for the magnetic field is actually consis-
tent with that of resistive wires. The analytical expressions of
the Poynting vector and the power transported are not given;
however, numerical results for fixed wire dimensions are pre-
sented.

In the case of the resistive wire pair, the electric potential
and field are calculated by two groups of authors18,19; how-
ever, the magnetic field and Poynting vector are not explored.
The Poynting vector has been calculated with the simplifying
assumption that l ≫ R and in the longitudinal direction only20.

Adapting the electric scalar potential in Eq. (4) for resistive
wires entails incorporating a linear dependence in z, whereas
for the magnetic vector potential in Eq. (3), the positions of the
thin wires must be the true centers (as opposed to the effective
centers). This will be explained in more detail in Sec. VI.
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FIG. 3. Overview of bipolar coordinates. (a) Curves of constant σ are truncated circles that terminate at the focal points. (b) Curves of
constant τ are non-concentric circles. Any point (x, y) can be described by its equivalent coordinates (σ, τ).

From the potentials, the electric field vector E and the mag-
netic field vector B in the region surrounding the wires can be
calculated using the gradient and curl3,

E = −∇V, (5)

B = ∇ × A. (6)

The energy transported by the fields per unit area, per unit
time (the power density) is obtained by using the Poynting
vector3,

S =
1
µ0

(E × B) . (7)

The SI units of the Poynting vector S are watts per square me-
ter. When the E and B vectors are in a plane perpendicular to
the z axis, as is the case for perfect conductors, S is parallel to
the z axis. For resistive wires, S has additional transverse com-
ponents, which, at the surfaces of the wires, represent power
entering the wires from the fields.

The power transported by the electromagnetic field through
a given surface can be obtained by integrating the power den-
sity over the surface,

P =
∫

S · n̂ dA, (8)

where dA is an area element (not to be confused with the dif-
ferential of the magnetic scalar potential), and n̂ is a unit vec-
tor normal to dA.

IV. OVERVIEW OF BIPOLAR COORDINATES

Choosing an appropriate coordinate system can ease the so-
lution process when solving electromagnetism problems. Cal-
culating the power in the coaxial cable (Example 2, Sec. I)
in Cartesian coordinates leads to intricate integrals, while the

calculation in polar coordinates is much less complicated. For
the wire pair, attempting a solution in Cartesian coordinates
leads to integrals with no known primitives.

Bipolar coordinates11,21 are a type of orthogonal reference
system based on two focal points at x = ±a. An expression
in Cartesian coordinates can be transformed into a bipolar one
using the following substitutions:

x = a
sinh τ

cosh τ − cosσ
, (9)

y = a
sinσ

cosh τ − cosσ
. (10)

No transformation is needed in z. The τ coordinate ranges
from −∞ at the left focal point to +∞ at the right focal point.
The σ coordinate ranges from 0 to 2π,22 although other con-
ventions are possible, providing σ has a range of 2π.

As shown in Fig. 3, curves of constant σ are non-concentric
truncated circles with endpoints located at the two focal
points. Curves of constant τ are non-concentric circles, with
the case τ = 0 corresponding to the y axis. Figure 3 also il-
lustrates the geometric interpretations of the bipolar variables,
namely the two possible (and equivalent) positions of the σ
angle, and the definition of τ as the natural logarithm of the
ratio of the distances to the focal points.

The scale factors needed to calculate differential operators
(such as gradient, divergence, and curl) are

hσ = hτ =
a

cosh τ − cosσ
, (11)

along with hz = 1, when required. The surface element dA in
the στ-plane becomes

dA = dx dy = hσhτ dσdτ, (12)

and the gradient and curl operators needed in Eqs. (5) and (6)
are calculated using

∇F =
1

hσ

∂F
∂σ
σ̂ +

1
hτ

∂F
∂τ
τ̂ +

1
hz

∂F
∂z

ẑ, (13)



4

∇ × F =
1

hσhτhz

∣∣∣∣∣∣∣∣∣∣
hσσ̂ hττ̂ hzẑ
∂
∂σ

∂
∂τ

∂
∂z

hσFσ hτFτ hzFz

∣∣∣∣∣∣∣∣∣∣ , (14)

where F is a scalar function of σ, τ, and z, and F is a vec-
tor function of the same variables, with components Fσ, Fτ,
and Fz. The divergence and Laplacian operators also have for-
mulations in bipolar coordinates, as shown in Refs. 21 and 23
and in the online supplementary material24, but they will not
be used here.

The cross product and dot product are identical to those
used in Cartesian coordinates, and are given by

F ×G =

∣∣∣∣∣∣∣∣
σ̂ τ̂ ẑ
Fσ Fτ Fz
Gσ Gτ Gz

∣∣∣∣∣∣∣∣ , (15)

F ·G = FσGσ + FτGτ + FzGz. (16)

An extensive list of coordinate systems along with their
scale factors and differential operators is found in the work
of Elkamel et al. on partial differential equations23.

V. PERFECTLY CONDUCTING WIRES

The objective in this section is to demonstrate that the sur-
face integral of the Poynting vector over a transverse plane
outside of the perfectly conducting wires is equal to I ∆V .
The τ values of the wires must first be established. The sur-
face of the right wire is located at τ = τw, while the left wire
is located at τ = −τw. An expression for the coordinate τw has
been previously calculated17,

τw = cosh−1(l/R), (17)

but it can be obtained by setting V = ∆V/2 and τ = τw in
Eq. (18) and solving for τw.

A. Potentials and Fields

The potentials are much simpler in bipolar coordinates. Ap-
plying the substitutions in Eqs. (9) and (10) to Eqs. (3) and (4)
yields

V =
∆V

2 cosh−1(l/R)
τ, (18)

A =
µ0I
2π
τ ẑ. (19)

The fact that both expressions are functions only of τ shows
that curves of constant τ correspond to curves of constant elec-
tric and magnetic potentials.

The gradient and curl operators in Eqs. (13) and (14) can
be simplified given that ∂V/∂σ, ∂V/∂z, Aσ, Aτ, ∂Az/∂σ, and
∂Az/∂z are all equal to zero, and hz = 1

E = −∇V = −
1
hτ

∂V
∂τ
τ̂, (20)

dA

σ = π2

τ = 1
2

τ=1

τ̂
σ̂

E

B

τw≈
1.62−τw

FIG. 4. Electric and magnetic fields at the point given by the coordi-
nates (σ = π2 , τ =

1
2 ). Also visible are the τ values of the wires (±τw)

and the area element dA used in the power integral. All unlabeled
curves are consistent with those shown in Figure 3.

B = ∇ × A =
1
hτ

∂Az

∂τ
σ̂. (21)

The electric and magnetic fields can be obtained by per-
forming the above-mentioned calculations using the potentials
in Eqs. (18) and (19), resulting in

E = −
(cosh τ − cosσ)∆V

2a cosh−1(l/R)
τ̂, (22)

B =
(cosh τ − cosσ)µ0I

2πa
σ̂. (23)

The electric field is described by a single negative compo-
nent in τ̂ since the electric field is normal to the equipoten-
tials (curves of constant τ) and is directed from the right wire
toward the left wire, which is opposite to the direction of in-
creasing τ. The magnetic field is described by a single positive
component in σ̂. The E and B vectors are, therefore, always
orthogonal, and are perpendicular and tangent to the surfaces
of the wires, respectively, which is consistent with the bound-
ary conditions of perfect conductors presented in Sec. II.

The apparent simplicity in the E and B vectors is at-
tributable to the choice of an optimal coordinate system: com-
paring the ln() appearing in Fig. 3(b) with those in Eqs. (2) and
(3) reveals why. Figure 4 shows the vector fields at an arbi-
trary point in the region surrounding the wires. The τ values
of the wires (±τw) are also visible.

B. The Electromagnetic Power

With the fields in Eqs. (22) and (23), the Poynting vector
becomes

S =
1
µ0

(E × B) =
−EτBσ
µ0

ẑ, (24)

which is equal to

S =
(cosh τ − cosσ)2I ∆V

4πa2 cosh−1(l/R)
ẑ. (25)
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FIG. 5. The z component of the Poynting vector in the space surrounding the wires, represented by the two holes, for (a) perfectly conducting
wires, and (b) resistive wires at z = 0. In both cases, the maximum power density is located at the inner portions of the wires’ cross sections,
and power flows towards the resistor around both wires even though they carry oppositely directed currents. The illustration parameters are:
∆V = 4 V and I = 1 A, with x and y in cm, and S z in W/cm2.

The Poynting vector has a single z component, called S z.
Since S z > 0, the power flows toward the resistor everywhere
outside of the wires. The graph of S z is shown in Fig. 5(a) as
a function of x and y.

The longitudinal power transported by the electromagnetic
field can be obtained by integrating S z over a plane of con-
stant z in the region outside of the wires (i.e., from their sur-
faces to infinity). If dA is an area element in this plane (shown
in Fig. 4), the power integral reduces to

Pz =

∫
S · ẑ dA =

∫
S z dA. (26)

Using the surface element in Eq. (12), the power calculation
becomes

Pz =

∫ τw

−τw

∫ 2π

0
S z hσhτ dσdτ. (27)

Inserting the z component of the Poynting vector S from
Eq. (25) and the scale factors from Eq. (11), without simpli-
fying the resulting expression, the power Pz is obtained by the
calculation of

τw∫
−τw

2π∫
0

(cosh τ − cosσ)2I ∆Va2

4πa2 cosh−1(l/R)(cosh τ − cosσ)2
dσdτ. (28)

This is a double definite integral of a constant since the ex-
pressions in τ and σ cancel out. When simplified, and when
using the τw value from Eq. (17) in the bounds, the double
integral is

Pz =
I ∆V

4π cosh−1(l/R)

cosh−1(l/R)∫
− cosh−1(l/R)

2π∫
0

dσdτ. (29)

When evaluated, the power transported by the electromagnetic
field surrounding the wires is found to be

Pz = I ∆V, (30)

as expected.

C. Surface Current and Surface Charge Densities

The currents and free charges located on the surfaces of the
wires are not uniformly distributed around the circular cross
sections of the wires. This is illustrated on p. 125 of Ref. 7
and p. 344 of Ref. 8, where these densities are shown to be
stronger on the inner portions of the wires’ cross sections, al-
though their analytic forms are not calculated.

The fields at the surfaces of the conductors are related to
the current and free charge densities according to

n̂ · Ew =
σc

ϵ0
, (31)

n̂ × Bw = µ0K, (32)

where σc is used in place of the usual surface charge den-
sity σ to avoid any confusion with the bipolar coordinate σ.
The surface current density vector is denoted as K, and n̂ is a
unit vector perpendicular to the surface of the wires pointing
outward. For the right wire, the vector n̂ is directly related to
the unit vector τ̂ by

n̂ = −τ̂. (33)

The electric and magnetic fields at the surface of the right
wire are calculated by evaluating Eqs. (22) and (23) at the τw
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position from Eq. (17), resulting in

Ew = −
(l/R − cosσ)∆V

2a cosh−1(l/R)
τ̂, (34)

Bw =
(l/R − cosσ) µ0I

2πa
σ̂. (35)

From Eqs. (31)–(35), the surface charge and surface current
densities of the right wire are found to be

σc =
(l/R − cosσ) ϵ0∆V

2 cosh−1(l/R)
√

l2 − R2
, (36)

K =
(l/R − cosσ) I

2π
√

l2 − R2
ẑ, (37)

where Eq. (1) has been used to express these as functions of l
instead of a.

It can be shown that the following equality allows the den-
sities to be expressed using a polar angle θ:

cosσ =
R + l cos θ
l + R cos θ

, (38)

where θ = π is the leftmost point of the right wire’s cross
section, and θ = 0 (or 2π) is the rightmost point of the right
wire’s cross section. The surface charge and surface current
densities on the right wire then become

σc =
ϵ0∆V

√
l2 − R2

2R cosh−1(l/R) (l + R cos θ)
, (39)

K =
I
√

l2 − R2

2πR (l + R cos θ)
ẑ. (40)

These densities are strictly positive (since l > R) and are
consistent with the polarity and current direction of the right
wire shown in Fig. 2. The densities have maximum values
at θ = π and minimum values at θ = 0 (or 2π). The densities
of the left wire are −σc and −K.

Making use of trigonometric identities, the charge density
in Eq. (39) can be shown to be equivalent to the one reported
in Ref. 17.

VI. RESISTIVE WIRES

The analysis of the resistive wires is performed in a re-
gion Ω that extends outward to infinity in the radial direction
but is bounded by the two planes at z = 0 and z = L and by
the surfaces of the wires, as shown in Fig. 6. The objective is
to show that the power entering the region at the z = 0 plane
is equal to the sum of the power leaving the region at z = L
and the power entering both wires. It is also an implicit goal
to confirm that the power entering the region is still given
by P = I ∆V , where ∆V is now defined as the potential differ-
ence of the wires at z = 0.

1 2

z

x

I I

z = L

z = 0

Ω

P0

PL

P1 P2

∆V

− +

ρ ρ

FIG. 6. Two long resistive wires and the region of interest Ω, where
the conservation of energy will be verified with the equation P0 =

PL + P1 + P2.

A. Potentials and Fields

The electric potential of the resistive wires is a linear func-
tion of z, and the current density J is uniform inside the
wires3,9,25. The potential difference between the wires can be
adjusted with the help of Ohm’s law,

∆V(z) = ∆V − 2Eℓz = ∆V − 2ρJz, (41)

where the longitudinal electric field inside the wires is Eℓ, and
the resistivity of the wires is ρ. Boundary conditions3 require
that this field is also equal to the longitudinal field just outside
of the wires.

The electric potential V outside of the resistive wires is sim-
ilar to the one used for perfect conductors in Eq. (4), with the
exception that the potential difference ∆V is now ∆V(z) from
Eq. (41), such that V becomes

V =
∆V − 2ρJz

4 cosh−1(l/R)
ln

(
(x + a)2 + y2

(x − a)2 + y2

)
. (42)

As for the magnetic vector potential A outside of the resis-
tive wires, the positions of the thin wires in Eq. (3) are now
located at the true centers x = ±l instead of the effective cen-
ters x = ±a, resulting in

A =
−µ0I
2π

ln


√

(x − l)2 + y2√
(x + l)2 + y2

 ẑ. (43)

This can be confirmed by using Ampère’s law and superpo-
sition, and showing that the B field obtained is identical to
the curl of A above. As before, l is related to a and R using
Eq. (1).

An equivalent form of Eq. (43) can be shown to be

A =
µ0I
2π

tanh−1
(

2lx
x2 + y2 + l2

)
ẑ. (44)

By applying the bipolar substitutions for x and y outlined
in Eqs. (9) and (10), the electric scalar potential and magnetic
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vector potential in Eqs. (42) and (44) become

V =
(∆V − 2ρJz)τ
2 cosh−1(l/R)

, (45)

A =
µ0I
2π

tanh−1
(

2k sinh τ
(k2 + 1) cosh τ + (k2 − 1) cosσ

)
ẑ, (46)

where the change of variables

k =
a
l

(47)

is used in A to simplify further calculations.
The gradient and curl operators in Eqs. (13) and (14) can be

simplified given that ∂V/∂σ, ∂Az/∂z, Aσ, and Aτ are all equal
to zero, and hz = 1

E = −∇V = −
1
hτ

∂V
∂τ
τ̂ −
∂V
∂z

ẑ, (48)

B = ∇ × A =
1
hτ

∂Az

∂τ
σ̂ −

1
hσ

∂Az

∂σ
τ̂. (49)

Performing the above-mentioned calculations using the po-
tentials in Eqs. (45) and (46) leads to

E = −
∆V − 2ρJz

2hτ cosh−1(l/R)
τ̂ +

ρJτ

cosh−1(l/R)
ẑ, (50)

B =
µ0I

2πhτ
β σ̂ −

µ0I
πhσ
γ τ̂, (51)

with

β =
2
(
k2 + 1 +

(
k2 − 1

)
cosh τ cosσ

)
k(

(k2 + 1) cosh τ + (k2 − 1) cosσ
)2
− 4k2 sinh2 τ

, (52)

and

γ =

(
k2 − 1

)
k sinh τ sinσ(

(k2 + 1) cosh τ + (k2 − 1) cosσ
)2
− 4k2 sinh2 τ

, (53)

and the scale factors as defined in Eq. (11).
When compared to the fields of the perfect conductors in

the previous section, the electric field now has an additional z
component, which is positive around the right wire and neg-
ative around the left wire, and the magnetic field has an ad-
ditional τ component and is no longer tangential at the wires’
surfaces.

B. The Poynting Vector

With the fields in Eqs. (50) and (51), the Poynting vector in
the space surrounding the resistive wires is

S =
1
µ0

(E × B) = −
EzBτ
µ0
σ̂ +

EzBσ
µ0
τ̂ −

EτBσ
µ0

ẑ, (54)

FIG. 7. Poynting vector field outside of the resistive wires in the
plane y = 0, similar to the view in Fig. 6. The direction of increas-
ing z is downwards (towards the load resistor).

which is equal to

S =
I

π cosh−1(l/R)

(
ρJτ
hσ
γ σ̂ +

ρJτ
2hτ
β τ̂ +

∆V − 2ρJz
4(hτ)2 β ẑ

)
.

(55)
The z component of the Poynting vector is shown in

Fig. 5(b), in the plane z = 0. The electrical power is
slightly more evenly distributed around the wires’ cross sec-
tions, when compared to the perfect conductors. The electric
field is purely longitudinal inside the resistive wires; thus, no
power flows in the z direction within them.

Figure 7 shows the Poynting vector field in the plane y = 0.
The direction of increasing z is downward, toward the resis-
tor. The longitudinal power decreases with increasing z since a
portion of the power is entering the wires. The transverse (hor-
izontal) component of the Poynting vector is constant in z, but
is greater near the interior portions of the wires at x = ±(l−R),
when compared to the outer portions at x = ±(l + R).

Figure 8 shows the Poynting vector field in the plane z = 0,
where it can also be observed that power enters the wires at
the surfaces, but more so in their interior portions.

FIG. 8. Poynting vector field outside of the resistive wires in the
plane z = 0 (using a different scale than in Figure 7).
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C. The Longitudinal Power

The power Pz flowing parallel to the resistive wires, in the
space surrounding the wires, can be calculated in a similar
manner as in Eq. (27), namely,

Pz =

∫
S z dA =

∫ τw

−τw

∫ 2π

0
S z hσhτ dσdτ. (56)

Since hσ = hτ, both scale factors cancel out with the ones
in S z. The inner integral reduces to

(∆V − 2ρJz)I
4π cosh−1(l/R)

(∫ 2π

0
β dσ

)
, (57)

after a constant factor is moved out of the integral. The in-
tegrand is a function of σ and τ. The integral in parentheses
above requires particular attention because of branching, and
is solved in the appendix, where it is shown to be equal to 2π.
The inner integral evaluates to

(∆V − 2ρJz)I
2 cosh−1(l/R)

. (58)

The outer integral is now evaluated,

Pz =

cosh−1(l/R)∫
− cosh−1(l/R)

(∆V − 2ρJz)I
2 cosh−1(l/R)

dτ = (∆V − 2ρJz)I. (59)

Using the usual definition of the current density J, the power
flowing through a transverse plane at position z, outside of the
wires, is therefore

Pz = I ∆V − 2
ρz
πR2 I2. (60)

The radius R of the wires is not to be confused with the resis-
tance of each wire over the distance z, which is actually the
fraction appearing in Eq. (60).

It is therefore shown that the longitudinal power entering
and leaving the region of interest Ω are, respectively,

P0 = I ∆V,

PL = I ∆V − 2
ρL
πR2 I2.

(61)

Given that PL < P0, some of the power is entering the wires
since no power is leaving Ω at infinity.

D. The Power Entering the Wires

At the surfaces of the wires, the non-zero τ component of
the Poynting vector in Eq. (55) indicates that power is also
flowing perpendicularly to the wires’ surfaces. A positive
power flow is taken as entering the wires, and with the same
unit surface vector n̂ as in Eq. (33), the power density S 2 at
the surface of the right wire is obtained by evaluating the ex-
pression

−S · n̂ = S · τ̂ = S τ (62)

at the τw position from Eq. (17). Using the vertical bar to
denote substitution, the power density is

S 2 = (S τ)
∣∣∣
τ=τw
=

(
ρJIτβ

2πhτ cosh−1(l/R)

) ∣∣∣∣∣
τ=cosh−1(l/R)

. (63)

The power entering the right wire is the double integral of
the power density S 2 over the surface of this wire in the re-
gion Ω. With the scale factor, this integral is

P2 =

∫ 2π

0

∫ L

0
(S τhσ)

∣∣∣
τ=cosh−1(l/R) dzdσ. (64)

Since hσ = hτ, the scale factor in S τ cancels out with hσ. After
evaluating the inner integral, for which the integrand has no
dependency in z, the power becomes

P2 =
ρJIL

2π

∫ 2π

0
β
∣∣∣
τ=cosh−1(l/R) dσ. (65)

Any occurrence of τ in β is a constant for this integral, which
can alternatively be written as

P2 =
ρJIL

2π

(∫ 2π

0
β dσ

) ∣∣∣∣∣
τ=cosh−1(l/R)

= ρJIL. (66)

The integral in parentheses above is shown to be equal to 2π
in the appendix. Expanding the current density J, the power
flowing into the right wire is

P2 =
ρL
πR2 I2 (= P1). (67)

A similar calculation on the left wire produces an identical re-
sult, therefore P1 = P2. The above-mentioned results evoke
the following quotation from Feynman et al.4: “[. . . ] the en-
ergy in a wire is flowing into the wire from the outside, rather
than along the wire.”

E. Discussion

The conservation of energy can now be established by ver-
ifying that the power entering Ω is equal to the total power
leaving this region. With the results in Eqs. (61) and (67), it is
shown that

P0 = PL + P1 + P2. (68)

Calculating the surface charge density of the resistive wires
can be done in a similar fashion as in Sec. V C. For the right
wire, the result is similar to Eq. (39), with the exception that
∆V is replaced by ∆V(z) from Eq. (41). Surface currents are
not relevant for resistive wires in DC, and the current density
inside the wires is the constant J that was used throughout this
section.

A surprising generalization can be made for the wire pair:
the positions of the effective thin current wires, which are lo-
cated at x = ±l, could actually be at x = ±α, where

l − R < α < l + R, (69)
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with no effect on the power calculations. Using the symbol α
in place of l in Eq. (43) ultimately amounts to setting k = a/α
in Eq. (47), where it was already observed that the final re-
sults for P0, PL, P1 or P2 are independent of the value of k.
The bounds for α confine the thin current wires to the interiors
of the thick wires both for physical reasons and to avoid any
singularities in β. Situations in which α is different than l (re-
sistive conductors) or a (perfect conductors) have no apparent
physical interpretation; however, they reveal an unexpected
mathematical property of the wire pair.

VII. CONCLUSION

The electrical power transported by two infinitely long and
perfectly conducting wires was shown to be equal to I ∆V in
the electromagnetic field surrounding the wires. Currents and
free charges are located on the surfaces of the wires, and be-
cause the fields are equal to zero in the perfect conductors,
no power flows within them. The surface current and surface
charge densities were also determined.

When the wires have electrical resistance, a similar calcu-
lation using the Poynting vector was performed for a region
separated by two planes that are perpendicular to the wires.
Because of the different locations of the effective thin wires
for the currents, the bipolar calculations were more involved,
but showed that the power leaving the region is smaller than
the power entering the region; by symbolic integration, this
difference was shown to correspond to the power entering the
wires from the fields. The electric field inside the wires be-
ing purely longitudinal, no power flows parallel to the wires
inside of them.

In all cases, the calculations were greatly facilitated by the
advantageous use of bipolar coordinates, showing once more
how the choice of a proper coordinate system is an important
consideration when solving electromagnetism problems. A
set of 25 sample problems related to this paper is presented in
the online supplementary material24.
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APPENDIX: DEFINITE INTEGRAL OF β

This appendix presents the steps used to perform the fol-
lowing definite integral of β with respect to σ, as required for

the Pz and P2 calculations in Sec. VI,∫ 2π

0
β dσ. (70)

An alternate expression for β is

β =
k

(k2 − 1) cos (σ + i τ) + k2 + 1

+
k

(k2 − 1) cos (σ − i τ) + k2 + 1
.

(71)

The above-mentioned complex form is for conciseness and to
ease integration; β is real-valued and singularity-free for any
σ, τ, and k considered here. Verifying the equivalences of
both expressions of β is best done by working backward from
Eq. (71) to obtain Eq. (52).

Using the expression of β in Eq. (71), the definite integral
above is equal to 0 when evaluated in typical computer algebra
systems, which is incorrect in the present context. The result
of the indefinite integral of β is, when omitting the integration
constant,

F(σ) = tan−1
(
tan

(
σ

2
+ i
τ

2

)
/k

)
+ tan−1

(
tan

(
σ

2
− i
τ

2

)
/k

)
.

(72)

The calculation to be performed is now

F(2π) − F(0). (73)

At σ = 2π, the tan() functions’ arguments in Eq. (72) are
in their second branches (with a real component of π). The
results of each tan−1() must, therefore, be offset by +π, shown
as follows:

F(2π) = tan−1
(
tan

(
π + i

τ

2

)
/k

)
+ π

+ tan−1
(
tan

(
π − i

τ

2

)
/k

)
+ π = 2π.

(74)

Since F(0) = 0, the result of Eq. (73) is 2π, and it is shown
that ∫ 2π

0
β dσ = 2π. (75)

The complex conjugate form appearing in the simpler version
of β above (initially obtained using Wolfram Alpha) offers a
strong hint that expressing the entire problem using complex
functions allows for more compact calculations. This is shown
in the solution to one of the sample problems in the online
supplementary material24.
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SUPPLEMENTARY MATERIAL – SAMPLE PROBLEMS

Marc Boulé

This document contains sample problems related to the paper DC Power Transported by Two Infinite
Parallel Wires. The problems are of varying difficulty, and the use of Maple or Mathematica software
(or similar) is recommended for certain problems. Unless otherwise indicated, all references to
equations numbers and figures refer to those of the paper. It is assumed that Eq. (1) can be invoked
as needed to relate a, l and R, and that when solving problems in bipolar coordinates, the wires’
surfaces are located at τ = ±τw with τw given in Eq. (17).

A. Perfectly conducting wires

1. From Eq. (4) and the equation of a circle in Cartesian
coordinates, show that the wires of radius R are electric scalar
equipotentials.

2. From Eq. (3) and the equation of a circle in Cartesian co-
ordinates, show that the wires of radius R are magnetic vector
equipotentials.

3. Prove Eq. (38) relating cosσ to cos θ for the right wire.
Assume that θ = π is the leftmost point of the right wire’s
cross section, and θ = 0 (or 2π) is the rightmost point of the
right wire’s cross section.

4. Using Eqs. (3) to (6), calculate the vector expressions
in Cartesian coordinates of the electric and magnetic fields
outside of the wires.

5. Using Gauss’ law and Ampère’s law for a single thin
wire, and then the superposition principle for the thin pair of
wires located at x = ±a, calculate the vector expressions in
Cartesian coordinates of the electric and magnetic fields out-
side of the wires. Assume that the line charge polarities and
currents are those of Fig. 2.

6. Use Eq. (2) to calculate the potential difference ∆V be-
tween the wires as a function of λ, and using this result, show
that the electric field obtained in Problem 5 is equivalent to
the one obtained in Problem 4.

7. From the expressions obtained in Problem 4 (or 5), show
that the electric and magnetic field vectors are: i) perpendic-
ular to each other everywhere outside of the wires; ii) respec-
tively perpendicular and parallel to the surfaces of the wires
just outside of these surfaces.

8. Show that the divergence of the electric field is equal
to zero in the space outside of the wires, thus confirming that
no free charges exist there. Solve the problem both in Carte-
sian coordinates, using the electric field obtained in Problem 4
(or 5), and in bipolar coordinates, using the field in Eq. (22)
and the divergence operator:

∇ · F =
1

hσhτhz

(
∂hτhzFσ
∂σ

+
∂hσhzFτ
∂τ

+
∂hσhτFz

∂z

)
.

9. Show that the Laplacian of the electric potential is equal
to zero in the space outside of the wires, thus confirming that
no free charges exist there. Solve the problem both in Carte-
sian coordinates, using the electric potential in Eq. (4), and

in bipolar coordinates, using the potential in Eq. (18) and the
Laplacian operator:

∇2F =
1

hσhτhz

(
∂

∂σ

(
hτhz

hσ

∂F
∂σ

)
+
∂

∂τ

(
hσhz

hτ

∂F
∂τ

)
+
∂

∂z

(
hσhτ

hz

∂F
∂z

))
.

10. From the electric field obtained in Problem 4, confirm
that the potential difference between the wires is indeed equal
to the symbol ∆V , by integrating the electric field along the x
axis, which corresponds to the following line integral:

V2 − V1 = −

∫ l−R

−l+R
(Ex) |y=0 dx.

11. From the electric and magnetic fields obtained in Prob-
lem 4, show that the z component of the Poynting vector in
Cartesian coordinates is

S z =
I∆Va2

π cosh−1(l/R)
(
(x − a)2 + y2) ((x + a)2 + y2) .

12. Using S z from Problem 11 or the bipolar Poynting vec-
tor in Eq. (25), calculate the ratio of the power density near
the inner portion of the right wire at x = l − R and the outer
portion of the wire at x = l + R, and show that in the limiting
behavior l ≫ R, this ratio is equal to 1.

13. Using the S z expression from Problem 11, show that
half of the power flows within an infinite vertical rectangle
tangent to the interior extremities of the wires’ cross sections,
as shown in Fig. 9 below, irrespective of the dimensions l
and R.

I ∆V
2

R R
2l

FIG. 9. Problem 13.
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14. Using Eqs. (2) and (4), or an intermediate result in the
solution to Problem 6, calculate the line charge density λ as
a function of the potential difference ∆V . With C′ = λ/∆V ,
show that the per unit length capacitance C′ of the wire pair is

C′ =
πϵ0

cosh−1(l/R)
.

15. Repeat Problem 14 by instead calculating the line
charge density from the surface charge density σc using: i)
the polar form in Eq. (39); ii) the bipolar form in Eq. (36).
Hint: integrate σc around the cross section of the right wire.

16. Calculate the energy stored in the electric field in the
space surrounding the wires for a length ℓ parallel to the wires,
by using the following volume integral in bipolar coordinates:

WE =

∫ ℓ

0

∫ 2π

0

∫ τw

−τw

1
2
ϵ0∥E∥2 hτhσhzdτdσdz,

where E is given in Eq. (22) and the scale factors are given in
Sec. IV. Then show that the per unit length capacitance C′ in
Problem 14 can also be obtained from

WE =
1
2

C∆V2, with C = C′ℓ.

17. Calculate the difference of magnetic potential of the
wires, A2 − A1, labeled ∆A, and using L′ = ∆A/I, show that
the per unit length inductance L′ of the wire pair is

L′ =
µ0

π
cosh−1(l/R).

18. Calculate the energy stored in the magnetic field in the
space surrounding the wires for a length ℓ parallel to the wires,
by using the following volume integral in bipolar coordinates:

WB =

∫ ℓ

0

∫ 2π

0

∫ τw

−τw

1
2µ0
∥B∥2 hτhσhzdτdσdz,

where B is given in Eq. (23) and the scale factors are given in
Sec. IV. Then show that the per unit length inductance L′ in
Problem 17 can also be obtained from

WB =
1
2

LI2, with L = L′ℓ.

B. Resistive Wires

19. With a uniform current density J in the wires, use
Ampère’s law for a single thin wire (and then the superpo-
sition principle) to obtain the B field outside of the resistive
wire pair in Cartesian coordinates. Show that this result is
identical to the curl of A, where A is given in Eq. (43).

20. Using the S τ component of the bipolar Poynting vec-
tor in Eq. (55), show that the power density S 2 entering the
surface of the right wire is, when expressed using the polar
angle θ,

S 2(θ) =
(2l + R cos θ) ρJIl(

R2 + 4l2 + 4lR cos θ
)
πR
.

Assume that θ = π is the leftmost point of the right wire’s
cross section, and θ = 0 (or 2π) is the rightmost point of the
right wire’s cross section. Hint: see Problem 3 for a useful
result.

21. Using the expression for S 2 in Problem 20, show that
the power entering the right wire in the region Ω (see Fig. 6)
is equal to ρJIL. Hint: calculate the double integral of the
power density over the surface of this wire.

22. Perform the calculation of σc for the restive wires as
indicated in Sec. VI E. Using ∆V(z) from Eq. (41) and a simi-
lar procedure as in Problem 15, calculate the line charge den-
sity λ(z) of the resistive wires. With this result, and using
C′ = λ(z)/∆V(z), show that the per unit length capacitance
of the resistive wire pair is identical to the one given in Prob-
lem 14 for perfect conductors.

23. Using the S z component of the bipolar Poynting vector
in Eq. (55), calculate the ratio of the longitudinal power den-
sity near the inner portion of the right wire at x = l − R and
the outer portion of the wire at x = l + R, and show that in the
limiting behavior l ≫ R, this ratio is equal to 1.

24. Repeat Problem 23 for the transverse power entering
the right wire instead of the longitudinal power flowing near
the surface of the wire.

25.* Perform the calculation of the longitudinal power Pz
leading to Eq. (60) using techniques of complex analysis,
based on the complex variables

Z = x + iy, W = σ + iτ,

and the single complex transformation

Z = T (W) = ia cot
(W

2

)
,

along with the scale factors

hσ = hτ =
∣∣∣∣∣d T (W)

dW

∣∣∣∣∣ = a
| cos(W) − 1|

.

The symbol Z is a complex variable of x and y, and should not
be confused with the Cartesian z axis. Since complex anal-
ysis and the notations typically employed are not well suited
for three dimensional calculations, use complex notation to
combine both bipolar variables as much as possible, while re-
verting to the usual non-complex definitions of the gradient
and curl operators.
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SOLUTIONS TO SAMPLE PROBLEMS

Problem 1

By substituting y2 = R2 − (x − l)2 (for the right wire) and
a =

√
l2 − R2 into Eq. (4), the electric potential of the right

wire becomes

V2 =
∆V

4 cosh−1(l/R)
ln

 l +
√

l2 − R2

l −
√

l2 − R2

 .
Since V2 now contains only constants, the right wire is an
equipotential. Repeating the same procedure with the sub-
stitution y2 = R2 − (x + l)2 for the left wire produces the ex-
pression

V1 =
∆V

4 cosh−1(l/R)
ln

 l −
√

l2 − R2

l +
√

l2 − R2

 = −V2,

thus proving that the wires are both electric equipotentials.

Problem 2

By substituting y2 = R2 − (x − l)2 (for the right wire) and
a =
√

l2 − R2 into Eq. (3), the magnetic vector potential of the
right wire becomes

A2 =
−µ0I
2π

ln


√

l −
√

l2 − R2√
l +
√

l2 − R2

 .
Since A2 now contains only constants, the right wire is an
equipotential. Repeating the same procedure with the substi-
tution y2 = R2 − (x + l)2 for the left wire produces the expres-
sion equivalent to −A2, thus proving that the wires are both
magnetic vector equipotentials.

Problem 3

The x coordinate transformation in Eq. (9) is evaluated at
the τw position of the wire given in Eq. (17). After simplifica-
tion, the x values of the points on the wire’s surface are

x =
a
√

l2 − R2

l − R cosσ
,

and when using Eq.(1) to rewrite a, they are

x =
l2 − R2

l − R cosσ
.

These x values are related to the polar angle θ using

x = l + R cos θ.

Equating the right sides of both expressions of x just above,
and solving for cosσ produces

cosσ =
R + l cos θ
l + R cos θ

.

Problem 4

The electric scalar potential V and magnetic vector poten-
tial A from Eqs. (4) and (3) respectively can be used to cal-
culate the electric and magnetic fields directly in Cartesian
coordinates using Eqs. (5) and (6):

E = −∇V =

(
(x2 − y2 − a2) x̂ + 2xy ŷ

)
a∆V(

(x − a)2 + y2) ((x + a)2 + y2) cosh−1(l/R)
,

B = ∇ × A =

(
−2xy x̂ + (x2 − y2 − a2) ŷ

)
µ0aI(

(x − a)2 + y2) ((x + a)2 + y2) π .
Problem 5

The electric and magnetic fields produced by the wire pair
can be obtained from two fundamental laws in electromag-
netism, namely Gauss’ law and Ampère’s law, which are two
of Maxwell’s four foundational equations. These two laws,
when applied to a straight thin wire, are solved in almost any
textbook dealing with electromagnetism. From these, the field
magnitudes around a single thin wire are proved to be

E =
λ

2πϵ0r
, and B =

µ0I
2πr
, (76)

where r is the distance from the axis of the thin wire. The
electric field is radial to the wire, while the magnetic field is
circular around the wire, according to the right-hand rule.

Considering two thin wires parallel to the z axis, located
at x = ±a, the superposition principle allows the calculation
of the resultant electric and magnetic field vectors. The same
charge densities and current directions as those appearing in
Fig. 2 are used here. The left wire is designated wire 1, and
the right wire is designated wire 2. The vector positions of the
thin wires are

rw1 = −a x̂, and rw2 = a x̂.
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The vector fields are calculated at the arbitrary point

p = x x̂ + y ŷ.

The distances between this point and the wires are required.
In vector form, these are

r1 = p − rw1 = (x + a) x̂ + y ŷ,

r2 = p − rw2 = (x − a) x̂ + y ŷ.

From the vector distances above, the fields of wire 1, which
has a negative charge density and a current in −ẑ, are

E1 =
−λ

2πϵ0|r1|

r1

|r1|
=

−λ

2πϵ0
(
(x + a)2 + y2) ((x + a) x̂ + y ŷ) ,

B1 =
µ0I

2π|r1|

(−ẑ) × r1

|r1|
=

µ0I
2π

(
(x + a)2 + y2) (y x̂ + −(x + a) ŷ) .

Similarly, the fields of wire 2, which has a positive charge
density and a current in ẑ, are

E2 =
λ

2πϵ0|r2|

r2

|r2|
=

λ

2πϵ0
(
(x − a)2 + y2) ((x − a) x̂ + y ŷ) ,

B2 =
µ0I

2π|r2|

ẑ × r2

|r2|
=

µ0I
2π

(
(x − a)2 + y2) (−y x̂ + (x − a) ŷ) .

The resultant fields are the vector sums of the fields from each
wire. When simplified, these field are

E =

(
(x2 − y2 − a2) x̂ + 2xy ŷ

)
aλ(

(x − a)2 + y2) ((x + a)2 + y2) πϵ0 ,

B =

(
−2xy x̂ + (x2 − y2 − a2) ŷ

)
µ0aI(

(x − a)2 + y2) ((x + a)2 + y2) π .
Problem 6

Evaluating the potential

V =
−λ

2πϵ0
ln


√

(x − a)2 + y2√
(x + a)2 + y2

 ,
at position (−l+R, 0) and (l−R, 0), yields the potentials of the
wires V1 and V2 respectively:

V1 =
−λ

2πϵ0
ln

(
a + (l − R)
a − (l − R)

)
,

V2 =
λ

2πϵ0
ln

(
a + (l − R)
a − (l − R)

)
.

The potential difference between the wires is

∆V = V2 − V1 =
λ

πϵ0
ln

(
a + (l − R)
a − (l − R)

)
,

which, using Eq. (1) and simplifying, can be written as

∆V =
λ

πϵ0
ln

 l +
√

l2 − R2

R

 ,
or equivalently,

∆V =
λ

πϵ0
ln

 l
R
+

√(
l
R

)2

− 1

 .
Invoking the trigonometric identity

cosh−1(u) = ln
(
u +
√

u2 − 1
)
,

the potential difference between the wires becomes

∆V =
λ

πϵ0
cosh−1

(
l
R

)
.

Solving for the line charge density λ,

λ =
πϵ0∆V

cosh−1(l/R)
,

and substituting this in the expression of the electric field E
obtained in Problem 5 results in an expression that is identical
to the E field obtained in Problem 4.

Problem 7

i) The E and B vectors are perpendicular to each other out-
side of the wires if their dot product is equal to zero. Using
results Problem 4 or 5, it is shown that

E · B = 0.

ii) To show that the E field is perpendicular to the surface
of the right wire, a normal vector can be established using a
vector difference of the positions of the points on the wire and
the center of the wire. For the left and right wires, these vector
radii are:

R1 = (x + l) x̂ +
( √

R2 − (x + l)2
)

ŷ,

R2 = (x − l) x̂ +
( √

R2 − (x − l)2
)

ŷ.

Substituting the y value of the cross section of the left wire

y =
√

R2 − (x + l)2

into the E field, along with the value of a from Eq. (1), the
electric field at the surface of the left wire is

Ew1 =
∆V
√

l2 − R2

2xR2 cosh−1(l/R)

(
(x + l) x̂ +

√
R2 − (x + l)2 ŷ

)
.
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It can then be verified that

Ew1 × R1 = 0,

proving that the electric field is parallel to the vector radius of
the left wire, thus perpendicular to the wire’s surface. Simi-
larly, substituting the y value of the cross section of the right
wire into the E field, the electric field at the surface of the right
wire is

Ew2 =
∆V
√

l2 − R2

2xR2 cosh−1(l/R)

(
(x − l) x̂ +

√
R2 − (x − l)2 ŷ

)
.

It can then be verified that

Ew2 × R2 = 0,

proving that the electric field is parallel to the vector radius of
the right wire, thus perpendicular to the wire’s surface. In both
proofs above, the top portion of the wires was used; however,
the same results are obtained using the bottom portion of the
wires. For example, for the left wire, the y value would be

y = −
√

R2 − (x + l)2,

which would be substituted in E, and the vector radius would
be

R1 = (x + l) x̂ −
( √

R2 − (x + l)2
)

ŷ.

To show that the B field is tangent to the surfaces of the wires,
the procedure is very similar, with the exception that the B
field is used, and the condition that must be verified is the dot
product. For both wires, it can be shown that

Bw1 · R1 = 0, Bw2 · R2 = 0.

Problem 8

For the Cartesian solution, with

E =

(
(x2 − y2 − a2) x̂ + 2xy ŷ

)
a∆V(

(x − a)2 + y2) ((x + a)2 + y2) cosh−1 l
R

,

it can be shown that ∇ · E = 0 using the usual divergence
operator. In bipolar coordinates, the more general divergence
operator given in the problem’s statement must be used. Its
expression can be simplified given that hz = 1 and that the
electric field in Eq. (22) only has a single τ̂ component:

∇ · E =
1

hσhτ

(
∂hσEτ
∂τ

)
,

which can be shown to also be equal to 0.

Problem 9

The solution follows naturally using the usual definition of
the Laplacian operator, as it did in Problem 8 for the diver-
gence. The same can be said for the solution in bipolar coor-
dinates, where the more general Laplacian operator given in
the problem’s statement must be used. Its expression can be
simplified given that hz = 1, hσ = hτ, and that the electric
potential in Eq. (18) depends only on τ:

∇2V =
1

hσhτ

∂

∂τ

(
∂V
∂τ

)
,

which can be shown to also be equal to 0. Alternatively for
both solutions, since the Laplacian operator is defined as:

∇2V = ∇ · (∇V),

and since, E = −∇V (in either coordinate system), the prob-
lem can be expressed using divergence as

∇2V = −∇ · E,

where is was shown in Problem 8 that the divergence of E is
equal to 0, thereby also proving that ∇2V = 0 in both coordi-
nate systems.

Problem 10

The electric field obtained in Problem 4 is evaluated at the
position y = 0, where, after simplification, the x component
is:

Ex(x, 0) = −
a∆V(

a2 − x2) cosh−1(l/R)
.

The integral to perform is

V2 − V1 = −

∫ l−R

−l+R
Ex(x, 0) dx.

Since Ex(x, 0) is an even function in x, the integral reduces to

V2 − V1 =
2∆V

cosh−1(l/R)

∫ l−R

0

a(
a2 − x2) dx.

The integrand is converted to partial fractions to facilitate in-
tegration:

V2 − V1 =
∆V

cosh−1(l/R)

∫ l−R

0

(
1

a + x
+

1
a − x

)
dx.

Performing the indefinite integral yields the following primi-
tive (omitting the integration constant):

F(x) =
∆V

cosh−1(l/R)
ln

(a + x
a − x

)
.

When evaluating the bounds and simplifying,

V2 − V1 = F(l − R) − F(0) =
∆V

cosh−1(l/R)
ln

(
a + (l − R)
a − (l − R)

)
.
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As developed in the solution to Problem 6, the ln() above,
which is the result of the integral itself, can be expressed more
succinctly:

ln
(

a + (l − R)
a − (l − R)

)
= cosh−1(l/R).

The final expression for the potential difference thus reduces
to:

V2 − V1 = ∆V.

Problem 11

The Poynting vector is calculated with the cross product as
follows

S =
1
µ0

(E × B) .

Using the E and B fields obtained in the solution to Problem 4,
the Poynting vector becomes

S =
I∆Va2

π cosh−1(l/R)
(
(x − a)2 + y2) ((x + a)2 + y2) ẑ.

The z component of the Poynting vector in Cartesian coordi-
nates is therefore

S z =
I∆Va2

π cosh−1(l/R)
(
(x − a)2 + y2) ((x + a)2 + y2) .

Problem 12

The ratio of power densities, labeled f below, is first cal-
culated using the expression of S z = S z(x, y) given in Prob-
lem 11. The ratio required is obtain by the calculation

f =
S z(l − R, 0)
S z(l + R, 0)

∣∣∣∣∣
a=
√

l2−R2
,

which evaluates to, when simplified,

f =
(l + R)2

(l − R)2 .

When l ≫ R, f is equal to 1 and it is thus shown that the
same amount of power flows locally near the inner portion of
the surface and the outer portion. The same expression of f
can also be obtained by using bipolar form S z = S z(σ, τ) from
Eq. (25). In this case, the ratio is calculated as

f =
S z(π, τw)
S z(0, τw)

∣∣∣∣∣
a=
√

l2−R2, τw=cosh−1(l/R)
,

which also evaluates to, when simplified,

f =
(l + R)2

(l − R)2 .

Problem 13

The power flowing perpendicular to the z plane is the sur-
face integral of the Poynting vector in the space outside of
the wires, which for the present problem consists of an infi-
nite vertical rectangle tangent to the interior extremities of the
wires’ cross sections. Considering first only the region in the
first quadrant, the bounds of the double integral are

P =
∫ l−R

0

∫ ∞

0
S z dydx.

Making use of the z component of the Poynting vector given
in Problem 11, the inner integral is first evaluated. With the
constraint 0 < x < a, the result is∫ ∞

0
S z dy =

I∆Va

4 cosh−1(l/R)
(
a2 − x2) when 0 < x < a.

This result is converted to partial fractions

I∆V

8 cosh−1(l/R)

(
1

a + x
+

1
a − x

)
,

to facilitate the calculation of the outer integral (according
to x). The power then becomes

P =
I∆V

8 cosh−1(l/R)

∫ l−R

0

(
1

a + x
+

1
a − x

)
dx.

The integral above was shown to reduce to cosh−1(l/R) in
Problem 10, thus revealing that

P =
I ∆V

8
.

Extending this to all four quadrants indicates that one half of
the power is transported within an infinite vertical rectangle
tangent to the interior extremities of the wires’ cross sections,
irrespective of the dimensions l and R.

Problem 14

In Problem 6 is was shown that the line charge density λ
relates to the potential difference between the wires as

λ =
πϵ0∆V

cosh−1(l/R)
.

The above expression can alternatively be obtained by modi-
fying Eq. (2) as follows

V =
λ

4πϵ0
ln

(
(x + a)2 + y2

(x − a)2 + y2

)
,

and then by a visual comparison with Eq. (4):

V =
∆V

4 cosh−1(l/R)
ln

(
(x + a)2 + y2

(x − a)2 + y2

)
,

the expression of λ further above is also confirmed. Once es-
tablished, the per unit length capacitance C′ of the perfectly
conducting wire pair is

C′ =
λ

∆V
=

πϵ0

cosh−1(l/R)
.
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Problem 15

i) Integrating the polar form of the surface charge den-
sity σc of the right wire in Eq. (39) around the cross section
of that wire produces the line charge density λ, as follows

λ =

∫ 2π

0
σcR dθ =

∫ 2π

0

ϵ0∆V
√

l2 − R2

2 cosh−1(l/R) (l + R cos θ)
dθ.

Since computer algebra systems typically evaluate the integral
above to 0 (which is incorrect in the present context), perform-
ing the indefinite integral and applying the bounds manually
is preferred. The indefinite integral yields, omitting the inte-
gration constant,

F(θ) =
ϵ0∆V

cosh−1(l/R)
tan−1

√ l − R
l + R

tan
(
θ

2

) .
The calculation to be performed is now

λ = F(2π) − F(0).

At θ = 2π, the tan() function’s argument is in its second branch
(with an argument of π). The result of the tan−1() must there-
fore be offset by +π, as shown below

F(2π) =
ϵ0∆V

cosh−1(l/R)

tan−1

√ l − R
l + R

tan (π)

 + π ,
which evaluates to

F(2π) =
πϵ0∆V

cosh−1(l/R)
.

Since F(0) = 0, it is proven that the line charge density λ is

λ =
πϵ0∆V

cosh−1(l/R)
.

From this result, the expected capacitance is obtained

C′ =
λ

∆V
=

πϵ0

cosh−1(l/R)
.

ii) Before performing the integral, the scale factor hσ of
Eq. (11), must be evaluated at the τ coordinate of the right
wire (τw). The required scale factor, called simply h, is

h = hσ
∣∣∣
τ=τw
=

a
cosh τ − cosσ

∣∣∣∣
τ=cosh−1(l/R)

,

which becomes

h =
a

l/R − cosσ
.

Integrating the bipolar form of the surface charge density σc
of the right wire in Eq. (36) around the cross section of that
wire produces the line charge density λ, as follows

λ =

∫ 2π

0
σch dσ =

∫ 2π

0

ϵ0∆Va

2 cosh−1(l/R)
√

l2 − R2
dσ.

Simplifying, given that a =
√

l2 − R2, and moving the con-
stants out of the integral, the integral itself evaluates to 2π,
thus proving also that the line charge density is

λ =
πϵ0∆V

cosh−1(l/R)
,

from which the same expected capacitance is also obtained.

Problem 16

The squared magnitude of the electric field vector E is re-
quired for the energy integral. With the field in Eq. (22), the
magnitude is

∥E∥ =
(cosh τ − cosσ)∆V

2a cosh−1(l/R)
,

and the squared magnitude is

∥E∥2 =
(cosh τ − cosσ)2

a2

∆V2

4(cosh−1(l/R))2
.

The volume integral to calculate is

WE =

∫ ℓ

0

∫ 2π

0

∫ τw

−τw

1
2
ϵ0∥E∥2 hτhσhzdτdσdz.

Given that the scale factors hσ and hτ from Sec. IV cancel
out with the left side fraction in ∥E∥2, and with hz = 1, the
integrand is much simpler

WE =

∫ ℓ

0

∫ 2π

0

∫ τw

−τw

ϵ0∆V2

8(cosh−1(l/R))2
dτdσdz.

With τw = cosh−1(l/R) the integral above evaluates to

WE =
πϵ0∆V2ℓ

2 cosh−1(l/R)
.

The energy in the electric field is related to the per-unit length
capacitance C′ according to

WE =
1
2

C′ℓ∆V2.

From the equivalence of the two different forms of WE above,
the per-unit length capacitance from Problem 14 can be con-
firmed:

C′ =
πϵ0

cosh−1(l/R)
.

Problem 17

A magnetic potential difference between the wires can be
defined in a similar manner as the electric potential difference.
This is possible since the magnetic vector potential A is con-
stant on the entire surface of each wire and is everywhere par-
allel to the wires. Evaluating the z component of A in Eq. (19)
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at the coordinate τ = τw from Eq. (17) yields the magnetic
potential of the right wire

A2 =
µ0I
2π

cosh−1(l/R).

Evaluating the z component of A at τ = −τw, the magnetic po-
tential of the left wire can be shown to be A1 = −A2. The dif-
ference of magnetic potential A2−A1 of the wires, labeled ∆A,
is

∆A =
µ0I
π

cosh−1(l/R).

The per-unit length inductance becomes

L′ =
∆A
I
=
µ0

π
cosh−1(l/R).

Problem 18

The squared magnitude of the magnetic field vector B is
required for the energy integral. With the field in Eq. (23), the
magnitude is

∥B∥ =
(cosh τ − cosσ)µ0I

2πa
,

and the squared magnitude is

∥B∥2 =
(cosh τ − cosσ)2

a2

(µ0)2I2

4π2 .

The volume integral to calculate is

WB =

∫ ℓ

0

∫ 2π

0

∫ τw

−τw

1
2µ0
∥B∥2 hτhσhzdτdσdz.

Given that the scale factors hσ and hτ from Sec. IV cancel
out with the left side fraction in ∥B∥2, and with hz = 1, the
integrand is much simpler

WB =

∫ ℓ

0

∫ 2π

0

∫ τw

−τw

µ0I2

8π2 dτdσdz.

With τw = cosh−1(l/R) the integral above evaluates to

WB =
µ0I2ℓ

2π
cosh−1(l/R).

The energy in the magnetic field is related to the per-unit
length inductance L′ with

WB =
1
2

L′ℓI2.

From the equivalence of the two different forms of WB above,
the per-unit length inductance from Problem 17 can be con-
firmed:

L′ =
∆A
I
=
µ0

π
cosh−1(l/R).

Problem 19

With the uniform current density J in the wires, the calcula-
tion of Ampère’s law is similar to that of Problem 5, with the
exception that the true centers of the wires must be used. For a
single thick wire, the center of symmetry is located at the cen-
ter of the wire’s cross section. Following a similar calculation
as in Problem 5, the result obtained is

B =

(
−2xy x̂ + (x2 − y2 − l2) ŷ

)
µ0lI(

(x − l)2 + y2) ((x + l)2 + y2) π .
A comparison with the field obtained using ∇ × A must be
done, where from Eq. (43), A is:

A =
−µ0I
2π

ln


√

(x − l)2 + y2√
(x + l)2 + y2

 ẑ.

In Cartesian coordinates, the curl operator is

∇ × A =

∣∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣∣∣∣∣ ,
which can be simplified since Ax = Ay = 0. Performing the
calculation yields

B = ∇ × A =

(
−2xy x̂ + (x2 − y2 − l2) ŷ

)
µ0lI(

(x − l)2 + y2) ((x + l)2 + y2) π ,
which is identical to the B field obtained using Ampère’s law.

Problem 20

The solution begins by applying the following substitutions
to the S τ component in Eq. (55):

1. The substitutions for hτ and β from Eqs. (11) and (52),
respectively;

2. The substitution τ = τw = cosh−1(l/R);

3. The substitution k = a/l from Eq. (47);

4. The substitution a =
√

l2 − R2.

After these steps, the power density at the surface of the right
wire is

S 2(σ) =

(
R2 − 2l2 + lR cosσ

)
ρJIl(

3lR2 − 4l3 + R3 cosσ
)
πR
.

Using Eq. (38), which was proved in Problem 3, the result can
also be expressed as

S 2(θ) =
(2l + R cos θ) ρJIl(

R2 + 4l2 + 4lR cos θ
)
πR
.
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Problem 21

The power entering the right wire is the double integral of
the power density over the surface of this wire in the regionΩ:

P2 =

∫ L

0

∫ 2π

0
S 2(θ)R dθ dz.

Inverting the order of integration and evaluating the integral
according to z, P2 becomes

P2 =

∫ 2π

0
S 2(θ)L R dθ.

Since some computer algebra systems evaluate the integral
above to 0, performing the indefinite integral and applying the
bounds manually is preferred. The indefinite integral yields,
omitting the integration constant,

F(θ) =
ρJIL

2π

(
tan−1

 tan
(
θ
2

)
(2l − R)

2l + R


+ tan−1

(
tan

(
θ

2

)) )
.

The calculation to be performed is now

P2 = F(2π) − F(0).

At θ = 2π, the tan() functions’ arguments are in their second
branches (with an argument of π). The results of the tan−1()
must therefore be offset by +π, as shown below

F(2π) =
ρJIL

2π

(
tan−1

(
tan (π) (2l − R)

2l + R

)
+ π

+ tan−1(tan (π)) + π
)
= ρJIL.

Since F(0) = 0, it is proven that the power entering the right
wire in the region Ω is equal to ρJIL.

Problem 22

The procedure for obtaining the surface charge density σc
of the right resistive wire is described in Sec. VI E. The den-
sity is similar to that of the perfectly conducting wire, with the
exception that ∆V is replaced by ∆V(z) from Eq. (41), which
is

∆V(z) = ∆V − 2ρJz.

When this is inserted into σc from Eq. (39), in place of ∆V ,
the surface charge density of the right resistive wire is

σc =
ϵ0(∆V − 2ρJz)

√
l2 − R2

2R cosh−1(l/R) (l + R cos θ)
.

Integrating the polar form above around the cross section of
that wire produces the line charge density λ(z), as follows

λ(z) =
∫ 2π

0
σcR dθ =

∫ 2π

0

ϵ0(∆V − 2ρJz)
√

l2 − R2

2 cosh−1(l/R) (l + R cos θ)
dθ.

Following the same procedure as in Problem 15 i), the charge
density obtained is

λ(z) =
πϵ0(∆V − 2ρJz)

cosh−1(l/R)
.

The per-unit length capacitance of the resistive wire pair can
be calculated:

C′ =
λ(z)
∆V(z)

=
πϵ0

cosh−1(l/R)
,

which is the same capacitance as for the perfectly conducting
wire pair.

Problem 23

The ratio of power densities, labeled f below, is calculated
using the component S z = S z(σ, τ) of the bipolar Poynting
vector in Eq. (55). For the right wire, the ratio can be calcu-
lated with

f =
S z(π, τw)
S z(0, τw)

,

and then performing the following substitutions:

1. The substitutions for hτ and β from Eqs. (11) and (52),
respectively;

2. The substitution τw = cosh−1(l/R);

3. The substitution k = a/l from Eq. (47);

4. The substitution a =
√

l2 − R2.

After these steps, the simplified power density ratio is

f =
(l + R)(2l + R)
(l − R)(2l − R)

.

When l ≫ R, f is equal to 1 and it is thus shown that the
same amount of power flows locally near the inner portion
of the surface and the outer portion, just as for the perfectly
conducting wires in Problem 12.

Problem 24

The ratio of power densities can be calculated using the
component S τ = S τ(σ, τ) of the bipolar Poynting vector
in Eq. (55) and the same procedure as used in the solu-
tion to Problem 23. The ratio can also be calculated using
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the power density S 2 given in Problem 20, by calculating
f = S 2(π)/S 2(0). In both cases, the result is

f =
(2l + R)
(2l − R)

.

When l ≫ R, f is equal to 1 and it is thus shown that the same
amount of power enters the wires at the inner portion of the
surface and the outer portion.

Problem 25

Recall that a complex function f (W) can be decomposed
into real and imaginary parts u(σ, τ) and v(σ, τ) respectively
as

f (W) = u(σ, τ) + iv(σ, τ) = u + iv.

The function f is said to be complex analytic in a given region
when u and v are continuously differentiable and satisfy the
Cauchy-Riemann equations12

∂u
∂σ
=
∂v
∂τ
,

∂u
∂τ
= −
∂v
∂σ
.

From Eqs. (42) and (43) for the resistive wire pair, the fol-
lowing two expressions of the electric scalar potential (V) and
the z component of the magnetic vector potential (Az) can be
obtained:

V =
∆V − 2ρJz

2 cosh−1(l/R)
ln


√

(x + a)2 + y2√
(x − a)2 + y2

 ,

Az =
µ0I
2π

ln


√

(x + l)2 + y2√
(x − l)2 + y2

 .
The potentials above can be expressed using the complex

variable Z as follows:

V =
∆V − 2ρJz

2 cosh−1(l/R)
ln

(
|Z + a|
|Z − a|

)
,

Az =
µ0I
2π

ln
(
|Z + l|
|Z − l|

)
.

Defining the complex potentials as

Vc =
∆V − 2ρJz

2 cosh−1(l/R)
ln

(Z + a
Z − a

)
,

Azc =
µ0I
2π

ln
(

Z + l
Z − l

)
,

it is therefore the case that

V = Re[Vc]; Az = Re[Azc].

Using the identity

tanh−1 Z =
1
2

ln
(

1 + Z
1 − Z

)
,

omitting the i2πn additive complex constant12 since the real
part will be taken further below, the complex potentials can
be re-written as

Vc =
∆V − 2ρJz

cosh−1(l/R)
tanh−1

( a
Z

)
,

Azc =
µ0I
π

tanh−1
(

l
Z

)
.

After application of the complex bipolar transformation Z =
T (W) given in the problem’s statement, the complex potentials
become

Vc = −i
(∆V − 2ρJz)W
2 cosh−1(l/R)

.

Azc = −i
µ0I
π

tan−1

 tan
(

W
2

)
k

 ,
where the change of variables

k =
a
l

is used in Azc to simplify further calculations.
The complex form of the electric potential Vc is no longer

required, leading to

V = Re[Vc] =
(∆V − 2ρJz)τ
2 cosh−1(l/R)

,

since Re[−iW] = τ. The electric field E can be calculated as
before:

E = −∇V = −
1
hτ

∂V
∂τ
τ̂ −
∂V
∂z

ẑ

= −
∆V − 2ρJz

2hτ cosh−1(l/R)
τ̂ +

ρJτ

cosh−1(l/R)
ẑ.

The complex potential Azc, when decomposed in real and
imaginary parts u(σ, τ) and v(σ, τ) respectively, can be shown
to be complex analytic in the region outside of the wires. For
analytic functions, the complex derivative is equal to12

dAzc

dW
=
∂u
∂σ
− i
∂u
∂τ
.

The z component of the magnetic vector potential is precisely
the real component of Azc,

Az = Re[Azc] = u(σ, τ).

As such, the differentials required in the calculation of the
magnetic field B (using the curl operator) can be related to u
as follows:

B = ∇ × A =
1
hτ

∂Az

∂τ
σ̂ −

1
hσ

∂Az

∂σ
τ̂ =

1
hτ

∂u
∂τ
σ̂ −

1
hσ

∂u
∂σ
τ̂.
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From the complex derivative further above:

∂u
∂τ
= −Im

[
dAzc

dW

]
,

∂u
∂σ
= Re

[
dAzc

dW

]
,

such that

B = −
1
hτ

Im
[
dAzc

dW

]
σ̂ −

1
hσ

Re
[
dAzc

dW

]
τ̂.

The required derivative is

dAzc

dW
= −i

µ0Ik
(1 + k2 + (k2 − 1) cos W)π

.

With the properties

Im[iZ] = Re[Z], Re[iZ] = −Im[Z],

the magnetic field is thus equal to

B =
µ0I
π

(
1
hτ

Re[β] σ̂ −
1

hσ
Im[β] τ̂

)
,

where

β = β(W) =
k

1 + k2 + (k2 − 1) cos W
.

With the E and B fields calculated above, the Poynting vector
in the space surrounding the resistive wires is

S =
1
µ0

(E × B) = −
EzBτ
µ0
σ̂ +

EzBσ
µ0
τ̂ −

EτBσ
µ0

ẑ,

which is equal to

S =
I

π cosh−1(l/R)

(
ρJτ
hσ

Im[β] σ̂ +
ρJτ
hτ

Re[β] τ̂

+
∆V − 2ρJz

2(hτ)2 Re[β] ẑ
)
.

The power Pz flowing parallel to the resistive wires, in the
space surrounding the wires, can be calculated with

Pz =

∫
S z dA =

∫ τw

−τw

∫ 2π

0
S z hσhτ dσdτ.

Since hσ = hτ, both scale factors cancel out with the ones
in S z, leaving

Pz =
(∆V − 2ρJz)I
2π cosh−1(l/R)

∫ τw

−τw

∫ 2π

0
Re[β(σ + iτ)] dσdτ.

The inner integral is∫ 2π

0
Re[β(σ + iτ)] dσ = Re

[∫ 2π

0
β(σ + iτ) dσ

]
.

Since β can also be shown to be complex analytic in the region
outside of the wires, the definite integral is path independent

and is the same as in ordinary calculus12. Omitting the inte-
gration constant, the primitive F of β with respect to σ is

F(σ) = tan−1

 tan
(
σ
2 + i τ2

)
k

 ,
and the definite integral is now equal to

F(2π) − F(0).

At σ = 0, the primitive evaluates to

F(0) = tan−1

 tan
(
i τ2

)
k

 .
At σ = 2π, the tan() function’s argument in F(σ) is in its
second branch (with a real component of π). The result of the
tan−1() must therefore be offset by +π, as shown below

F(2π) = tan−1

 tan
(
π + i τ2

)
k

 = tan−1

 tan
(
i τ2

)
k

 + π.
Since the first term in F(2π) is equal to F(0), it is shown that

Re
[∫ 2π

0
β(σ + iτ) dσ

]
= π.

The outer integral in the Pz calculation is now evaluated:

Pz =

cosh−1(l/R)∫
− cosh−1(l/R)

(∆V − 2ρJz)I
2 cosh−1(l/R)

dτ = (∆V − 2ρJz)I.

Using the usual definition of the current density J, the power
flowing through a transverse plane at position z, outside of the
wires, is therefore

Pz = I ∆V − 2
ρz
πR2 I2,

which is identical to the result obtained in Eq. (60). The power
entering the wires can also be calculated using a very similar
approach.
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