
Received 10 November 2023; accepted 3 December 2023. Date of publication 8 December 2023; date of current version 29 December 2023.

Digital Object Identifier 10.1109/OJCOMS.2023.3341002

Proactive and Intelligent Monitoring and
Orchestration of Cloud-Native IP

Multimedia Subsystem
RASEL CHOWDHURY 1, CHAMSEDDINE TALHI1, HAKIMA OULD-SLIMANE2,

AND AZZAM MOURAD 3,4 (Senior Member, IEEE)
1Department of Software Engineering and Information Technology, École de technologie supérieure, Montreal, QC H3C 1K3, Canada

2Department of Mathematics and Computer Science, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
3Artificial Intelligence and Cyber Systems Research Center, Department of CSM, Lebanese American University, Beirut 1102 2801, Lebanon

4Division of Science, New York University, Abu Dhabi, UAE

CORRESPONDING AUTHOR: R. CHOWDHURY (e-mail: rasel.chowdhury.1@ens.etsmtl.ca)

ABSTRACT As the cloud moves from monolithic infrastructure to a self-isolated cloud native microservice
environment, automation is becoming an important aspect for the management of the application life
cycle. In this context, there are many tools available that can monitor these applications and raise
alarms. However, automated orchestration is still in its early stages, and the available solutions are not
capable of monitoring the whole system from application to hardware levels and performing automated
operations within the system. Moreover, IP Multimedia Subsystem (IMS), which is the core part of the
Telecom industry, has switched to a microservice environment. These IMS services are critical and need
to be proactively monitored to provide automated orchestration operations. In this paper, we address the
aforementioned problem by proposing a new scheme for monitoring the metrics from different sources
and proactively and automatically performing orchestration using machine learning while improving the
scalability of the cloud native Virtual IMS. Experiments carried out with a real cloud-native IMS running
in a kubernetes cluster explore the relevance, efficiency and scalability of the proposed scheme.

INDEX TERMS Cloud-native, monitoring, orchestration, Kubernetes, machine learning, vIMS, network
and service management.

NOMENCLATURE
3GPP 3rd Generation Partnership Project
CN Node CPU utilization
CaN Assigned node CPU
CP Pod CPU Utilization
CaP Assigned Pod CPU
CapEx Capital expenditure
CLI Command Line Interface
DP Pod disk utilization
DevOps Development and operations
FC CPU resource requirement
FL Application latency
FM Memory requirement
IMS IP Multimedia Subsystem
KHPA Kubernetes Horizontal Pod Auto-Scaling
KPI Key Performance Indicators

LP Application latency
LTE Long-Term Evolution
MN Node memory utilization
Ma
N Assigned node Memory

MP Pod memory utilization
Ma
P Assigned Pod Memory

MAPE-K Monitor, Analyze, Plan, Execute, Knowledge
NFV Network Function Virtualization
OpEx Operating Expenses
QoE Quality of Experience
QoS Quality of Service
RN Node resource
RP Pod resources
RBAC Role-Based Access Control
RBF Radial basis function
RNP Number of requests that a pod processes

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 5, 2024 139

HTTPS://ORCID.ORG/0000-0001-6056-8691
HTTPS://ORCID.ORG/0000-0001-9434-5322


CHOWDHURY et al.: PROACTIVE AND INTELLIGENT MONITORING AND ORCHESTRATION OF CLOUD-NATIVE IMS

SIP Session Initialization Protocol
SLA Service-level agreement
SSL Secure Socket Layer
SVR Support Vector Regression
TexP Execution time of SIP requests
THN Node threshold
THP Pod threshold
TLS Transport Layer Security
UMTS Universal Mobile Telecommunications

Service
vIMS Virtual IMS
VNF Virtual Network Functions
VoLTE Voice over LTE
xi Actual value

I. INTRODUCTION

RECENTLY, telecom industries have undergone a rapid
evolution. As LTE and VoLTE are becoming the norm,

the telecom industries must meet the challenges faced by 5G
and beyond. The main target of evolution to 5G is to meet the
main use cases: enhanced mobile broadband, massive ultra-
reliable communication, and low latency in communication.
Currently, there are around 8.4 billion mobile users and they
generate an enormous amount of data, which is around 25
exabytes [1]. During a 6-year period, mobile data usage has
increased exponentially. The telecom industries are moving
towards cloud solutions in order to cope with the increasing
number of traffic. Furthermore, the cloud provides a shorter
time to deploy new services, a lower operational cost (OpEx)
and a better customer experience (QoE), according to the
requirements of 5G and 6G. According to [2] and [3],
proactive and intelligent monitoring and orchestration will
play an important role in the management of telcom services
that operate in heterogeneous cloud infrastructures.
Internet Protocol Multimedia Subsystem (IMS) was

originally designed to evolve to Universal Mobile
Telecommunications Service (UMTS) networks to provide
Internet Protocol multimedia to mobile users [4]. IMS core
components are traditionally run on over-provisioned propri-
etary hardware, which usually has higher capital expenditure
(CapEx) and Operational Expenses (OpEx). Furthermore,
QoS and QoE will play a vital role in the 5G network [5],
as 5G is required to achieve better mobile traffic, a large
number of users, better handling of user traffic and reduced
end-to-end latency [6]. In order to reduce CapEx and OpEx,
and to ensure the QoS and QoE, the telecom industries are
moving toward vendor-neutral software-based solutions by
virtualizing the IMS core. Cloudifying the telecom solution
means that the components need to be transformed from
the proprietary hardware-based solutions into Cloud-Native
applications. Cloud native is a recent technological trend as
an upgrade from monolithic architecture to distributed cloud
infrastructure. Monitoring and orchestration of these cloud-
native applications has important impacts on the application
life cycle. Orchestration also plays an important role in
managing different behaviors, such as scheduling, load

balancing, health checking, fault tolerance, etc., for all cloud-
native microservice solutions.
Cloud native applications or architecture are container-

based environments, which are used to develop applications
built with services packaged in containers, deployed as
microservices, and managed on elastic infrastructure through
agile software development and IT operations (DevOps)
processes that continuously deliver workflows of the appli-
cation itself. Cloud-native applications allow DevOPs to
continuously deliver and use the microservice and con-
tainer architecture. The Cloud-Native approach provides
resilience, operating system abstraction, collaborations, con-
tinuous delivery, independent and automated scalability. IBM
projected that automation will be the next phase for the
cloud environment and the optimized industry [7]. Moreover,
there is a rise in the utilization of cloud native applications
for the manufacturing, healthcare, and telecom sectors. IBM
Global Research has stated that 40% organizations have the
ability and strategy to manage a cloud ecosystem, but lack
the management tools to automatically manage them [8].
Cloudifying the IMS means that its modules and entities

will become modular software components running in vendor
neutral clouds, servers, or virtual machines. There are
different ways of virtualizing the IMS core, such as running
the whole IMS core in one virtual machine, making the
IMS modules VNF (Virtual Network Functions) using NFV
(Network Function Virtualization), and containerizing the
IMS modules as microservices. Microservices are becoming
popular for cloud native solutions [9] in cloud industries, due
to their independent decoupled application modules, which
are composed of small processes that communicate with each
other using language-agnostic APIs.
Microservices use containerization, as it solves differ-

ent cloud application issues, like Application Dependency
Hell problem, application portability problem, performance
overhead problem, etc. Orchestration of the native cloud
application manages the microservices running in the cluster
for resource allocation, life cycle, and other operations based
on the policies set by the administrator. The orchestrator
has an important role in the cloud native deployment, as
it is responsible for the microservice management deci-
sions. Kubernetes [10], Red Hat Openshift [11], Docker
swarm [12], Amazon EKS [13], etc. are the container
orchestration platform. Still these Orchestration platform
have some limitations. The authors [14] explained that there
are many limitations to orchestration operations. Some of
the limitations are as follows:

• There are no or limited validated performance model for
orchestration which are required to maintain a certain
level of service.

• Orchestration metrics are not standardized to determine
the performance of the containerized application.

• There are few standards or policies for different orches-
tration operations using the metrics of the application
and system.

140 VOLUME 5, 2024



• The policies available are very simple for orchestration
operations. For example, threshold-based scalability,
round-robin for load balancing, etc.

The two most popular container orchestration platforms
are the Docker Swarm and Kubernetes, and the rest uses
these technologies incorporated in their system. Docker
Swarm is faster in terms of deployment time, but it does
not provide automatic scaling. It does not have built-in
monitoring mechanisms that are provided through a third-
party application. Docker Swarm allows for simple TLS for
security and access control-related work. Kubernetes allows
for high availability, fault tolerance, and self-healing, and
also provides automatic scaling and can replace faulty pods if
required. Kubernetes has a basic built-in monitoring system
and supports integration with third-party monitoring tools.
Kubernetes has support for various security schemes, such
as RBAC, TLS/SSL, Secret management, etc. The main
disadvantage of Kubernetes is that the installation process is
complex and requires separate CLI tools.
Among the container orchestration platform, Kubernetes

is the most popular in terms of open-source community,
application deployment, availability, fault tolerance, self-
healing, etc. Kubernetes ecosystem consists of a set of
nodes that run the containerized applications; pods are the
smallest deployable units of computing of an application
running in the nodes. Kuberenetes have different components
such as Control Plane Components which makes the global
decision about the cluster as well as performing cluster
events; Node Components executes on every node that
performs operations such as maintaining the pods and
Kubernetes runtime environment; and Addons that use
the Kubernetes resources in order to perform cluster-level
operations such as DNS, Web UI, Container Resource
Monitoring, etc. [15], [16]
Monitoring the application metrics running in a microser-

vice environment is important for orchestration operation.
There are different metrics that can be monitored such
as CPU, Memory, Network traffic of Pods, and Nodes.
These monitored metrics allow the Kubernetes cluster
orchestrator to perform reactive operations like scalability,
load-balancing, fault tolerance, health check, etc. based on
some simple SLA policies. However, these operations are
very basic; for example, scalability operations are performed
on the basis of threshold using CPU and memory utilization.
Orchestrators can actively monitor the system and can
perform the operation reactively, but these operations policies
are very simple and cannot perform the operation proactively
for critical systems that require the operations to be executed
in a timely manner and efficiently.
There are many metrics that the telecom industries monitor

ranging from hardware resources to application to provide
better QoS and QoE. According to [5], it is important
to identify service-specific QoE and its effects on various
QoS metrics based on the different services that the telcom
operators provide. Current telecom operators can actively
monitor the system using the monitoring tools available

for native cloud solutions, but these monitoring tools do
not prevent the system from crashes or abnormal behaviors
since the events occur randomly. Currently, there are many
monitoring tools, but there are no orchestration tools that
can take into account the behavior of the system and take
the necessary actions in real time. In the field of research,
there have been few researches, but they are domain specific
or they do not take into consideration all of the parameters
for monitoring and orchestration; also there are no systems
available to analyze the events so that the cloud native IMS
can adapt in real time. Usually, the cloud native systems
are managed by the operator who is in charge of the
system, and the decisions are left to the operator based
on their own experience. In this paper, we propose an
orchestration framework that is capable of monitoring native
cloud applications and automatically taking orchestration
decisions. In our research, we have used the implementation
of the session initialization protocol (SIP) of cloud native
virtual IMS (vIMS) to evaluate and validate our architecture.
The main contributions of this paper are as follows.
• New monitoring and orchestration architecture for
cloud native systems for Kubernetes cluster, which
can perform operations by monitoring Pod, Node and
Application;

• Formulation of the horizontal scalability problem as
multi-variant support vector regression using different
kernels for resource prediction;

• Resource prediction algorithms for the application
specifically for SIP servers in order to achieve scalabil-
ity operation;

• Realistic cloud-native SIP application as a use-case
to test and evaluate the monitoring and orchestration
architecture.

The rest of the paper is organized as follows: In Section II,
we present the background on IMS, microservices, orches-
tration, monitoring, etc. Section III provides the related work
in the research domain. In Section IV, we propose our
orchestration architecture. Section V explains the formal
definition of the problem. Section VI presents the data
collection, the modeling of the machine learning algorithm,
and the orchestration algorithm. In Section VII, we present
our case study and performance analysis. Finally, the
conclusion of this paper is drawn in Section VIII.

II. BACKGROUND
A. INTERNET PROTOCOL MULTIMEDIA
SUBSYSTEM(IMS)
IMS [17] is a global, access-independent, and standard-
based Internet Protocol (IP) connectivity and service control
architecture that enables various types of multimedia services
to end-users, using common Internet-based protocols. IMS
is standardized by 3GPP and is used to provide differ-
ent services like Image Share, IMS Security, Multimedia
telephony, OMA Instant Messaging and Presence Service,
Peer-to-peer video sharing, Push-to-talk, Real-time text,
Session Initialization Protocol (SIP) extensions for the IP

VOLUME 5, 2024 141



CHOWDHURY et al.: PROACTIVE AND INTELLIGENT MONITORING AND ORCHESTRATION OF CLOUD-NATIVE IMS

Multimedia Subsystem, Text over IP, Video Share, Voice call
continuity, Presence, etc. for users.
SIP [18] is a signalling transport protocol, which is one

of the core functionalities of cloud-native IMS. SIP is used
for signalling and controlling communication sessions for
different services like instant messaging, voice of LTE,
events notification, Internet conferencing, instant messaging,
etc. The SIP protocol makes use of proxy SIP severs
to interconnect remote SIP users and systems end-to-end.
Additionally, SIP has been used to establish Quality of
Service (QoS) between network operators and for different
Internet architectures.

B. MICROSERVICES
Microservices are software development techniques that
make an application a collection of loosely coupled inde-
pendent services [19]. Microservices are implemented and
operated as small independent systems, offering access to
their internal logic and data through a well-defined network
interface. In this architecture, the services are made into
fine-grained modules and the protocols that are used to
communicate are usually lightweight. Microservices allow
faster delivery, improved scalability, and greater autonomy
for development and software maintenance. Due to their
nature and their benefits, microservices are gaining pop-
ularity. Container is a portable encapsulated environment
where a bundle of OS, libraries, environment variable,
and software are located. There are different architectures
like [20] and [21] that used microservices and docker
containers for application deployment.

C. MONITORING MICROSERVICES
Monitoring the microservices running in containers is neces-
sary, as containers are buried under the physical host, which
is invisible to traditional monitoring architecture. Due to the
nature of containers, microservices create a big blind spot
in the system. Monitoring the containers will allow different
orchestration decisions, like diagnosing performance of the
container, failure detection, malicious activities, network
performance, etc.
There are lots of metrics available to monitor a container

ecosystem; some of the most important metrics and their
importance for orchestration are as follows:
• Relative metrics measure values based on data collected
from the virtual file system, such as the utilization of
the CPU / memory of the container. These are usually
collected using tools such as docker stats or cAdvisor.

• Absolute metrics measure the cumulative activity of the
overall system, such as the CPU/Memory consumption
of the physical machine. These are collected using
mpstat, top, etc.

• Application metrics measure the performance and activ-
ity of the application, such as the latency of the
processes, the number of requests it is processing, etc.
These metrics are collected if the application is exposing
these metrics using custom tools.

D. ORCHESTRATION
Orchestration allows the cloud and application providers
to define how to select, deploy, monitor, and dynami-
cally control the configuration of multi-container packaged
applications [14]. According to [14], the different types of
microservice orchestration are:
• Resource limit control allows to reserve a specific
amount of resources like CPU and memory for a
container;

• Scheduling defines the policy used to place the amount
of container on nodes at a given time instance;

• Load Balancing distributes the loads/tasks among
multiple container instances;

• Health checking checking verifies if the container is
capable of answering requests;

• Fault tolerance is implemented as replica control and/or
high availability controller;

• Auto-scaling allows to automatically add or remove
container or resources based on some conditions.

There are two main types of scalability, which are as
follows:
• Vertical scalability increases or decreases the computing
resources, such a CPU, memory, etc. Vertical elasticity
is also known as resource resizing. The vertical elastic-
ity is limited to the host machine capacity as it cannot
provision more resources when all the host machine
resources are already allocated to different containers.

• Horizontal scalability adds or removes instances of
computing resources associated with an application.
Horizontal elasticity is also known as replication of
resources. One disadvantage of horizontal scalability is
that it requires more support from the application to
be decomposed into instances. Another disadvantage of
horizontal scalability is that it requires some time to
start another instance, as well as a period of cooling
when scaling down.

E. KUBERNETES
Kubernetes [10] is an open source container orchestration
platform for automating the deployment and management of
applications. Kubernetes has become one of the most popular
orchestration tools for cloud native applications. The main
Kubernetes components that are used in this research are as
the following:
• Container is a portable encapsulated environment where
a bundle of OS, libraries, environment variable and
software are located.

• Pod is the basic scheduling unit in which the containers
are placed. A pod can consist of one or more containers
running in parallel with each other.

• Node, sometimes called a Worker or a Minion, is a
virtual machine or physical machine where pods can be
deployed.

• Cluster is a collection of nodes which work together to
run the containerized applications.

142 VOLUME 5, 2024



F. KUBERNETES HORIZONTAL POD
AUTO-SCALING(KHPA)
The state of the Art Kubernetes Auto-Scaling is the KHPA
Algorithm [22], a relative performance measured using
threshold. The algorithm inputs the relative utilization and
the number of active pods and outputs the number of pods
needed to be deployed.
Relative performance measures are adapted by all con-

tainer orchestration frameworks. But relative usage measures
underestimate the required capacity, so it is not capable of
determining the most appropriate resources required by the
service level objectives.

III. LITERATURE REVIEW
In the domain of automated orchestration, there is much
research being carried out. In this section we will mainly list
out the research specific to monitoring and the orchestration
on cloud native applications.
Monitoring the services running in a container is an

important aspect for the management and orchestration of
microservices. It allows the administrator to evaluate the
microservice, such as creating or removing replicas based on
the usage of the containers, detecting faults, and monitoring
malicious activities in the containers. Available monitoring
tools typically include system resources like CPU, memory
and I/O usage which usually consume a lot of resources, and
most of them have not taken into consideration the network
traffic between containers.
The authors [23] implemented an open source lightweight

container resource monitoring tool (PyMon), mainly
designed for resource-constrained devices. The architecture
is based on the host-based monitoring tool Monit for
docker container inspection Moradi et al. [24] proposed
an automated inter-containers network monitoring tool for
measuring the network performance such as delays, jitters
and packet loss between applications of the containers.
It is a distributed and automated solution for observing
network metrics in a container-based environment. The
implementation of the tool allows dynamic monitoring
as well as automatic service discovery and setup of the
environment in case of scaling and migration without manual
intervention on the containers. The monitoring system allows
passive as well as active monitoring of the network traffic
of containers.
According to Casalicchio et al. [14], in the state of

autonomic orchestration, orchestration operations should
include self-healing, self-optimization, self-protection along
with orchestration functionality. The authors [25] discussed
the orchestration problems and challenges. Reference [26],
proposed a method to automatically form and monitor the
Kubernetes Federation using the TOSCA standard. The main
reason for choosing TOSCA as their solution was that they
wanted to demonstrate multi-cloud solutions for mainstream
cloud technology and platform.
Pelaez et al. [27] proposed a dynamic adaptation of

policies using machine learning. The approach allows

administrators to define their policies in terms of high-level
goals and lets the system determine which actions to apply
(and when to apply them) in order to guarantee that those
goals are met. Support Vector Regression, Nearest-Neighbors
Regression, Random Forest Regression, Ridge Regression,
and Neural Network are all used for evaluation.
In [28], [29], the author presented a cloud-native imple-

mentation of telecom services as microservices using
containers, as well as Kubernetes for auto-scaling. In their
approach, they have integrated a predictive machine learning
algorithm using linear regression and a moving average
integrated with auto regression. In their autoscaling orches-
tration, they have predicted long-term forecasting based on
the seasonal traffic to update resources using long-term data;
and predicted real-time scaling decision based on the current
data from the system to predict the number of containers.
In their implementation, they used CPU, memory, etc. as
features for the prediction algorithm.
The authors [30] proposed a reinforcement learning agent

that can horizontally scale container instances based on
the user’s demands and also schedule the placement of
containers based on the available resources. Reference [31]
used K-means clustering along with the generic algorithm to
address container placement in fog devices. Reference [32]
used multi-objective particle swarm for container-based
scheduling for IoT in cloud environments. Reference [33]
quantified the impact of resource utilization and performance
interference on the end-to-end tail latency of various requests
from Web applications running in a microservice envi-
ronment. In their approach, they used linear regression,
support vector regression, decision tree, random forest, and
deep neural network for comparison. Reference [34] showed
how reinforcement learning can be used to place servers
and allocate workloads in edge computing. Reference [35]
proposed QoE-DEER a game-theoretic approach to solve
edge resource allocation, which allocates resources to various
Telcom IoT users to maximize the overall QoE of the
ecosystem. They have performed several experiments to
show that their approach is similar to the optimal baseline
of QoE.
In [36], the authors explained why the selection of

appropriate metrics is very important for container auto-
scaling in Kubernetes, as auto-scaling can increase the
performance of the overall system. In this paper, the authors
discussed the correlation between absolute and relative
usage measures and how resource allocation decisions can
influence them. Reference [37] provided a comprehensive
architecture-level view of Kubernetes and its autoscaler. The
authors also provided a detailed analysis of KHPA using
multiple scenarios.

Reference [38] introduced a multilevel monitoring frame-
work and a method for dynamic thresholds for fine-grained
autoscaling. Their approach continuously monitors the
system and allocates resources needed to have efficient
performance of the application. The fine-grained method is
based on a set of adaptation rules using dynamic thresholds.

VOLUME 5, 2024 143



CHOWDHURY et al.: PROACTIVE AND INTELLIGENT MONITORING AND ORCHESTRATION OF CLOUD-NATIVE IMS

TABLE 1. Comparison other research.

Balla et al. proposed [39] an adaptive autoscaler, Libra,
which automatically determines the optimal resource settings
for the Kubernetes pod and manages the horizontal scaling
process. Libra uses a canary deployment of the application
to find the threshold of CPU based on the number of request
its handling. On the basis of their results, their autoscaler
provides better results than the Kubernetes native autoscaler.
Reference [40] used heuristic-based for autoscalability, while
the authors in [41] proposed an intent-based orchestrator
for 5G application that dynamically relocates applications to
fulfill the requirements of end-user services.
Table 1 shows the comparison of our work with other

research and the added values in addition to these implemen-
tations. KHPA [22] is the native Kubernetes threshold-based
scalability algorithm using equation (7) that takes the CPU
utilization of the pod over a period of 30 seconds to increase
or decrease the number of pods, but its implementation
does not take into account the memory utilization, CPU and
memory of the node, as well as the application parameters
such as latency and the number of requests the application
is processing. References [28], [29] used linear regression
using metrics from the CPU and memory utilization, as well
as the latency of pods for scalability. In their experimentation
they have shown that their implementation works better than
KHPA in terms of time for scalability, but their approach
has not considered monitoring metrics from the node and
application to tackle the scalability of the application.
References [33], [36] quantified and explained the different
metrics requirement for scalability; in their approach, they
have utilized pod metrics, but their approach has not taken
into account node and application metrics. Reference [33]
used linear regression, support vector regression, decision
tree, random forest, and deep neural network to implement
and compare their approach, whereas [36] used threshold rule
based approach. References [38], [39] are able to monitor
the utilization of pod resources and application and have
used a threshold rule-based approach to perform scalability
operation, but have not anticipated the utilization of node

resources nor the latency of the process. All monitoring
and orchestration frameworks implemented discussed do not
take into account resource utilization of nodes, which is a
very important metric to monitor, as it is the space holder
of the pods. Furthermore, these implementations have not
used the metrics available from the application, such as the
number of process requests that it is processing, which can
provide better insight into the decision about scalability.
Our implementation has taken into account all the different
types of metrics (relative, absolute, and application) to make
orchestration decisions for scalability.

IV. ARCHITECTURE
Figure 1 shows a high-level design of the Cloud-Native IMS
automation which is based on the MAPE-K architecture [44]
for Cloud Native Application orchestration. The architecture
is designed to collect metrics from applications, pods, and
nodes. Then, based on the behavior of the pod, it can
take orchestration decisions like scalability, faults detection
and recoveries, anomalies detection and recovery, etc. for
the application it is monitoring. The Monitor collects
metrics of pods along with application metrics, as well
as metrics of the node where the pod is running, then
transmits the values to the database for future use and
to the Enforcer. ML-Engine creates different models for
orchestration based on the data stored in the Database
and sends the models to the Enforcer. Enforcer takes the
orchestration decisions based on the current metrics provided
by the Monitor using the models received by the ML
Engine and forwards the decision to the Orchestrator. Based
on the orchestration decision of the Enforcer, Orchestrator
performs the operation in the cluster. All modules run on a
native Kubernetes cluster. The details of each module are as
follows:
Figure 2 shows in depth how the Monitor is implemented

and able to collect metrics from different sources. The
Monitor is implemented using Python using the Kubernetes
Python API [45] and Prometheus API [46]. Monitor queries

144 VOLUME 5, 2024



FIGURE 1. Proposed Architecture.

FIGURE 2. Monitor.

the Kubernetes cluster using the Kubernetes API to get the
information regarding the clusters, like the list of nodes,
pods, deployments, namespaces, etc. Then, the Monitor
selects a specific deployment and queries the cluster using
the Prometheus API to find the metrics of the system. For
relative metrics or Pod Metrics, it selects a deployment
and queries the cluster to get the resources, like resource
limit and resource utilization, of CPU, Memory, Disk and
Network. For node or absolute metrics, it collects the
resource utilization as well as the configuration of the node,
like the number of cores available for the node memory, by
using multiple Prometheus queries on the cluster. Application
metrics are specific application values generated by the
application itself, which are also collected with Prometheus
queries. Finally, metrics collected from Pods, Nodes and
Applications are aggregated based on certain criteria and are
transmitted to the Database for storage as well as to the
Enforcer for decision.

A. ML-ENGINE AND ENFORCER
ML-Engine and Enforcer are the brain of the system.
ML-Engine retrieves the metrics from the database and
creates models periodically based on different algorithms,
and then sends them to the Enforcer.
ML-engine generates multiple Machine Learning Models

using supervised or unsupervised learning for each type
of orchestration operations. In our system there are two
types of Model for the same operations. One of them
generates models for long-term decisions and later one
for the pro-active decisions. Long-term models use time-
based historical data to generate models for orchestration
operations. However, short-term models are generated using
metrics from all the collection points for making proactive
orchestration decisions. Once a model is generated using the
machine learning algorithm, it is being transferred to the
Enforcer to update that specific model to make the decisions.
The Enforcer will provide an efficient resource management,
load balancing of the traffic, as well as anomaly detection
along with recovery solutions.
The Enforcer uses the models generated by the ML-Engine

to predict the type of operations needed to be performed on
the Kubernetes cluster. For long-term predictions, it will use
the long-term models generated by the ML-Engine and take
the orchestration decision based on seasonal time events.
For proactive predictions, the short-term model and SLA
policies are taken, provided by the Cluster Manager. When
the Enforcer makes the decision, it passes the decision to
the Orchestrator as well as to the Database if the decision
is made using a supervised learning algorithm.
Figure 3 shows the internal operation of the ML-Engine

and the interconnection to the enforcer. Modules are imple-
mented using Python to utilize enriched machine learning
libraries, such as Keras [47] for the deep learning algorithm

VOLUME 5, 2024 145



CHOWDHURY et al.: PROACTIVE AND INTELLIGENT MONITORING AND ORCHESTRATION OF CLOUD-NATIVE IMS

FIGURE 3. ML-Engine and Enforcer.

along with Sci-kit [48] for decisions. When the ML-Engine
pulls the data, it normalizes them so that the model provides
more accurate results. For short-term models, ML-Engine
periodically pulls the specific dataset from the Database,
selects specific metrics, and retrains the data to create a new
model using supervised or unsupervised Machine Learning
algorithms. For long-term predictions, the ML-Engine uses
data over a period of days, e.g., a month or a few months to
train the model. Once the models are generated, it sends them
to the Enforcer. Once the Enforcer receives the aggregated
data from the Monitor, it normalizes the data and selects the
model for the proactive orchestration decisions. For long-
term predictions, the Enforcer periodically uses the long-term
models to make the orchestration decisions. Details of the
machine learning algorithm and the instances that predict the
future are discussed in V. The decision for the orchestration
is sent to the Orchestrator along with the deployment name
or the pod id.

B. ORCHESTRATOR
The Orchestrator enforces the orchestration decisions on the
Kubernetes cluster. It has the necessary functionalities to
execute the appropriate commands to perform the operations
like elastic scalability, restarting the application, load-
balancing, etc. This module updates the Kubernetes cluster
with the decision provided by the Enforcer based on the best
possible orchestration solutions.
The internal mechanism of the Orchestrator is shown

in 4. The module is implemented with Python using the
Kubernetes API and machine learning libraries [47], [48].
The orchestration decision is received from the Enforcer
which contains the deployment name, as well as the
pod id. The Orchestrator uses the Kubernetes API to
retrieve the deployment configuration or the pod information
from the cluster. If the orchestration decision is to update
the deployment configuration, it modifies the deployment
configuration object and pushes it to the cluster, which
updates the deployment in the cluster. If the orchestration
decision is to modify the pod, it pushes the updates to the
cluster using the Kubernetes API. Therefore, the cluster is
updated with the latest decision based on the current situation
of the cluster.

C. CONTROL POINT
Control Point is an interface for the application administrator
to assign SLA policies to microservices. This module is

FIGURE 4. Orchestrator.

the only way for the administrator to access the system to
intervene and update the policies. Control Point allows the
administrator to set different parameters from service-level
features. Features include the data collection frequency, new
machine learning algorithms for the orchestration, maximum
resources a microservice can have, maximum number of pods
to be assigned to the microservices, the different strategies
for recovering from faults, etc.

D. DATABASE
The Database is required for storing the data generated by
the system in the time series database. Whenever the Monitor
sends the aggregated metrics from the system, the database
stores the data using a time-series schema. When the data are
requested by the ML-Engine, it converts the database into a
suitable format and sends the dataset back to the ML-Engine.
If the data requested by the ML-engine are for the proactive
models, it sends the dataset for a specific interval of time;
otherwise, it sends the whole dataset.

V. MULTI-OBJECTIVE OPTIMIZATION FOR SCALABILITY
In this section, we present a formal definition of the scalabil-
ity problem and explain the formulation as a multiobjective
optimization problem.

A. PROBLEM DEFINITION
In our Kubernetes cluster, resource utilization plays an
important role in horizontal scalability. A pod has dif-
ferent resources varying from hardware to the application
metrics. [49], [50], [51] illustrated different approaches for
resource optimization based on the type of workload as
well as the window size to predict resource utilization. The
resources that impact the scalability of a pod are composed
of CP, MP, RNP and LP, which we denote as RP=(CP,
MP, RNP, LP). In addition, a pod has a threshold of
the resources indicated as THP. These threshold limits are
the CPU utilization assigned CaP and the assigned memory
utilization Ma

P. A cluster Node consists of multiple Pod
running, so the resource utilization of a node is RN =∑n

i=1 [CPi ,MPi ,DPi ], where n is the number of Pods. The
threshold of a node, ThN , includes CaN and Ma

N .

146 VOLUME 5, 2024



RP ∝ RNP as the pod has to process the SIP requests in
parallel. So, LP ∝ [RNP,RP] increases the latency of that
instance. Also LP ∝ 1

THP
since there will be less resources

to process requests, the latency will increase. Once a pod
reaches these thresholds, the pod needs to be scaled up.
A replica in the Kubernetes cluster is an instance of the
Application running in a pod, and once a replica reaches the
threshold, the cluster needs to add a new replica to perform
the operations efficiently.
To perform horizontal scalability, we need to formulate

the resource consumption of each pod independently as the
pod will be having different workloads based on the number
of SIP requests it is processing. Based on the workload and
resource consumption of a pod at time t, the pod might
need to create a replication or remove it. As an example,
the conditions below show simple scalability actions based
on the resources of the pod at time t.

∀Pi(t), i : 1→ n, if

RPi < THPi , Do Nothing
LPi < 200ms, Do Nothing
RPi > THPi , Scale Up
LPi > 200ms, Scale Up
RPi > THN, Scale Up
RPi < 0.2%, Scale Down
LPi < 10ms, Scale Down

In order to predict resource utilization at a given time t,
Multivariant Support Vector Regression (SVR) is one of
the suitable solutions. The goal of SVR is to calculate a
function that is capable of minimizing the overestimation
and underestimation of data based on the ε insensitive
loss function, penalizing predictions that are farther from
the desired output. The target function can be formulated
according to [52] as

f (x) = < w, x > +b

=
M∑

j=1

(
wj × xj

)+ b (1)

where w, xεRM , bεR
where x is the input variable and w is the weight. Using
optimization and applying slack variables and Lagrange
multipliers equation as shown in [52] and [53], equation (1)
can be re-written as

w =
n∑

i=1

(
αi − α∗i

)
γ (xi)

f (x) =
n∑

i=1

(
α − α∗

)
K < xi, x > +b (2)

where K < xi, x >= ϕ(xi)ϕ(x) is called the kernel functions.
The kernel functions used in this research for formulation
of our cost functions are
• Linear: K < xi, x >= xTi x
• Polynomial: K < xi, x >= (γ xTi x+ r)d, γ > 0
• Radial basis function (RBF) : K < xi, x >=

exp (γ ‖xi − x‖2), γ > 0

The efficiency of scalability depends on the prediction of
resources required for Pod based on the current resource cost
function.

• FC is the CPU resource required to run the application
at time t for processing the workload. It is equal to
the number of SIP requests processed along with the
utilization of other resources. By doing so, we maximize
the CPU utilization of each pod.

FC =
(
RNP × TexP × CP × CaP

CaN
+ CN

)

(3)

• FM is the memory required for running the application
and processing the workload based on the number
of sip requests, as well as other dependent resource
utilizations.

FM =
(

RNP × TexP ×
(
Ma
P

Ma
N
×MP + DP

))

(4)

• FL calculates the application latency based on the
application workload it is processing along with
other resource consumption that affects the application
latency.

FL =
(
RNP ×

[CP
CN
+ MP

MN
+ TexP
THP

+ DP
]
+ LP

)
(5)

Based on [52], [53] our objective function is

maximize

{
− 1

2

∑l
i,j=1

(
αi − α∗i

)(
αj − α∗j

)
k < xi, xj >,

−ε
∑l

i,j=1

(
αi − α∗i

)+∑j
i=1 yi

(
αi − α∗i

) (6)

Subject to
∑l

i=1(αi−α∗i ) = 0 and αi, α
∗
i ε[0,C], where xi =

FC or FM or FL.

B. PREDICTION ALGORITHM
The Algorithm 1 is the prediction algorithm which is
designed based on the definitions of the problem and
the objective function. The algorithm requires the current
resource metrics of a pod, then evaluates the equation (2)
with functions (3), (4), and (5) using different kernel
functions to predict the future resources required. After the
prediction of the resources is done, it makes the decision for
the pod to scale up or down or to keep it the same.

VI. IMPLEMENTATION
The first step in automated scalability is to collect data
from the observation system. Collected data will be used to
observe the behavior of the system and select the appropriate
algorithms for the pro-active automated scalability. In this
section, we explain the data collected from the system using
the monitor, representation of the data, and selection of the
machine learning algorithm based on the system behavior
and implementation of the orchestration algorithm.

VOLUME 5, 2024 147



CHOWDHURY et al.: PROACTIVE AND INTELLIGENT MONITORING AND ORCHESTRATION OF CLOUD-NATIVE IMS

FIGURE 5. Representation of metrics with respect to the traffic load.

A. DATA COLLECTION AND REPRESENTATION
Figure 5 illustrates the resource metrics collected from the
system that vary with respect to the number of SIP requests
generated by the SIP traffic generator. Figure 5(a) shows the
CPU utilization of the SIP traffic handler instance running
in the pod, and Figure 5(e) shows the utilization of the
node cpu that hosts the pod. Figures 5(b) and 5(f) show
the memory utilization of the pod and node, respectively.
The network utilization, divided into bytes sent and received
by the SIP instance in the pod, as well as the node,
are shown in Figures 5(c), 5(d), 5(g) and 5(h) in the
given order. The latency of the SIP instance is illustrated
in Figure 5(i).

From Figures 5(a) to 5(i), it is clear that the CPU
utilization and network utilization are increasing gradually
with the number of SIP requests sent to the SIP server.
Whereas the latency for processing the SIP requests is
increasing exponentially as the SIP requests are increased.
Memory utilization increases gradually in the pod, but it
increases step by step in the node as the resources are

provisioned by Kubernetes and internal processing of the
nodes.

B. MACHINE LEARNING ALGORITHM FOR PREDICTION
To predict future resource utilization based on current metrics
collected from the system, we have used a Machine Learning
technique. Machine learning is capable of predicting future
resources based on the correlation of metrics shown in
Figure 5. As shown in Figure 5, the behavior of the system
follows a regression model instead of using classification,
since the metrics are not labeled to decide the number
of replicas required proactively. We have selected Support
Vector Regression (SVR) as the machine learning algorithm
to predict the resource utilization for CPU, memory, and
latency. SVR is a type of Support Vector Machine for
regression which is used to predict values based on the subset
of the training data to build the prediction model.
Concerning the orchestration decision for scalability, we

have selected the resource utilization of the pod and the
node where the pod is currently running along with the

148 VOLUME 5, 2024



FIGURE 6. Prediction Algorithms.

application metrics. The dataset used to train the model is
derived from the metrics collected from running different
traffic loads as shown in Figure 5. The dataset is split
into 70% and 30% for training and testing the algorithms,
respectively. To train the prediction algorithms, we first
normalize the data using the normalizer. We trained the
system to predict five different resource utilizations, namely
pod CPU utilization, pod memory consumption, node CPU
utilization, node memory consumption, and the latency of the
pod based on the number of SIP requests it is processing. We
have tested the model with three different SVR algorithms;
linear SVR, Polynomial SVR and Radial Basis Function
(RBF) kernel.
The visual representation for training the different SVR

algorithms is shown in Figure 6 for training 70% of the
dataset. From the training, we have the following estimations:

• The Pod CPU utilization (Figure 6(a)): we see that the
three types of SVR are suitable for prediction;

• The Pod Memory consumption (Figure 6(b)): linear is
not suitable for prediction where as RBF or Polynomial
are preferable;

• The Node CPU consumption (Figure 6(c)): polynomial
and RBF shows better results for prediction;

• The Node Memory prediction (Figure 6(d)): RBF seems
to be more suitable than polynomial and linear;

• The latency (Figure 6(e)): polynomial and RBF algo-
rithm are better in predicting the latency of the system.

To select the best algorithm to predict resource consump-
tion, we tested the system with the remaining 30% of the
dataset. The R2 score of the algorithms for predicting CPU,
memory, and latency is presented in Table 2. From the results
of Table 2, it is clear that

• For Pod CPU, RBF SVR is the best among them;
• For Pod Memory, RBF SVR is the most suitable;
• For Node CPU, RBF SVR has the highest R2 score;

TABLE 2. R2 scores of the SVR algorithms.

• For Node Memory, polynomial SVR is the best;
• For latency, polynomial SVR shows the best R2 score.

C. ORCHESTRATION ALGORITHM
Algorithm 1 and 2 show the orchestration algorithms that
predict the future values of resource consumption and make
the orchestration decisions for scalability, which are to
increase or decrease the number of pods of SIP server
instances. instances.
The Algorithm 2 is the main algorithm which receives the

metrics from the Monitor in the form of a list that is collected
over that time. The first step of this algorithm is to get the
number of SIP requests from the Metrics List and add it at
the end of the SIPList, which holds the previous numbers of
SIP requests. Then it finds the trend of the SIP request the
pod is processing, as either increasing, decreasing, or keeping
stable based on the SIPList values. After that, the average of
the SIP request is calculated and added to the metrics list. By
averaging the SIP requests, it eliminates abnormal values of
the system. Finally, SIPTrend is found using the SIPList that
formulates whether the traffic is increasing, decreasing, or
keeping stable. Based on SIPTrend, it increases SIP requests
accordingly, as shown in the algorithm, and then calls the
Algorithm 1 for the scalability decision.

The Algorithm 1 decides whether to scale up or down the
pod based on the prediction of future metrics. The algorithm
requires the Metrics list as well as the Machine Learning

VOLUME 5, 2024 149



CHOWDHURY et al.: PROACTIVE AND INTELLIGENT MONITORING AND ORCHESTRATION OF CLOUD-NATIVE IMS

Algorithm 1 Predictor
Require: MetricsList, Resource Models, Limits

RequirePodCPU = evaluate equation (2) with x=FC
RequiredPodMemory = evaluate equation (2) with x=FM
RequiredNodeCPU = evaluate equation (2) with x=
MetricsList
RequiredNodeMemory = evaluate equation (2) with x=
MetricsList
RequiredLatency = evaluate equation (2) with x=
MetricsList
if RequiredPodCPU > Pac OR RequiredPodMemory >

Ma
P then
Send IncreasePod to Orchestrator

else if RequiredNodeCPU > CaN OR
RequiredNodeMemory > Ma

N then
Send IncreasePod to Orchestrator

else if FutureLatency > UpperLimits then
Send IncreasePod to Orchestrator

else if RequirePodCPU < LowerPodCPULimit OR
RequiredPodMemory < LowerPodMemoryLimit OR
RequiredLatency < LowerLatencyLimit then
Send DecreasePod to Orchestrator

else
Do Nothing

end if

Algorithm 2 Enforcer
Require: MetricsList

SIP ← SIP requests from Metrics
Insert SIP in SIPList
SIPTrend ← GetSIPTrend(SIPList)
SIP ← Average(SIPList)
if SIPTrend = Increasing then
SIP ← SIP + 20
Update SIP request in MetricsList ← SIP
CALL Algorithm 1 with MetricsList

else if SIPTrend = Decreasing then
SIP ← SIP + 10
Update SIP request in MetricsList ← SIP
CALL Algorithm 1 with MetricsList

else if SIPTrend = Stable then
Do Nothing

end if

models which are generated by the ML Engine. At the
beginning of the algorithm, it predicts the future values of
the resources by using the ML models with the values sent
by the Algorithm 2. Based on the predicted value if

• greater than the allocated resources, it increases the
number of pod;

• lower than Lower threshold, it decreases the number of
pod;

• not greater than the allocated resources or lower than
lower threshold, it does nothing.

TABLE 3. System specification.

VII. EXPERIMENTATION
To evaluate our framework, we have used vIMS SIP as our
case study. Telecom companies are moving towards cloud
solutions in order to cope with the increasing traffic and
number of subscribers. Also, the cloud will provide shorter
time for deploying new services, lower OpEx, and better
customer experience, according to requirements of 5G and
beyond.

A. TESTBED
To test our proposed framework for automated monitoring
and orchestration, we have used the implementation of the
cloud native function (CNF) of SIP microservices running
in a Kubernetes cluster. Our Kubernetes cluster contains one
master and three nodes. The details of the configuration are
shown in Table 3.

To simulate SIP traffic, we have used a SIP traffic
generator called SIPp [54], which is a free Open Source
test tool for the SIP protocol. The tool allows for different
scenarios such as the number of SIP requests per second,
duration of the SIP request, simultaneous concurrent SIP
requests, etc. This tool is used to simulate real IMS traffic
to test and validate the monitoring part of the research. The
details of test scenarios are discussed in Section VII-D.

B. METRICS COLLECTED
In our research we have collected different types of metrics
ranging from the application-based specific to physical
system resource consumption which hosts the Kubernetes
cluster. We ran the system for two hours and collected
twenty five different types of metrics running the SIPp traffic
generator from 1 SIP request to 200 SIP requests per second
in real time at an interval of 2 seconds. The SIP requests
are gradually increased over a period of 120 minutes, so
that there are multiple numbers of instances for the same
number of requests. The details of the categories and types
of metrics are as follows. For application-specific metrics,
we have collected:

• SIP request code is the SIP request sent by the SIPp
traffic generator, which includes INVITE, REGISTER,
ACK, etc.

150 VOLUME 5, 2024



FIGURE 7. Experimentation.

• Number of SIP request value which is the current
number of SIP the system is processing;

• SIP responses which are sent to the SIPp traffic
generator as response codes, which range from 2xx to
6xx;

• SIP latency is the latency of the application instance
for processing the sip requests.

Pod metrics include resource consumption and information
about the application that is running in the pod. The types
of metrics are:

• Name space is the name-space where the deployment
is running;

• Deployment name is the deployment identifier of the
application;

• Pod name is the name of the application instance which
is a unique identifier assigned to application replica by
the Kubernetes;

• Assigned CPU is the number of cores limit assigned to
the pod;

• Assigned Memory is the memory limit assigned to the
pod;

• CPU utilization is the CPU utilization of the pod at that
current moment;

• Memory utilization is the memory utilization of the pod;
• Network usage is the network utilization of the pod,
which includes the incoming and outgoing traffic.

Node specific metrics are the data collected on the physical
machines which is hosting the node, the metrics are:

• Node name is the name assigned to the node;
• Allocated CPU is the CPU core available for the node;
• Allocated memory is the memory available for the node;
• CPU utilization is the CPU utilization of the node;
• Memory utilization is the memory utilization of the
node;

• Network utilization is the network utilization of the
node, which includes the incoming and outgoing traffic
on the network.

C. PERFORMANCE OF OUR FRAMEWORK
In order to test the end-to-end functionality of the framework,
we performed different types of experimentations. We tested
our implementation with SIP traffic generator to see how
the system reacts proactively. Figure 7 shows the reaction of
the system when the SIP requests are increased or decreased
over a 20-minute period and the number of replicas created
by the system. Over the period of time, seven total replicas
were created by the system and the deploying replicas takes
around 4.4 seconds. Also, the traffics are divided equally
among the replicas, which are provided by the Kubernetes
native traffic load balancer.
In Figure 7(a) shows the distribution of SIP requests by

the number of replicas. When a replica processes more
than 45 requests, it increases the number of replicas and
distributes the new traffic between them along with the time
at which the replicas are created. From the beginning of
the experimentation to the time of 6 minutes 40 seconds,
the system has one replica for processing the sip requests;
during this period, we have increased and decreased the
number of sip requests from the SIPP. At around 5 minutes
of the experimentation, we started to gradually increase the
number of requests sent to the server, and our framework
is able to determine that the sip requests are increasing, so
it created another replica, and the Kubernetes load balancer
distributed the traffic between the two replicas. After that,
we reduce the requests sent to the server for a short period
of time and again increase the requests sent to the system.
So, our framework proactively created a replica in around
10 minutes and 12 minutes. Consequently, we have kept the
number of sip requests sent to the server save over a period
of three minutes and started increasing the number of sip
requests. Hereafter, our framework also increases two more
replicas based on the number of processes each replica is
processing.
Figures 7(b) and 7(c) show the utilization of replica CPU

and memory resources, respectively. At around 6 minutes
40 seconds the second replica is created, at 7 minutes of

VOLUME 5, 2024 151



CHOWDHURY et al.: PROACTIVE AND INTELLIGENT MONITORING AND ORCHESTRATION OF CLOUD-NATIVE IMS

FIGURE 8. Test Scenarios.

the experimentation the third replica is being deployed, and
at around 7 minutes, 10 minutes, 12 minutes, 16 minutes,
and 19 minutes the fourth, fifth, and sixth replicas are being
created, respectively. In Figures 7(b) at around 2, 4, and
5 minutes, CPU utilization decreases as the number of sip
requests is reduced for a short period of time. The utilization
of CPU resources never exceeds 0. 55%, and whenever the
utilization of CPUs exceeds 0.05, the system increases the
number of replicas. From Figure 7(b), it is clear that the
memory utilization of the replicas increases gradually with
the number of requests it receives. The latency of each replica
is shown in Figure 7(d). As shown in the figure the latency of
the application is also gradually increase due to the number
of sip requests each replica is receiving. The latency of the
first replica is always the highest, as it has to process more
SIP requests than other replicas.
To summarize this experimentation, the system is able to

distribute the SIP traffic based on the CPU utilization of
the replicas while keeping the system stable over a period
of time. Better evaluation of the system can be deduced
when we experiment the framework using different scenarios,
which is explained in the next sections.

D. TEST SCENARIOS
We tested the framework using two scenarios; The first
scenario has regular SIP traffic, while the second scenario
has abnormal traffic behavior. We have compared our
implementation with the native kubernetes horizontal pod
autoscaling algorithm to show the difference between the
two implementations and as well as the benefit of using our
framework for performing autoscaling. In these experiments,
we intend to show that our implementation is capable of
ensuring the scalability of the system in any of the scenarios.
The details of the scenarios are as follows;

1) SCENARIO 1

In this scenario, SIP traffic gradually increases from 0
requests to 150 requests per second, which illustrates the

normal behavior of the system under observation. Figure 8(a)
is the first scenario in which SIP traffic increases and
decreases over time. In this case, the time period is set to
30 minutes, where the traffic is increased to 150 SIP requests
per second over a period of 8 minutes, and then it gradually
decreases to 0 SIP requests over a period of 6 minutes
in total of around 17 minutes, and then the same process
is performed increasing and decreasing for the remaining
15 minutes. This scenario is intended to simulate the ideal
case in which network traffic increases and decreases over
a period of time.

2) SCENARIO 2

In the second scenario, SIP traffic is similar to Scenario 1,
but with a random increase or decrease in traffic for short
periods. This scenario simulates abnormal traffic, which is
usually caused by multiple short-term SIP requests. Figure 8
(b) shows that SIP requests are increasing or decreasing, but
at some point in time the traffic increases or decreases for
a short period of time.At 4 minutes, 5 minutes, 15 minutes,
18 minutes, and 28 minutes, we have increased the number
of SIP requests abruptly for a very short period to simulate a
sudden spike in the system. Approximately around 7 minutes,
9 minutes, 14 minutes, and 23 minutes we have decreased
the number of SIP requests for a short period. In summary,
as shown in the figure, there are small or large increases
in traffic, as well as small or large drops in SIP traffic.
This scenario tests the orchestration algorithm to determine
whether it can detect random increases or decreases in traffic
and acts accordingly, but without increasing or decreasing
the pod.

E. EVALUATION
In order to evaluate the implementation of the framework,
we have experimented with the two scenarios discussed. We
have performed the experiment with the native KHPA and
compared with our implementation.

152 VOLUME 5, 2024



KHPA uses a mathematical equation, as shown in
equation (7). The number of replicas required is calculated
by multiplying the number of current replicas of the pod
and then summation of all CPU utilization of pods for that
deployment and dividing it with the threshold of the CPU
value.

number of replica = ceil

[

current Replicas

×
(∑

pod CPU Metric

Threshold CPU

)]

(7)

We have tested our implementation with KHPA using the
two scenarios keeping the same input settings and with the
traffic distribution evenly distributed among all replicas. The
threshold limit for the CPU of a replica is set at 0.04% and
the memory at 100 mb. In the experimentation, we performed
several tests that include the time taken to deploy a pod along
with the time required to initialize the pod to accept traffic.
We have not taken into consideration the latency of the
system with regard to the traffic request distribution. These
experiments aim to determine how automated orchestration
scales up and down based on traffic load. Also, they allow
us to see how our implementation performs with the native
Kubernetes scalability features. The experimental results of
the scenarios are shown in Figure 8 (c) and Figure 8 (d),
where HPA is the native Kubernetes auto-scaling algorithm
(KHPA) and ACNMO is our auto-scaling algorithm using
machine learning.
Figure 8(c) shows the scalability operations of the

Kubernetes cluster for our framework and KHPA with respect
to Scenario 1 in Figure 8 (a). Furthermore, Figure 8(c)
provides a comparison between them with respect to the
performance of the two implementations. At 2:30 minutes,
4 minutes, 5 minutes, 7 minutes, 18 minutes, 19:10 minutes,
20 minutes, and 21 minutes, KHPA increases the number
of replicas based on the CPU utilization threshold of the
system. However, our framework takes into account CPU,
memory, and latency to predict whether or not a new
replica is required. So, our implementation increases the
number of replicas by 30 seconds, 3 minutes, 4:10 minutes,
6:30 minutes, 7:30 minutes, 17 minutes, 18:20 minutes,
19:30 minutes, 21 minutes, and 22 minutes based on the
resource utilization of the system. Regarding the decrease
of replicas, KHPA is eager to delete replicas which are
happening at 10:50 minutes, 12 minutes, 14 minutes,
15:30 minutes, 24:30 minutes, 25:50 minutes, 27:30 minutes,
and 29 minutes, whereas our implementation the deletion
of replica occurs at 10 minutes, 11 minutes, 13:20 minutes,
14:10 minutes, 15:50 minutes, 24 minutes, 15 minutes,
26:40 minutes, 28 minutes, and 29:10 minutes. As shown in
Figure 8(c), both our framework and the KHPA systems are
able to increase and decrease the number of replicas based
on the load of the system and the traffic load. Regarding
the implementation of KHPA, the system reacts to resource
utilization based on CPU utilization and increases the

number of replicas when it reaches the threshold. According
to our implementation, the system can scale proactively
before reaching maximum resource utilization and gradually
decreases replicas.
A better comparison for both implementations is evaluated

when we introduce them to Scenario 2 (Figure 8 (b)). As
illustrated in the figure, KHPA scales up and down with
traffic, as it calculates the number of replicas required using
a simple equation, but our framework keeps the number
of replicas stable. KHPA increases and decreases replica
number in 4 minutes, 5 minutes, 15 minutes, 18 minutes,
and 28 minutes, but our system did not increase or decrease.
At 7 minutes, 9 minutes, 14 minutes and 23 minutes, KHPA
decreases and increases replicas within a very short amount
of time as it calculates the number of replicas required
using a simple equation, but our system is able to predict
and keep the Kubernetes cluster stable. When the system
abruptly changes KHPA, it does not perform well, whereas
our framework is able to compensate for spikes and sinks
in traffic loads and can maintain system stability throughout
the experimentation periods.
In summary, both systems perform well when the traffic

is gradually increasing and decreasing, but our framework
is able to predict the future resource consumption and to
make the decision to scale up before replica reaches the
threshold. When the system has spikes and sinks of traffic
load, KHPA does not maintain system stability, which will
eventually add latency to the system. Our framework is able
to foresee the spikes and sinks of the traffic and can maintain
system stability, which eventually will have less latency to
the system.

VIII. CONCLUSION
In this article, we proposed an architectural framework
for automated orchestration for Cloud-Native applications,
specifically for virtual IMS. The proposed architecture is
designed to fill the gap of the limitations of the current work,
which are discussed in Table 1. Our proposed framework
provides efficient elastic scalability for the virtual IMS in a
microservice environment.
We also implemented the proposed architecture in the

Kubernetes cluster that runs the vIMS as well as a sim-
ple machine learning algorithm to predict future resource
utilization. We introduced an orchestration algorithm that
proactively makes the orchestration decision for scalability.
We evaluated our implementation with Kubernetes native
horizontal pod autoscaler and have shown that our framework
is able to perform better than Kubernetes native autoscaler.
For future work, we are planning to add more orchestration

operations, such as anomaly detection, load balancing,
etc., using neural networks and deep learning, so that
the architecture can automatically and efficiently handle
different types of operations that will provide better proactive
orchestration of the cloud-native IMS.

VOLUME 5, 2024 153



CHOWDHURY et al.: PROACTIVE AND INTELLIGENT MONITORING AND ORCHESTRATION OF CLOUD-NATIVE IMS

REFERENCES
[1] (Ericsson, Stockholm, Sweden). Ericsson Mobility Report Q4

2018. (2019). Accessed: Jan. 10, 2022. [Online]. Available:
https://www.ericsson.com/assets/local/mobility-report/documents/201
9/emr-q4-update-2018.pdf

[2] V. Ziegler, H. Viswanathan, H. Flinck, M. Hoffmann, V. Räisänen, and
K. Hätönen, “6G architecture to connect the worlds,” IEEE Access,
vol. 8, pp. 173508–173520, 2020.

[3] Y. Xiao, G. Shi, Y. Li, W. Saad, and H. V. Poor, “Toward self-
learning edge intelligence in 6G,” IEEE Commun. Mag., vol. 58,
no. 12, pp. 34–40, Dec. 2020.

[4] “Ip-multimedia subsystem,” 3GPP, Sophia Antipolis, France,
Rep. 23.228, 2022. [Online]. Available: http://www.3gpp.org/
technologies/keywords-acronyms/109-ims

[5] N. Banović-Ćurguz and D. Ilišević, “Mapping of QoS/QoE in 5G
networks,” in Proc. 42nd Int. Conv. Inf. Commun. Technol., Electron.
Microelectron. (MIPRO), 2019, pp. 404–408.

[6] D. Jiang and G. Liu, An Overview of 5G Requirements. Cham,
Switzerland, Springer , 2017, [Online]. Available: https://doi.org/10.
1007/978-3-319-34208-5_1

[7] (IBM Technol. Corp., Armonk, NY, USA). Cloud in 2020: The Year
of Edge, Automation and Industry-Specific Clouds. (2019). [Online].
Available: https://www.ibm.com/blogs/cloud-computing/2019/12/12/
cloud-2020-trends/

[8] (IBM Technol. Corp., Armonk, NY, USA). Survey: Most Companies
Use Multicloud, But Far Less Have Tools for Management. (2019).
[Online]. Available: https://www.ibm.com/blogs/cloud-computing/
2018/10/19/survey-multicloud-management-tools/

[9] (Metaswitch Telecommun. Co., London, U.K.). Virtualization and
Containerization of the Mobile Network. (2022). Accessed: Mar. 15,
2022. [Online]. Available: https://www.metaswitch.com/knowledge-
center/white-papers/virtualization-and-containerization-of-the-mobile-
network

[10] Kuberenetes. Production-Grade Container Orchestration. (2022).
[Online]. Available: https://kubernetes.io/

[11] (RedHat Softw. Co., Raleigh, NC, USA). Red Hat Openshift Container
Platform. (2022). [Online]. Available: https://www.openshift.com/
products/container-platform

[12] Docker. Docker Swarm. (2022). [Online]. Available: https://docs.
docker.com/engine/swarm/

[13] (Amazon Web Ser. Cloud Comput. Co., Seattle, WA, USA).
Amazon Elastic Container Service. (2022). [Online]. Available:
https://aws.amazon.com/ecs/

[14] E. Casalicchio, Container Orchestration: A Survey. Cham,
Switzerland, Springer, 2019.

[15] Kubernetes. Kubernetes Components. (2023). [Online]. Available:
https://kubernetes.io/docs/concepts/overview/components/

[16] Kubernetes. Kubernetes Architecture. (2023). [Online]. Available:
https://kubernetes.io/docs/concepts/architecture/

[17] “IP multimedia subsystem (IMS); stage 2 (Release 11), Version 11.
10.0,” 3GPP, Sophia Antipolis, France, Rep. TS-23.228, 2013.

[18] J. Rosenberg, “SIP: Session initiation protocol,” Netw. Working Group,
RFC 3261, 2002.

[19] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov,
“Microservices: The journey so far and challenges ahead,” IEEE
Softw., vol. 35, no. 3, pp. 24–35, May/Jun. 2018.

[20] X. Wan, X. Guan, T. Wang, G. Bai, and B.-Y. Choi, “Application
deployment using microservice and docker containers: Framework
and optimization,” J. Netw. Comput. Appl., vol. 119, pp. 97–109, Oct.
2018.

[21] R. Wang, M. Imran, and K. Saleem, “A microservice recommendation
mechanism based on mobile architecture,” J. Netw. Comput. Appl.,
vol. 152, Feb. 2020, Art. no. 102510.

[22] Kubernetes. Horizontal Pod Autoscaler. (2022). [Online]. Available:
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autosca
le/

[23] M. Großmann and C. Klug, “Monitoring container services at the
network edge,” in Proc. 29th Int. Teletraffic Congr. (ITC), 2017,
pp. 130–133.

[24] F. Moradi, C. Flinta, A. Johnsson, and C. Meirosu, “ConMon:
An automated container based network performance monitoring
system,” in Proc. IFIP/IEEE Symp. Integr. Netw. Service Manag. (IM),
2017, pp. 54–62.

[25] E. Casalicchio, “Autonomic orchestration of containers: Problem
definition and research challenges,” in Proc. 10th EAI Int. Conf.
Perform. Eval. Methodol. Tools. EAI, 2017, pp. 287–290.

[26] D. Kim, H. Muhammad, E. Kim, S. Helal, and C. Lee, “TOSCA-based
and federation-aware cloud orchestration for Kubernetes container
platform,” Appl. Sci., vol. 9, no. 1, p. 191, 2019.

[27] A. Pelaez, A. Quiroz, and M. Parashar, “Dynamic adaptation of
policies using machine learning,” in Proc. 16th IEEE/ACM Int. Symp.
Cluster, Cloud Grid Comput. (CCGrid), 2016, pp. 501–510.

[28] D.-H. Luong, H.-T. Thieu, A. Outtagarts, and Y. Ghamri-Doudane,
“Cloudification and autoscaling orchestration for container-based
mobile networks toward 5G: Experimentation, challenges and perspec-
tives,” in Proc. IEEE 87th Veh. Technol. Conf. (VTC Spring), 2018,
pp. 1–7.

[29] D.-H. Luong, H.-T. Thieu, A. Outtagarts, and Y. Ghamri-
Doudane, “Predictive autoscaling orchestration for cloud-native
telecom microservices,” in Proc. IEEE 5G World Forum (5GWF),
2018, pp. 153–158.

[30] H. Sami, A. Mourad, H. Otrok, and J. Bentahar, “FScaler: Automatic
resource scaling of containers in fog clusters using reinforcement
learning,” in Proc. Int. Wireless Commun. Mobile Comput. (IWCMC),
2020, pp. 1824–1829.

[31] P. Farhat, S. Arisdakessian, O. A. Wahab, A. Mourad, and H. Ould-
Slimane, “Machine learning based container placement in on-demand
clustered fogs,” in Proc. Int. Wireless Commun. Mobile Comput.
(IWCMC), 2022, pp. 1250–1255.

[32] M. Adhikari and S. N. Srirama, “Multi-objective accelerated particle
swarm optimization with a container-based scheduling for Internet-
of-Things in cloud environment,” J. Netw. Comput. Appl., vol. 137,
pp. 35–61, Jul. 2019.

[33] J. Rahman and P. Lama, “Predicting the end-to-end tail latency of
containerized microservices in the cloud,” in Proc. IEEE Int. Conf.
Cloud Eng. (IC2E), 2019, pp. 200–210.

[34] A. Mazloomi, H. Sami, J. Bentahar, H. Otrok, and A. Mourad,
“Reinforcement learning framework for server placement and work-
load allocation in multiaccess edge computing,” IEEE Internet Things
J., pp. 1–1, vol. 10, no. 2, pp. 1376–1390, Jan. 2023.

[35] S. Li, J. Huang, J. Hu, and B. Cheng, “QoE-DEER: A QoE-aware
decentralized resource allocation scheme for edge computing,” IEEE
Trans. Cogn. Commun. Netw., vol. 8, no. 2, pp. 1059–1073, Jun. 2022.

[36] E. Casalicchio, “A study on performance measures for auto-scaling
CPU-intensive containerized applications,” Clust. Comput., vol. 22,
no.3, pp. 995–1006, 2019.

[37] T.-T. Nguyen, Y.-J. Yeom, T. Kim, D.-H. Park, and S. Kim,
“Horizontal pod autoscaling in Kubernetes for elastic container
orchestration,” Sensors, vol. 20, no. 16, p. 4621, 2020.

[38] S. Taherizadeh, V. Stankovski, and J. Cho, “Dynamic multi-level auto-
scaling rules for containerized applications,” Comput. J., vol. 62,
no. 2, pp. 174–197, Feb. 2019.

[39] D. Balla, C. Simon, and M. Maliosz, “Adaptive scaling of Kubernetes
pods,” in Proc. IEEE/IFIP Netw. Oper. Manag. Symp., 2020, pp. 1–5.

[40] S. N. Srirama, M. Adhikari, and S. Paul, “Application deployment
using containers with auto-scaling for microservices in cloud environ-
ment,” J. Netw. Comput. Appl., vol. 160, Jun. 2020, Art. no. 102629.

[41] S. Barrachina-Muñoz, J. Baranda, M. Payaró, and J. Mangues-
Bafalluy, “Intent-based orchestration for application relocation in a
5G cloud-native platform,” in Proc. IEEE Conf. Netw. Funct. Virtual.
Softw. Defined Netw. (NFV-SDN), 2022, pp. 94–95.

[42] C. Harrison, C. R. Kirkpatrick, and I. Dutra, “Bioinformatics compu-
tational cluster batch task profiling with machine learning for failure
prediction,” 2018, arXiv:1812.09537.

[43] N. Naik, “Applying computational intelligence for enhancing the
dependability of multi-cloud systems using docker swarm,” in Proc.
IEEE Symp. Ser. Comput. Intell. (SSCI), 2016, pp. 1–7.

[44] Y. Brun et al., “Engineering self-adaptive systems through feedback
loops,” in Software Engineering for Self-Adaptive Systems. Berlin,
Germany, Springer, 2009, pp. 48–70.

[45] Kubernetes. Kubernetes Api. (2022). [Online]. Available:
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/

[46] Prometheus. “Prometheus http Api.” 2022. [Online]. Available:
https://prometheus.io/docs/prometheus/latest/querying/api/

[47] Keras. “Keras: The python deep learning library.” 2022. [Online].
Available: https://keras.io/

154 VOLUME 5, 2024



[48] Scikit-learn. Scikit-Learn Machine Learning in Python. (2022).
[Online]. Available: https://scikit-learn.org

[49] S. Benmakrelouf, N. Kara, H. Tout, R. Rabipour, and C. Edstrom,
“Resource needs prediction in virtualized systems: Generic proac-
tive and self-adaptive solution,” J. Netw. Comput. Appl., vol. 148,
Dec. 2019, Art. no. 102443.

[50] H. Tout, C. Talhi, N. Kara, and A. Mourad, “Selective mobile cloud
offloading to augment multi-persona performance and viability,” IEEE
Trans. Cloud Comput., vol. 7, no. 2, pp. 314–328, Apr.–Jun. 2019.

[51] H. Tout, C. Talhi, N. Kara, and A. Mourad, “Smart mobile computation
offloading: Centralized selective and multi-objective approach,” Expert
Syst. Appl., vol. 80, pp. 1–13, Sep. 2017.

[52] A. J. Smola and B. Schölkopf, “A tutorial on support vector
regression,” Statist. Comput., vol. 14, no. 3, pp. 199–222, 2004.

[53] M. Awad and R. Khanna, Support Vector Regression. Berkeley,
CA, USA: Apress, 2015, pp. 67–80. [Online]. Available:
https://doi.org/10.1007/978-1-4302-5990-9_4

[54] SIPp. “Open source SIP traffic generator.” 2022. [Online]. Available:
http://sipp.sourceforge.net/

RASEL CHOWDHURY received the M.Sc. degree in information technol-
ogy engineering from the École de Technologie Supérieure, University of
Québec, Montreal, QC, Canada, in 2018, where he is currently pursuing
the Ph.D. degree in software engineering.

His research interests include the optimization and management of cloud
infrastructure services, cloud native orchestration using MLOPs, cyber
security, and the security and privacy of IoT, IoE, and Android.

CHAMSEDDINE TALHI received the Ph.D. degree in computer science
from Laval University, Québec City, QC, Canada, in 2007.

He is currently a Full Professor with the Department of Software
Engineering and IT, École de Technologie Supérieure, University of Québec,
Montreal, QC, Canada. He is leading a research group investigating efficient
security mechanisms for smartphones, the Internet of Things, and edge and
cloud infrastructures. His current research interests include cloud native
telco services management and security, DevOps security, and federated
learning for mobile cloud and IoT.

HAKIMA OULD-SLIMANE received the Ph.D. degree in computer science
from Laval University, Québec City, QC, Canada, in 2011.

She is currently a Professor with the Department of Mathematics and
Computer Science, Université de Québec à Trois-Rivières, Trois-Rivières,
QC, Canada. Her research interests include information security, cyber
resilience, homomorphic encryption, federated learning, preserving data
privacy in smart environments, machine learning-based intrusion detection,
access control, optimization of security mechanisms, and security of social
networks.

AZZAM MOURAD (Senior Member, IEEE) received the M.Sc. degree in
CS from Laval University, Québec City, QC, Canada, in 2003, and the
Ph.D. degree in ECE from Concordia University, Montreal, QC, Canada,
in 2008.

He is currently a Professor of Computer Science and the Founding
Director of the Cyber Security Systems and Applied AI Research Center,
Lebanese American University, Beirut, Lebanon; a Visiting Professor of
Computer Science with New York University Abu Dhabi, Abu Dhabi,
UAE; and an affiliate Professor with the Software Engineering and IT
Department, École de Technologie Supérieure, Montreal. His research
interests include cyber security, federated machine learning, networks, and
service optimization and management targeting IoT and IoV, cloud, fog,
and edge computing, and vehicular and mobile networks. He was the
General Chair of IWCMC2020, the General Co-Chair of WiMob2016, and
the track chair, a TPC member, and a reviewer for several prestigious
journals and conferences. He has served/serves as an Associate Editor for
IEEE TRANSACTIONS ON SERVICES COMPUTING, IEEE TRANSACTIONS

ON NETWORK AND SERVICE MANAGEMENT, IEEE NETWORK, IEEE
OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, IET QUANTUM

COMMUNICATION, and IEEE COMMUNICATIONS LETTERS.

VOLUME 5, 2024 155



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


